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ABSTRACT 
Field-programmable gates arrays (FPGAs) have recently been 
used to emulate SystemC descriptions. Emulation of SystemC 
descriptions allows for in-system testing, and has been shown to 
compare favorably with SystemC simulations on a PC when 
acceleration engines are employed. A limit on the number of 
acceleration engines that can fit on a SystemC emulation platform 
creates new dynamic management problems involving decisions 
as to when and which acceleration engines to load with SystemC 
bytecode. We define an acceleration management problem for 
SystemC emulation platforms. In contrast to previous works that 
focus on statically improving SystemC (and the more general 
event-driven) simulations, we utilize dynamic online algorithms 
to manage the use of a limited number of SystemC acceleration 
engines in an emulation framework, where the kernel must adapt 
and react to a dynamically changing event queue. We test several 
online heuristics, and show that we can achieve 14X improvement 
over software-only emulation and 3.8X over statically preloading 
SystemC acceleration engines. 

1. INTRODUCTION 
SystemC descriptions can be executed in one of several ways. 
One common way is to simulate SystemC descriptions on a PC.  
Simulation allows for testing SystemC descriptions without costly 
or unattainable physical equipment. A few key drawbacks are that 
simulating SystemC models might be slow and inaccurate, and 
creating fabricated I/O can be difficult and time-consuming, while 

still not matching the complexity and nuances of real I/O. Some 
SystemC descriptions can even be synthesized to an ASIC, FPGA, 
or board-level customized implementation. Synthesized SystemC 
descriptions benefit from interacting with physical inputs and 
outputs with very high performance. However, SystemC synthesis 
tools can be expensive (compared to compilers), may only run on 
limited PC platforms and be challenging to install (especially on 
lower-end PCs), may be unpredictable with respect to circuit 
size/speed or tool runtime, often require long runtimes (such as 
hours or days), may not support particular target devices or 
platforms, and can only synthesize the parts of the code written 
for synthesis. An alternative to SystemC simulation and SystemC 
synthesis is in-system SystemC emulation. Though slower than a 
custom implementation, emulation enables early prototyping, and 
benefits from real I/O rather than fabricated I/O in simulation.  

For the common situation where the emulation engine is 
implemented on (or with access to) an FPGA, FPGA-based 
acceleration engines can substantially increase the emulation 
speed, enabling SystemC execution speeds comparable to middle-
to-high-end PCs. A SystemC acceleration engine, shown in 
Figure 1(b), consists of a MIPs-like data path that executes the 
same intermediate form of SystemC called SystemC bytecode [19]
the base emulator executes, albeit orders of magnitude faster. 

One potential drawback of in-system SystemC emulation is 
that the ordering of events on the event queue is not known at 
runtime, making some existing static acceleration techniques like 
queue reordering and process splitting less effective. The 
SystemC emulation framework allows for a dynamic decision to 

Figure 1: (a) Emulating an image processing filtering system.  (b) An Acceleration Engine can execute SystemC bytecode almost two orders of 
magnitude faster than the base SystemC emulator. (c) Dynamically adapting which processes get accelerated in a SystemC emulation results in 
better execution times than pure software emulation and accelerating every process because of communication and acceleration loading costs.  
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occur as to whether to execute the SystemC bytecode on the 
software emulator, or load and execute that bytecode onto an 
acceleration engine. But, acceleration engines are limited, and 
loading acceleration engines involves time overhead, so load 
decisions should minimize total execution time, as illustrated in 
Figure 1(c).  

Thus, a new problem exists as to how to efficiently utilize the 
finite number of SystemC acceleration engines to service a 
dynamically changing, event-driven SystemC emulation event 
queue such that the emulation time is minimized. We define the 
SystemC Acceleration Engine Management problem, and apply 
online heuristics to dynamically improve the performance of 
SystemC emulation. 

Section 2 goes over related work. Section 3 defines the 
problem. Section 4 describes several dynamic heuristics. Section 
5 details several experiments, and Section 6 concludes.  

2. RELATED WORK 
Improving the performance of event-driven simulations has been 
extensively researched. Much research has concentrated on 
developing parallel frameworks for general event-driven 
simulation. Fujimoto [6] presents a comprehensive survey of 
several parallel simulation techniques.  Jefferson [15] analyzes the 
critical paths of event-driven simulations, and discusses 
techniques to achieve supercritical speedups in simulation. Das 
[5] discusses adaptive protocols for parallel simulations.  

Other work has focused on specifically improving SystemC 
simulations. Naguib [16] automatically splits SystemC processes 
to prevent unnecessary wake up calls to the SystemC event kernel. 
Perez [18] creates an optimized implementation of the SystemC 
kernel that utilizes acyclic scheduling. Wang [20] uses compiled 
simulation to eliminate unnecessary evaluations, and to improve 
simulation time. Our work focuses on dynamic SystemC 
emulations (compared to static SystemC simulations), whose 
behavior require dynamic scheduling techniques to better improve 
performance.  

Dynamic system optimizations have also been the focus of 
much research. Balarin [1] presents a survey of real-time 
embedded system scheduling, which classifies the problem into 
static scheduling and dynamic scheduling. Huang and Vahid 
[12][13] develop new online algorithms for managing FPGA 
coprocessors in a dynamic environment. Noguera [17] proposed 
dynamic run-time hardware/software scheduling techniques for 
FPGAs emphasizing dynamic concurrent task scheduling. Our 
work applies these dynamic techniques improve the performance 
of SystemC emulation. 

3. PROBLEM DEFINITION 

3.1 Communication Overhead 
The SystemC accelerators communicate with the base emulator 
through memory mapped registers and signal memories which 
store the current and next values of each signal in the SystemC 
description. We use queuing theory to estimate average memory 
access delay, and model memory contention by the M/M/1 queue. 
The processes in the base emulator and in the SystemC 
acceleration engines generate memory access requests through 
READ and WRITE bytecode instructions. We define the following:  
� Random memory access rate: The random memory access 

rate is the number of times a process i reads from memory, 
where �i is the memory access rate of running process i.  

� Bus service rate: �. The bus service rate is the number of 
requests the system bus can process in a second. E.g. 
Assuming a 100Mhz memory bus, one access takes 20 
cycles, so �=5M/s. 

� Average delay: # of cycles for one memory access. 
According to queuing theory, average delay for one access 
is D=�/(�(�-�) . System delay: delay =  D�. )

3.2 Problem Definition 
We define the SystemC Acceleration Engine Management 

problem as follows. Given are: 
� A process set P= {p1, p2, p3, ..pn} containing the n 

processes that comprise a given SystemC description.  
� A set of execution times Tp={tp1, tp2, tp3,…, tpn} 

containing the execution time of each process i running on 
the SystemC base emulator w/o communication overhead.   

� A set of execution times Tc={tc1, tc2, tc3,…,tcn} for each 
process i when running on a SystemC acceleration engine 
without communication overhead.  

� A set of sizes S={s1 ,s2, s3,…, sn} giving the size of each 
process i  in terms of number of bytecode instructions..  

� The total number of acceleration engines AE, in the 
SystemC emulation framework. 

� The time to load one instruction into a SystemC 
acceleration engine TR. The total time to load an 
acceleration engine with process i can be thus be written as 
the following:   loading time(i)=TR*si 

The SystemC Acceleration Engine Management problem 
must satisfy the following constraints:  

� Processes running on the SystemC base emulator and on the 
acceleration engines may run in parallel, unless that process 
is the same process i. For instance, in the sequence <p2, p1, 
p1, p1, p3>, the three instances of p1 must execute 
sequentially, but p2 and the first p1 can run in parallel. 

� The base emulator cannot be interrupted to run a process 
when it is loading a process onto an acceleration engine or 
when it is itself emulating a process. 

The dynamic input to the problem is an event queue Q, such 
as <p2, p1, p4, p2, p1, p1….> that lists and orders the process 
instances that run on the platform for a given time step.   

The SystemC Acceleration Engine Management (AEM) 
problem for time is defined as an online problem: For each 
process in the event queue, using only knowledge of prior and 
current processes in the queue, determine whether to load that 
process into a SystemC acceleration engine, such that time for the 
entire event queue (including future instances of the process in 
the queue) is minimized.  When a process is already loaded into a 
SystemC acceleration engine, we refer to the process as being 
Acceleration Engine Resident. The current process is the process 
that at a given time is to be executed next and for which the 
acceleration engine load determination must be made. Thus, the 
solution to the AEM problem consists of an acceleration engine 
management decision for each process instance in the event queue. 
Each decision is either: load, don’t load, or already loaded. For a 
decision to load, the decision also lists a process that must be 
unloaded to make room for the new process being loaded.  

4. HEURISTICS 

4.1 Upper and Lower Bounds 
An upper bound on total execution time can be determined by 
running every process on the base emulator. A lower bound can 



be determined by assuming every process is preloaded onto an 
infinite set of existing SystemC acceleration engines, and ignoring 
all communication overhead, referred to as Infinite 
Accelerators/No Comm. Another interesting comparison is 
running process on an acceleration engine, assuming infinite 
acceleration engines, but in this case considering communication 
overhead, referred to as the Infinite Accelerators. Infinite 
Accelerators gives a tighter bound 

4.2 Accelerator Static Assignment 
To see the advantage of dynamically loading bytecode to the 
SystemC acceleration engines for higher performance emulation, 
we compare to a statically preloaded approach, which assumes 
the SystemC acceleration engines are initially loaded with one 
process’s bytecode each, and are not reloaded during runtime. At 
the beginning of SystemC emulation, the emulator assigns each 
acceleration engine a process to always execute when and 
instance arrives on the event queue. The acceleration engines are 
loaded with the processes that have the largest speedup potential 
(Tp-Tc). Compared to dynamic techniques, the benefits of static 
accelerator assignment are one-time acceleration engine loading, 
and a simpler emulation event kernel. The drawbacks are that 
there might only be a few acceleration engines, and running the 
rest of the SystemC processes on the base software emulator 
could be computationally expensive. 

4.3 Greedy Heuristic  
A greedy heuristic can be defined that always loads the current 
process into a SystemC acceleration engine before executing. If 
the process is acceleration engine resident, the emulation kernel 
just instructs the SystemC acceleration engine to begin executing. 
Otherwise, the emulation kernel randomly chooses an idle 
SystemC acceleration engine to load the process’s bytecode 
instructions. In the case that all the SystemC acceleration engines 
are busy running, the emulation kernel will wait until the one of 
the acceleration engines becomes idle. The time complexity of the 
greedy heuristic is O(1). However, the greedy heuristic may incur 
lots of loading overhead since it loads a SystemC acceleration 
engine with bytecode on every execution. Further, the greedy 
algorithm attempts to use all the available acceleration engines, 
which increases the amount of communicate overhead on the 
system bus.      

4.4 Aggregate Gain Algorithm 
We use the Aggregate Gain (AG) algorithm introduced in [13] to 
address the SystemC AEM problem. The AG algorithm uses the 
history of application executions to attempt to predict future 
executions and hence to predict when reconfiguration overhead is 
worthwhile. The AG algorithm considers the reconfiguration and 
communication overhead. The basic idea of AG is that we 
maintain an aggregate gain table for each process type running in 
the system. We define the gain as the time saved by running the 
process instance with the accelerator. The AG table gets updated 
when new process arrives. The AG table shows which processes 
make most of the gains by running in the SystemC acceleration 
engine. 

The process instance sequences often exhibit temporal 
locality—recently-executed processes are more likely to execute 
in the near future than are processes from long ago. A fading 
factor f is introduced to refresh the AG table. f is adaptive to the 
average loading time. 

The intuition of the loading, replacement and wait decision is 
to make the total gain of the acceleration engine resident 
processes high. Thus the load, replace and wait decisions will be 
made only if the decision would not decrease the total gain 
resident processes.  

5. EXPERIMENTS 

5.1 Framework 
We developed a simulator in C++ to test our heuristics, and 
applied the simulator to several SystemC descriptions. We 
implemented two SystemC emulation platforms, one on a Xilinx 
Virtex4 Ml403 development board, and one on a Xilinx 
Virtex2Pro development board. We implemented both of the base 
software emulators on the PowerPC processors running at 
100MHz. The base emulators communicate to the acceleration 
engines and the rest of the peripherals through the PLB bus. The 
base emulator uses a handshaking protocol over the PLB bus to 
communicate and load instructions into each of the acceleration 
engines. The total time to load one instruction (TR) onto an 
acceleration engine is approximately three microseconds. The 
Virtex4 Ml403 development platform could hold one acceleration 
engine, and the Virtex2Pro development platform could hold 
three. The base software emulator was written in approximately 
2000 lines of C code.  

We applied our algorithms to an image filtering system which 
included a blur filter, an emboss filter, a motion filter, and several 
implementations of edge detection. We wrote the filters in 
SystemC and each filter was captured using multiple processes. 
We modeled several dynamic scenarios in which the image filters 
be used. We describe one scenario as Random, in which image 
filters are placed on the event queue randomly. Another scenario 
is the Biased case, in which a small number of filters appear on 
the event queue most of the time. The last is a Periodic scenario, 
in which a random subsequence of the filters repeats indefinitely 
on the event queue. 

Each sequence’s length was 500. For all experiments, because 
sequences involve some random ordering, we generated 20 
sequences, and report the arithmetic average. For this work, 
execution time data does not include the time to run the heuristics 
themselves. The heuristic runtimes were negligible, adding only 
microseconds to each process execution.  

5.2 Evaluation 
Figure 2(a) shows total execution times of a suite of SystemC 
image processing descriptions running on a Virtex4 Ml403 
implementation of the SystemC emulation framework. The 
statically preloaded accelerator approach yielded ~1.6X speedup 
compared to software-only emulation. The dynamic approach 
(greedy or AG) yield more speedup. The execution time obtained 
by AG is 4.3X and 1.2X faster than statically preloaded and 
greedy solutions, respectively. AG yields 7X speedup versus a 
software-only emulation.   

Figure 2(b) shows similar results for the same image 
processing suite running on a Virtex2Pro SystemC emulation 
framework. The statically preloaded accelerator approach yielded 
4.3X speedup compared to software-only emulation. The 
statically preloaded speedup compared to the Virtex4 
implementation is slightly under the 3X improvement we 
expected to see from increasing the number of accelerators from 
one to three. The penalty comes from increased communication 
costs and reloading costs on the system bus. The execution time 
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obtained by AG is 3.2X and 1.3X faster than statically preloaded 
and greedy solutions, respectively. AG yields 14X speedup versus 
a microprocessor only solution. The Virtex2Pro emulation 
framework yielded on average 2X speedup compared to the 
Virtex4 Ml403 implementation.  The greedy algorithms suffered 
on both platforms because of the high cost to reload the 
acceleration engines with new bytecode instructions. The AG 
algorithm takes the accelerator reloading cost into account and 
thus decided not to reload the accelerators every time there was a 
new process on the event queue. 
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