
Dynamic Acceleration Management for SystemC
Emulation

Scott Sirowy, Chen Huang, and Frank Vahid *
Dept. of Computer Science and Engineering

University of California, Riverside
{ssirowy,chuang,vahid}@cs.ucr.edu

*Also with the Center for Embedded Computer Systems, University of California, Irvine

ABSTRACT
Field-programmable gates arrays (FPGAs) have recently been
used to emulate SystemC descriptions. Emulation of SystemC
descriptions allows for in-system testing, and has been shown to
compare favorably with SystemC simulations on a PC when
acceleration engines are employed. A limit on the number of
acceleration engines that can fit on a SystemC emulation platform
creates new dynamic management problems involving decisions
as to when and which acceleration engines to load with SystemC
bytecode. We define an acceleration management problem for
SystemC emulation platforms. In contrast to previous works that
focus on statically improving SystemC (and the more general
event-driven) simulations, we utilize dynamic online algorithms
to manage the use of a limited number of SystemC acceleration
engines in an emulation framework, where the kernel must adapt
and react to a dynamically changing event queue. We test several
online heuristics, and show that we can achieve 14X improvement
over software-only emulation and 3.8X over statically preloading
SystemC acceleration engines.

1. INTRODUCTION
SystemC descriptions can be executed in one of several ways.
One common way is to simulate SystemC descriptions on a PC.
Simulation allows for testing SystemC descriptions without costly
or unattainable physical equipment. A few key drawbacks are that
simulating SystemC models might be slow and inaccurate, and
creating fabricated I/O can be difficult and time-consuming, while

still not matching the complexity and nuances of real I/O. Some
SystemC descriptions can even be synthesized to an ASIC, FPGA,
or board-level customized implementation. Synthesized SystemC
descriptions benefit from interacting with physical inputs and
outputs with very high performance. However, SystemC synthesis
tools can be expensive (compared to compilers), may only run on
limited PC platforms and be challenging to install (especially on
lower-end PCs), may be unpredictable with respect to circuit
size/speed or tool runtime, often require long runtimes (such as
hours or days), may not support particular target devices or
platforms, and can only synthesize the parts of the code written
for synthesis. An alternative to SystemC simulation and SystemC
synthesis is in-system SystemC emulation. Though slower than a
custom implementation, emulation enables early prototyping, and
benefits from real I/O rather than fabricated I/O in simulation.

For the common situation where the emulation engine is
implemented on (or with access to) an FPGA, FPGA-based
acceleration engines can substantially increase the emulation
speed, enabling SystemC execution speeds comparable to middle-
to-high-end PCs. A SystemC acceleration engine, shown in
Figure 1(b), consists of a MIPs-like data path that executes the
same intermediate form of SystemC called SystemC bytecode [19]
the base emulator executes, albeit orders of magnitude faster.

One potential drawback of in-system SystemC emulation is
that the ordering of events on the event queue is not known at
runtime, making some existing static acceleration techniques like
queue reordering and process splitting less effective. The
SystemC emulation framework allows for a dynamic decision to

Figure 1: (a) Emulating an image processing filtering system. (b) An Acceleration Engine can execute SystemC bytecode almost two orders of
magnitude faster than the base SystemC emulator. (c) Dynamically adapting which processes get accelerated in a SystemC emulation results in
better execution times than pure software emulation and accelerating every process because of communication and acceleration loading costs.

 FPGA

?
SystemC
Emulator

Acceleration
Engine

Acceleration
Engine

edge blur edge blur edge

Event Queue

To
ta

l E
xe

cu
tio

n
Ti

m
e

More Communication
and reloading overhead

Emulate every process in software

Accelerate every process

Dynamically manage
accelerators

Online decision

Edge 8 y

Emboss 4 n

Mean 3 n
Blur 5 y
Radial 2 n

Process #uses Accel.

 8 y

History Table

1) Accelerate edge?
2) Yes

(a) (b)

Peripherals

…

 Acceleration Engine

Register FileRISC
Datapath Bus,

start,
load
logic

(c)
Local Memory

occur as to whether to execute the SystemC bytecode on the
software emulator, or load and execute that bytecode onto an
acceleration engine. But, acceleration engines are limited, and
loading acceleration engines involves time overhead, so load
decisions should minimize total execution time, as illustrated in
Figure 1(c).

Thus, a new problem exists as to how to efficiently utilize the
finite number of SystemC acceleration engines to service a
dynamically changing, event-driven SystemC emulation event
queue such that the emulation time is minimized. We define the
SystemC Acceleration Engine Management problem, and apply
online heuristics to dynamically improve the performance of
SystemC emulation.

Section 2 goes over related work. Section 3 defines the
problem. Section 4 describes several dynamic heuristics. Section
5 details several experiments, and Section 6 concludes.

2. RELATED WORK
Improving the performance of event-driven simulations has been
extensively researched. Much research has concentrated on
developing parallel frameworks for general event-driven
simulation. Fujimoto [6] presents a comprehensive survey of
several parallel simulation techniques. Jefferson [15] analyzes the
critical paths of event-driven simulations, and discusses
techniques to achieve supercritical speedups in simulation. Das
[5] discusses adaptive protocols for parallel simulations.

Other work has focused on specifically improving SystemC
simulations. Naguib [16] automatically splits SystemC processes
to prevent unnecessary wake up calls to the SystemC event kernel.
Perez [18] creates an optimized implementation of the SystemC
kernel that utilizes acyclic scheduling. Wang [20] uses compiled
simulation to eliminate unnecessary evaluations, and to improve
simulation time. Our work focuses on dynamic SystemC
emulations (compared to static SystemC simulations), whose
behavior require dynamic scheduling techniques to better improve
performance.

Dynamic system optimizations have also been the focus of
much research. Balarin [1] presents a survey of real-time
embedded system scheduling, which classifies the problem into
static scheduling and dynamic scheduling. Huang and Vahid
[12][13] develop new online algorithms for managing FPGA
coprocessors in a dynamic environment. Noguera [17] proposed
dynamic run-time hardware/software scheduling techniques for
FPGAs emphasizing dynamic concurrent task scheduling. Our
work applies these dynamic techniques improve the performance
of SystemC emulation.

3. PROBLEM DEFINITION

3.1 Communication Overhead
The SystemC accelerators communicate with the base emulator
through memory mapped registers and signal memories which
store the current and next values of each signal in the SystemC
description. We use queuing theory to estimate average memory
access delay, and model memory contention by the M/M/1 queue.
The processes in the base emulator and in the SystemC
acceleration engines generate memory access requests through
READ and WRITE bytecode instructions. We define the following:
� Random memory access rate: The random memory access

rate is the number of times a process i reads from memory,
where �i is the memory access rate of running process i.

� Bus service rate: �. The bus service rate is the number of
requests the system bus can process in a second. E.g.
Assuming a 100Mhz memory bus, one access takes 20
cycles, so �=5M/s.

� Average delay: # of cycles for one memory access.
According to queuing theory, average delay for one access
is D=�/(�(�-�) . System delay: delay = D�.)

3.2 Problem Definition
We define the SystemC Acceleration Engine Management

problem as follows. Given are:
� A process set P= {p1, p2, p3, ..pn} containing the n

processes that comprise a given SystemC description.
� A set of execution times Tp={tp1, tp2, tp3,…, tpn}

containing the execution time of each process i running on
the SystemC base emulator w/o communication overhead.

� A set of execution times Tc={tc1, tc2, tc3,…,tcn} for each
process i when running on a SystemC acceleration engine
without communication overhead.

� A set of sizes S={s1 ,s2, s3,…, sn} giving the size of each
process i in terms of number of bytecode instructions..

� The total number of acceleration engines AE, in the
SystemC emulation framework.

� The time to load one instruction into a SystemC
acceleration engine TR. The total time to load an
acceleration engine with process i can be thus be written as
the following: loading time(i)=TR*si

The SystemC Acceleration Engine Management problem
must satisfy the following constraints:

� Processes running on the SystemC base emulator and on the
acceleration engines may run in parallel, unless that process
is the same process i. For instance, in the sequence <p2, p1,
p1, p1, p3>, the three instances of p1 must execute
sequentially, but p2 and the first p1 can run in parallel.

� The base emulator cannot be interrupted to run a process
when it is loading a process onto an acceleration engine or
when it is itself emulating a process.

The dynamic input to the problem is an event queue Q, such
as <p2, p1, p4, p2, p1, p1….> that lists and orders the process
instances that run on the platform for a given time step.

The SystemC Acceleration Engine Management (AEM)
problem for time is defined as an online problem: For each
process in the event queue, using only knowledge of prior and
current processes in the queue, determine whether to load that
process into a SystemC acceleration engine, such that time for the
entire event queue (including future instances of the process in
the queue) is minimized. When a process is already loaded into a
SystemC acceleration engine, we refer to the process as being
Acceleration Engine Resident. The current process is the process
that at a given time is to be executed next and for which the
acceleration engine load determination must be made. Thus, the
solution to the AEM problem consists of an acceleration engine
management decision for each process instance in the event queue.
Each decision is either: load, don’t load, or already loaded. For a
decision to load, the decision also lists a process that must be
unloaded to make room for the new process being loaded.

4. HEURISTICS

4.1 Upper and Lower Bounds
An upper bound on total execution time can be determined by
running every process on the base emulator. A lower bound can

be determined by assuming every process is preloaded onto an
infinite set of existing SystemC acceleration engines, and ignoring
all communication overhead, referred to as Infinite
Accelerators/No Comm. Another interesting comparison is
running process on an acceleration engine, assuming infinite
acceleration engines, but in this case considering communication
overhead, referred to as the Infinite Accelerators. Infinite
Accelerators gives a tighter bound

4.2 Accelerator Static Assignment
To see the advantage of dynamically loading bytecode to the
SystemC acceleration engines for higher performance emulation,
we compare to a statically preloaded approach, which assumes
the SystemC acceleration engines are initially loaded with one
process’s bytecode each, and are not reloaded during runtime. At
the beginning of SystemC emulation, the emulator assigns each
acceleration engine a process to always execute when and
instance arrives on the event queue. The acceleration engines are
loaded with the processes that have the largest speedup potential
(Tp-Tc). Compared to dynamic techniques, the benefits of static
accelerator assignment are one-time acceleration engine loading,
and a simpler emulation event kernel. The drawbacks are that
there might only be a few acceleration engines, and running the
rest of the SystemC processes on the base software emulator
could be computationally expensive.

4.3 Greedy Heuristic
A greedy heuristic can be defined that always loads the current
process into a SystemC acceleration engine before executing. If
the process is acceleration engine resident, the emulation kernel
just instructs the SystemC acceleration engine to begin executing.
Otherwise, the emulation kernel randomly chooses an idle
SystemC acceleration engine to load the process’s bytecode
instructions. In the case that all the SystemC acceleration engines
are busy running, the emulation kernel will wait until the one of
the acceleration engines becomes idle. The time complexity of the
greedy heuristic is O(1). However, the greedy heuristic may incur
lots of loading overhead since it loads a SystemC acceleration
engine with bytecode on every execution. Further, the greedy
algorithm attempts to use all the available acceleration engines,
which increases the amount of communicate overhead on the
system bus.

4.4 Aggregate Gain Algorithm
We use the Aggregate Gain (AG) algorithm introduced in [13] to
address the SystemC AEM problem. The AG algorithm uses the
history of application executions to attempt to predict future
executions and hence to predict when reconfiguration overhead is
worthwhile. The AG algorithm considers the reconfiguration and
communication overhead. The basic idea of AG is that we
maintain an aggregate gain table for each process type running in
the system. We define the gain as the time saved by running the
process instance with the accelerator. The AG table gets updated
when new process arrives. The AG table shows which processes
make most of the gains by running in the SystemC acceleration
engine.

The process instance sequences often exhibit temporal
locality—recently-executed processes are more likely to execute
in the near future than are processes from long ago. A fading
factor f is introduced to refresh the AG table. f is adaptive to the
average loading time.

The intuition of the loading, replacement and wait decision is
to make the total gain of the acceleration engine resident
processes high. Thus the load, replace and wait decisions will be
made only if the decision would not decrease the total gain
resident processes.

5. EXPERIMENTS

5.1 Framework
We developed a simulator in C++ to test our heuristics, and
applied the simulator to several SystemC descriptions. We
implemented two SystemC emulation platforms, one on a Xilinx
Virtex4 Ml403 development board, and one on a Xilinx
Virtex2Pro development board. We implemented both of the base
software emulators on the PowerPC processors running at
100MHz. The base emulators communicate to the acceleration
engines and the rest of the peripherals through the PLB bus. The
base emulator uses a handshaking protocol over the PLB bus to
communicate and load instructions into each of the acceleration
engines. The total time to load one instruction (TR) onto an
acceleration engine is approximately three microseconds. The
Virtex4 Ml403 development platform could hold one acceleration
engine, and the Virtex2Pro development platform could hold
three. The base software emulator was written in approximately
2000 lines of C code.

We applied our algorithms to an image filtering system which
included a blur filter, an emboss filter, a motion filter, and several
implementations of edge detection. We wrote the filters in
SystemC and each filter was captured using multiple processes.
We modeled several dynamic scenarios in which the image filters
be used. We describe one scenario as Random, in which image
filters are placed on the event queue randomly. Another scenario
is the Biased case, in which a small number of filters appear on
the event queue most of the time. The last is a Periodic scenario,
in which a random subsequence of the filters repeats indefinitely
on the event queue.

Each sequence’s length was 500. For all experiments, because
sequences involve some random ordering, we generated 20
sequences, and report the arithmetic average. For this work,
execution time data does not include the time to run the heuristics
themselves. The heuristic runtimes were negligible, adding only
microseconds to each process execution.

5.2 Evaluation
Figure 2(a) shows total execution times of a suite of SystemC
image processing descriptions running on a Virtex4 Ml403
implementation of the SystemC emulation framework. The
statically preloaded accelerator approach yielded ~1.6X speedup
compared to software-only emulation. The dynamic approach
(greedy or AG) yield more speedup. The execution time obtained
by AG is 4.3X and 1.2X faster than statically preloaded and
greedy solutions, respectively. AG yields 7X speedup versus a
software-only emulation.

Figure 2(b) shows similar results for the same image
processing suite running on a Virtex2Pro SystemC emulation
framework. The statically preloaded accelerator approach yielded
4.3X speedup compared to software-only emulation. The
statically preloaded speedup compared to the Virtex4
implementation is slightly under the 3X improvement we
expected to see from increasing the number of accelerators from
one to three. The penalty comes from increased communication
costs and reloading costs on the system bus. The execution time

[2] BARTAL, Y., BLUM, A., BURCH, C., AND TOMKINS, A. A polylog(n)-
competitive algorithm for metrical task systems. ACM Symp. on
Theory of Computing, 1997, pp. 711-719.

Figure 2: SystemC Acceleration Management Experiments. (a) Image Filtering System running on a base emulator on a Virtex4 Ml403 that can
fit one acceleration engine. (b) Same image filtering system running on a base emulator on a Virtex2Pro that can fit three acceleration engines.
With three accelerators, emulation runs 14X faster than software-only emulation, and in both cases, the AG algorithm performed 1.2X better

than a greedy approach and 3.8X better than statically preloading the accelerators.

 Inf. Accel/no
communication

Infinite
Accelerators

Greedy Statically
Preloaded

AG

651 622622 651 617 617428397 389

(b) Virtex2Pro : 3 Accelerators(a) Virtex 4 Ml403: 1 Accelerator

Base emulator

obtained by AG is 3.2X and 1.3X faster than statically preloaded
and greedy solutions, respectively. AG yields 14X speedup versus
a microprocessor only solution. The Virtex2Pro emulation
framework yielded on average 2X speedup compared to the
Virtex4 Ml403 implementation. The greedy algorithms suffered
on both platforms because of the high cost to reload the
acceleration engines with new bytecode instructions. The AG
algorithm takes the accelerator reloading cost into account and
thus decided not to reload the accelerators every time there was a
new process on the event queue.

[3] BENITEZ, D. Performance of remote FPGA-based coprocessors for
image-processing applications. Digital System Design, 2002.

[4] BORODIN, A., LINIAL, N., AND SAKS, M.E. An optimal on-line
algorithm for metrical task system. Journal of the ACM (JACM),
Volume 39, Issue 4 (Oct. 1992), pp. 745 – 763.

[5] DAS, S. R. 1996. Adaptive protocols for parallel discrete event
simulation. In Proceedings of the 28th Conference on Winter
Simulation

[6] FUJIMOTO, R. M. 1989. Parallel discrete event simulation. In
Proceedings of the 21st Conference on Winter Simulation E. A.
MacNair, K. J. Musselman, and P. Heidelberger, Eds. WSC '89. Comparing with the Infinite Accelerators lower bound (i.e.,

all processes are accelerated and without the need to reload the
bytecode instructions onto the accelerator) shows that the AG
algorithm obtains execution times on average within 33X slower
on a platform with one accelerator because of the high loading
time, and 3X slower on a platform with three accelerators of this
lower bound. The Infinite Accelerators suffers from much
communication overhead, so AG shows less relative slowdown.

[7] FUJIWARA, H., AND IWAMA K.. Average-Case Competitive Analyses
for Ski-Rental Problems. ISAAC 2002.

[8] GROSS, D., AND HARRIS, C.M. Fundamentals of queueing theory.
John Wiley & Sons, Inc. New York, NY, USA. 1985

[9] HAUCK, S. Configuration prefetch for single context reconfigurable
coprocessors. Proceedings of the 1998 ACM/SIGDA sixth
international symposium on Field programmable gate arrays, 1998.

[10] HAUSER, J.R, AND WAWRZYNEK, J. Garp: A MIPS Processor with a
Reconfigurable Coprocessor. IEEE Symposium on FPGAs for
Custom Computing Machines, 1997.

Comparing the different application scenarios, both Greedy
and AG perform better in Biased scenario. Because a small
number of applications appear most of the time, the number of
reconfiguration is less in Biased scenario compare to random and
periodic scenario, result in less total execution time.

[11] HORTA, E.L, LOCKWOOD, J.W, TAYLOR, D.E, AND PARLOUR, D.
Dynamic Hardware Plugins in an FPGA with Partial Run-time
Reconfiguration. Design Automation Conference (DAC), 2002.

[12] HUANG, C., AND VAHID, F. Dynamic Coprocessor Management for
FPGA-Enhanced Compute Platforms. IEEE/ACM Int. Conf. on
Compilers, Architectures, and Synthesis for Embedded Systems
(CASES), Oct 2008.

6. CONCLUSIONS
SystemC emulation platforms benefits from adapting to a
dynamic event queue. We defined the SystemC Acceleration
Engine Management problem and applied a several online
heuristics to improve SystemC emulation performance by 14X
over emulating all of the SystemC on a base software emulation
kernel, and 3.8X over statically preloading the acceleration
engines. To our knowledge, this is the first work to use dynamic
techniques to manage acceleration and improve SystemC
emulation.

[13] HUANG, C. AND VAHID, F. Dynamic Transmuting Coprocessors.
IEEE/ACM Design Automation Conference. DAC. July 2009.

[14] ISAACS, D., TREXEL, E., AND KARSTEN, B. Accelerate System
Performance with hybrid multiprocessing and FPGAs. Embedded
Systems Design, 8/15/2007.

[15] JEFFERSON, D. AND REIHER, P. 1991. Supercritical speedup. In
Proceedings of the 24th Annual Symposium on Simulation Annual
Simulation Symposium. IEEE 159-168

[16] NAGUIB, Y. N. AND GUINDI, R. S. 2007. Speeding up SystemC
simulation through process splitting. In Proceedings of the
Conference on Design, Automation and Test in Europe.

7. ACKNOWLEDGEMENTS [17] NOGUERA, J., BADIA, R.M. Dynamic run-time HW/SW scheduling
techniques for reconfigurable architectures. CODES-ISSS, 2002. This work was supported in part by the National Science

Foundation (CNS-0614957) and the Office of Naval Research
(N00014-07-C-0311).

[18] PÉREZ, D. G., MOUCHARD, G., AND TEMAM, O. 2004. A New
Optimized Implemention of the SystemC Engine Using Acyclic
Scheduling. In Proceedings of the Conference on Design,
Automation and Test in Europe - Volume 1

REFERENCES [19] SIROWY, S., MILLER, B. AND VAHID, F. Portable SystemC-on-a-Chip.
UCR-CSE-TR-052709. Technical Report. April 2009. [1] BALARIN, F. , LAVAGNO, L., AND MURTHY P. Scheduling for

Embedded Real-Time Systems. IEEE Design and Test of Computers,
1998.

[20] WANG, Z. AND MAURER, P. M. 1990. LECSIM: a levelized event
driven compiled logic simulation. In Proceedings of the 27th
ACM/IEEE Design Automation Conference (Orlando, Florida,
United States, June 24 - 27, 1990). DAC '90

