
Towards biologically inspired decentralized self-adaptive
OS services for distributed Reconfigurable System on

Chip (RSoC)

Sufyan Samara1, Dalimir Orfanus2, Peter Janacik2

Heinz Nixdorf Institute1, International Graduate School 2

University of Paderborn
Paderborn, Germany

sufyan@mail.uni-paderborn.de 1

{orfanus, pjanacik}@uni-paderborn.de2

ABSTRACT
Distributed RSoCs are the next step towards a new genera-
tion of embedded systems. Applications running on hetero-
geneous distributed RSoCs require an OS which dynamically
adapts to their variable demands. In this paper, we present
a novel decentralized OS service design, which enables OS
adaptiveness, resource sharing, and reconfigurability on dis-
tributed RSoCs. The challenges faced by this design are
classified and discussed. To cope with them, biologically
inspired algorithms, e.g. for service discovery, are adopted,
which use only local information provided by an RSoC and
its direct neighbors.

1. INTRODUCTION
The complexity of embedded systems is increasing contin-
uously. Examples include the multiple systems combined
on a single chip such as a Field Programmable Gate Array
(FPGA) with a General Purpose Processor (GPP) contained
inside it. This forms what is called a Reconfigurable System
on Chip (RSoC), e.g. Xilinx VirtexTM II pro.
Distributing such systems expands the complexity to a level
where an Operating System (OS) becomes a necessity. An
OS provides transparency and resource management (e.g.
power). However, in a limited resources embedded system,
an OS may also be considered as an overhead. On such sys-
tems, an OS needs to be aware of the limited resources and
adapt to the variable change of resource availability. More-
over, new design methodologies are needed for OS services
running on distributed RSoCs. An OS service can support
the utilization of the reconfigurable property found on RSoC
and when needed, to be able to migrate fully or partially to
execute on FPGA. Doing such a migration at runtime allows
an OS to be aware of dynamic resource changes expected in
a distributed RSoCs. Other properties, such as self-healing
and self-organizing, need to be also supported in the new

design.

A centralized novel OS service design for distributed RSoCs
was presented in our previous work [1]. Nevertheless, due
to centralization, the proposed OS suffers from the problem
of a single point of failure. Moreover, to retain the OS, a
resourceful RSoC is needed. To work around such issues
without losing flexibility and additivity, we propose to dis-
tribute the blocks of an OS service across several RSoCs with
fully decentralized control, as described in the following sec-
tions. This allows dynamic resource sharing and increases
the failure tolerance and adaptiveness. This paper presents
a novel approach for a fully decentralized OS service man-
agement distributed in a network of RSoCs. The approach
is based on the emergent self–organization metaphor.

This paper is organized as follows: Section 2 introduces the
motivation, the adopted design, and the proposed solution.
In Section 3 we discuss related work, and finally we provide
the conclusion and the intended future work in Section 4.

2. MOTIVATION AND DESIGN
An OS service is designed to support resource awareness,
distribution over RSoCs, adaptability, and reconfiguration.
For the sake of that, each OS service exists in two imple-
mentations: (i) one for FPGA, and (ii) another for GPP.
Further, each implementation of a service is partitioned into
smaller blocks, called Small Execution Segments (SES), see
Figure 1.

All SESs with the same index/level of a service in the differ-
ent implementations have the same behavior, i.e. for a given
input they produce the same data at output. Produced out-
put data from one SES can be then transfered into subse-
quent SES which can be either FPGA or GPP. This gives us
approximately 2n possibilities to execute a service, where n
is the number of SESs in a service implementation. More-
over, each SES is assumed to have information about itself.
This includes: (i) worst case execution time, (ii) worst case
power consumption, and (iii) area allocation, where area rep-
resents either the needed number of Look Up Tables (LUT)
in an FPGA or the GPP payload/utilization.

In [1] we devised an algorithm which calculates the best
suited service configurations on a critical resource RSoC.

The algorithm assumes that all OS services are designed
and segmented into SESs which are stored in a repository
called OS Services Repository (OSR). Each RSoC in the dis-
tributed system can connect and request a service from the
OSR. The algorithm, residing in the OSR, uses runtime in-
formation provided by the requesting RSoC. The algorithm
calculates and sends a service configuration which is suit-
able for the current RSoC demands and constraints. The
sent configuration is executed completely using the request-
ing RSoC’s resources. Moreover, each RSoC has a middle-
ware which enables inter-SESs communication and runtime
resource monitoring.
In this work we decentralize the SESs across the RSoCs in
the network. This is to avoid problems such as a single
point of failure. Further this is done to allow more flexibil-
ity, adaptiveness, and resource sharing.
In order to realize decentralization, many challenges are to
be met. These challenges can be classified into four cat-
egories:(i) the initialization stage, (ii) the SESs discovery
and execution stage, (iii) the optimization stage, and (iv)
the self-organization stage.

Figure 1: A service SESs implementation

2.1 Initialization
This is the first phase to be realized. A resource heterogene-
ity is assumed among RSoCs. This raises the challenge of
how to distribute the SESs. A repository is assumed in the
initial stage to hold the services existing as SESs implemen-
tations, see Figure 2. The SESs are distributed randomly
on RSoCs. However, if an RSoC receives an SES which ex-
ceeds its SES resource reservoir, the SES is rejected and it

is propagated to another RSoC. The RSoC SES reservoir is
a resource percentage reserved for the sake of storing and
running a number of SESs. To allow a kind of balancing, a
simple algorithm which involves an updated polarity number
and a simple counter is used. The counter in the repository

Figure 2: Service discovery and execution example

is initialized to the number of RSoCs and the polarity of each
RSoC is set to be positive. All the SESs are with negative
polarity. Each time an SES is sent out from the repository,
the counter is decreased. If an RSoC with positive polar-
ity receives an SES, it attracts the SES, stores the SES in
its resource reservoir, and changes its polarity to negative.
On the other hand, if an RSoC with negative polarity re-
ceives an SES, it repels the SES to other RSoCs. An SES
is propagated through the RSoCs until it reaches an RSoC
with positive polarity. Once the counter in the repository
reaches zero, a message is sent to reset the polarities of the
RSoCs which still have some free resource reservoir to pos-
itive, the counter is set to the number of these RSoCs, and
then the operation repeats.

2.2 Discovery and Execution
This stage is initialized whenever a service is needed to be
executed. For example, in Figure 2 the RSoC denoted by
”START” will initiate the execution of a service ”X”. This
is done by sending the data to the RSoC containing the
first SES of the service ”X”. For the sake of discovering
and executing SESs of one service, we developed a novel
biologically inspired segment discovery algorithm. The goal
of this algorithm is to find in the network the closest suitable
implementation for a given SES. To achieve this goal only
local information from the neighbors can be used.

Our solution is based on a hop–by–hop reactive routing al-
gorithm [2] which was inspired by the swarm intelligence
behavior of ants communicating by changes of their environ-
ment [3]. When a food source is found, a chemical substance
called pheromone is deposited by ants on the paths towards
this source. Pheromone can be smelled by others ants and
may attract them to the food source. More concretely, dur-
ing the probabilistic route selection, a route with a higher
pheromone value is chosen with a higher probability. Given

its physical properties, pheromone evaporates exponentially
with time unless a new portion of pheromone is deposited.
If a path becomes favored, there will be a higher amount
of pheromone deposited contrary to a path which is less fa-
vored. Paths which are obsolete vanish as the last amount
of pheromone has evaporated. This particular behavior of
ants is desirable in terms of two problems which we face in
our distributed RSoCs: (i) Finding the shortest path to the
SES, and (ii) finding a good implementation of the given
SES. This is achieved without any global knowledge of the
topology or central coordination.

In our case, each RSoC stores digital pheromones in a struc-
ture called segment routing table which has the following
format:

destination segment SESid | next hop ID | im-
plementation im | pheromone ψSESid

Every segment has assigned its identifier SESid which is
identical for all instances of the segment, independently of
the implementation. With every segment is associated ID
of the next hop RSoC and also an amount of pheromone
on that path to ψSESid which has been deposited so far, as
well as, the type of implementation which may either be h
or s. Regularly, every time interval τ , values of pheromones
in the table are decreased by pheromone decay coefficient
ψτ ∈ [0, 1):

ψSESid(t + τ) = ψSESid(t) · ψτ (1)

On a given path, if there is no pheromone deposited for
a longer period of time, this path becomes less favorable.
In order to avoid the creation of loops, each RSoC has to
maintain a recent message table saving all identifiers (which
are unique) of all messages received according to a least-
recently-used strategy.

The segment discovery algorithm consists of two steps: (i)
Availability check of a segment and (ii) migration of data to
the found SES.

2.2.1 Availability Check
The goal of this step is to check and ensure that there exists
at least one path to a requested segment. This is done in
two phases: a forward and a backward phase. In the for-
wards phase, links towards the requester are strengthened,
or established respectively. The backward phase does the
same towards the RSoC with a requested segment.

Once an RSoC finishes one SES computation, the RSoC
migrates data to another RSoC which is hosting the next
subsequent segment. For this reason, the RSoC creates a
message called FDAnt (forward discovery ant) (Figure 3).

When an RSoC receives the FDAnt message it proceeds as
follows:

1. RSoC checks: (i) whether the message exceeds its max-
imum lifetime, or (ii) the RSoC is already in the His-

Figure 3: Fields of FDAnt and BDAnt messages

tory field. In those cases, the massage is discarded.
If the message is contained in the recent messages ta-
ble, before it is discarded, the message’s last hop is
recorded in the routing table.

2. If the message is not discarded in the first step, then
it follows:

• The message is registered in all relevant tables.

• If the RSoC contains required SES, answer with
a BDAnt.

• Propagate the message using broadcast. Unicast
is used if relevant pheromone values are excep-
tionally high. Moreover, it is used in general for
all subsequent messages which transfer payload
data between the two endpoints.

A RSoC which can provide the required segment, i.e. SESid,
creates a BDAnt (backward discovery ant) message based on
the copy of the received FDAnt. In the backward phase, the
BDAnt message (Figure 3) is routed back using links that
have been set up by the forward phase.

Unicast routing works as follows: A message m, from origin
Dorig comes from node h, arriving at node i. Before for-
warding it further, i alters the corresponding routing table
entries:

ψDorig,h = ψinit (2)

if ψDorig,h < ψinit, with ψinit being a value used for initial-
ization. Basically, when there is no pheromone or it is below
the threshold of ψinit, it is reinitialized to this level. Else, if
ψDorig,h ≥ ψinit,

ψDorig,h = ψDorig,h + ψδ (3)

so that a constant amount (ψδ) per used link is added to
the already existing pheromone level (ψDorig,h), resembling
the natural model. Next-hop selection is realized using a
probabilistic method. A message heading towards destina-
tion Ddest, arriving from node h at node i is sent to node j,
j ∈ NDdest (i.e. j is in the next-hop table for the destination
Ddest), with the probability

pDdest,j =
ψDdest,j∑

k∈NDdest
ψDdest,k

(4)

After forwarding a message, the fields Last hop, Hops, and
the History are updated. Decay of pheromone is regularly
done as described in equation (1).

2.2.2 Data Migration
After successful discovery of the required SESid segment,
the data are sent using the routing mechanism described
above. When data arrives, the hosting RSoC sends back a
confirmation to the requesting RSoC about receiving data.
The requester waits for a confirmation for a certain amount
of time. When the timeout expires, the requesting RSoC re-
peats the segment discovery process in order to find another
SESid provider.

2.3 Optimization
As seen in Figure 2, each SES other than the last SES can
migrate its processed output data to either one of two subse-
quent SESs implementations. This creates the challenge of
finding the best configuration to execute a service in terms
of communication time and execution time. It is not always
true that choosing a close SES is the best solution. This
becomes clear if we look at the complete path. For example,
in Figure 2, it may seem a better choice to chose SES2,h

as it is closer to SES1,h, but this is not the case looking at
the complete path. Other considerations such as network
congestion and latency should be taken into account. More-
over, this stage may also involve identifying errors that may
occur due to a bad SES implementation, the RSoC’s possi-
ble lack of power, or RSoC failure. The optimization stage
can take place in conjunction with the second stage. This
can be done by sending exploration messages in ideal time
to find other possible SESs paths.

2.4 Self-organization
The self-organization stage is important to organize and en-
sure the availability of all the SESs belonging to one ser-
vice. In this stage, the SESs are to be moved and real-
located in RSoCs where they are relatively close to each
other. Moreover, these RSoCs are also close to where the
service is mostly acquired. The self-organization stage can
take place after several runs of the system. This is to en-
sure the correctness and the validity of the statistical data
acquired. Such data includes the frequency and the places
where a service is most requested.

3. RELATED WORK
Approaches to discover distributed entities have been pro-
posed in different contexts. To find resources or entities sit-
uated on different nodes in a network, the classical link-state
protocol [4] maintains a global view of the entire network at
each node. To keep this information up-to-date, each node
periodically initiates a flood of the network. Naturally, this
method does not scale well. To improve scalability, Perkins
and Bhagwat [4] proposed DSDV, which is to a certain ex-
tent similar to the link-state approach but only maintains
the information about the destination, the next hop towards
it, the corresponding distance, and sequence number. Moti-
vated by the fact that most of the data exchanged by DSDV
is not needed (e.g. since a certain entity is of no interest)
and changes in the topology cause a network flood, Perkins
and Royer proposed AODV. Being similar to DSDV, it only
discovers remote entities and repairs routes when needed, i.e.

in an ad hoc manner. As DSDV and AODV discover only a
single entity and path to such entity that matches a certain
requirement (e.g. a certain node ID), both are not suited for
inter-service communication on distributed RSoCs. Proto-
cols that aim to enable this functionality, uniting multicast
and multipath methods, such as ADMR [5], however fail
to exhibit a behavior that adequately reflects the underly-
ing network properties, e.g., the distance to, the quality of,
or the quality of the path towards the remote entity. Sev-
eral further approaches have been proposed that ignore the
network topology and instead focus on the semantic level
of service discovery: One of the most prominent examples
is Sun Jini [6], which relies on a central service directory,
where providers register and clients send queries to, which
unfortunately represents a single point of failure. SLP [7] is
in many ways similar to Jini, however, it supports multiple
directories (i.e. directory agents).
Further benefits and related work for implementing OS in
hardware can be found in our previous work [1].

4. CONCLUSION
The introduced work is interesting and may prove to be the
seed for a new OS generation. However, each of the intro-
duced challenges is in need of a more distant investigation.
This also includes communication time minimization, and
automated partitioning methods.

5. REFERENCES
[1] S. Samara, F. B. Tariq, T. Kerstan, and K. Stahl,

“Applications adaptable execution path for operating
system services on a distributed reconfigurable system
on chip,” in ICESS ’09. IEEE Computer Society, 2009,
pp. 461–466.

[2] P. Janacik, O. Kao, and U. Rerrer, “An approach
combining routing and resource sharing in wireless ad
hoc networks using swarm-intelligence,” in Proceedings
of the 7th ACM/IEEE International Symposium on
Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWiM 2004), 2004, poster session.

[3] P.-P. Grassé, “La reconstruction du nid et les
coordinations interindividuelles chezbellicositermes
natalensis etcubitermes sp. la théorie de la stigmergie:
Essai d’interprétation du comportement des termites
constructeurs,” Insectes Sociaux, vol. 6, no. 1, pp.
41–80, March 1959.

[4] C. E. Perkins and P. Bhagwat, “Highly dynamic
destination-sequenced distance-vector routing (dsdv)
for mobile computers,” vol. 24, no. 4. New York, NY,
USA: ACM, 1994, pp. 234–244.

[5] J. G. Jetcheva and D. B. Johnson, “Adaptive
demand-driven multicast routing in multi-hop wireless
ad hoc networks,” in MobiHoc ’01: Proceedings of the
2nd ACM international symposium on Mobile ad hoc
networking & computing. New York, NY, USA: ACM,
2001, pp. 33–44.

[6] Jini.org, online, accessed July 9, 2009. [Online].
Available: http : //www.jini.org/wiki/Category :
IntroductiontoJ ini

[7] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan,
“Service location protocol.” [Online]. Available:
http://www.ietf.org/rfc/rfc2165.txt

