
Model-based Verification of Adaptive Embedded Systems
under Environment Constraints ∗

Ina Schaefer
Dept. of Computer Science and Engineering

Chalmers University of Technology
Gothenburg, Sweden

schaefer@chalmers.se

Arnd Poetzsch-Heffter
Software Technology Group

TU Kaiserslautern
Kaiserslautern, Germany

poetzsch@cs.uni-kl.de

ABSTRACT
Model-based verification of adaptive embedded systems is
a promising approach to deal with the increased complex-
ity that adaptation imposes on system design. Properties
of embedded systems typically depend on the environment
in which they are deployed. Thus, the environment has to
be considered for verification. In this paper, we propose
a technique to verify properties of design-level models of
adaptive embedded systems under environment constraints.
We transfer ideas originating from assume-guarantee reason-
ing for Kripke structures to design-level models of adaptive
embedded systems in order to reduce conditional validity
checking to standard model checking.

Keywords
Adaptive Embedded Systems; Model-based Verification; Tem-
poral Logic; Assume-Guarantee Reasoning

1. INTRODUCTION
Adaptation is increasingly used in embedded systems to meet
the high demands on safety and availability in order to re-
act to changing environment conditions or system failures.
However, adaptation significantly complicates system devel-
opment as adaptation in one system part may trigger a se-
quence of reconfigurations throughout the system. Model-
based verification of adaptive embedded systems [9] is one
approach to deal with the increased design complexity allow-
ing to detect conceptual errors already on the design-level.
Properties to be verified of design-level models of adaptive
embedded systems usually depend on the environment in
which a system is deployed. A property is not valid for
the adaptive system in general, but only under assumptions
on its environment. Hence, for model-based verification of

∗This work has been supported by the Rheinland-Pfalz Re-
search Center for Mathematical and Computational Mod-
elling (CM)2, the Deutsche Forschungsgemeinschaft (DFG)
and the European project HATS, funded in the 7th Frame-
work Program.

adaptive embedded systems, environment constraints have
to be taken into account. Properties of adaptive embedded
systems and environment constraints can be expressed in
temporal logics facilitating automated verification by model-
checking. Only for linear temporal logic formulas, verifica-
tion of a system property under an environment constraint
can be reduced to checking the implication of the constraint
and the property [6]. However, not all critical properties
of adaptive systems are expressible in linear time temporal
logic, such as the property AF AGϕ expressing that on all
computation paths finally a state is reached from which all
computation paths invariantly satisfy ϕ.

In this paper, we propose a general approach to verify adap-
tive embedded systems under environment constraints that
allows dealing with a larger fragment of temporal logic sys-
tem properties and environment constraints. We transfer
ideas originating from assume-guarantee reasoning over
Kripke structures [6, 4] to design-level models of adaptive
embedded systems. An environment constraint is captured
by a maximal environment that can exhibit any possible
behavior consistent with the constraint. The maximal envi-
ronment is composed with the model of the adaptive system.
A property of the composition can be verified by standard
model checking techniques which yields that the property is
valid under the environment constraint.

This paper is organized as follows: In Section 2, we review
related work. In Section 3, we explain how we formalize
adaptive systems, their properties and environment
constraints. In Section 4, we present our approach to verify
system properties under environment constraints based on
maximal environments. Section 5 concludes the paper.

2. RELATED WORK
Formal verification of adaptive systems has become an ac-
tive area of research [5, 11, 1, 12] in order to guarantee
critical properties of the system behaviour. However, veri-
fication of properties under environment constraints has so
far not been considered in the context of adaptive embed-
ded systems. In [8], Verilog HDL environments satisfying
constraints are generated in order to verify network pro-
tocols. [7] proposes the automatic construction of specific
environments for program fragments in Java. [3] verifies
aspect-oriented programs by automatically generating base-
programs complying to constraints. In [10], properties for
Java card applets are established using constraints on ap-
plets that are loaded after deployment.

3. ADAPTIVE SYSTEMS
In order to analyze the behavior of a system already at design-
time, we consider adaptation by predetermined reconfigura-
tion. Formally, we describe the considered systems as
synchronous adaptive systems (SAS) which allow modular
modelling and verification of adaptation behavior. Figure 1
sketches their syntactic representation. For a full formal
account, refer to [9, 1].

A System over a set of variables Var and a set of values Val
consist of a set of modules M that operate in a clocked-
synchronous way. Each module Modulei has a set of prede-
termined configurations corresponding to the different be-
havioral variants of the module. In order to specify adap-
tation behavior modularly within a module separated from
the functionality, each module has two disjoint sets of in-
put, local and output variables: the functional variables var
with their initial values init and the adaptive variables ad var
with their initial values ad init encapsulated in the adapta-
tion aspect adapt. The condition under which a configura-
tion j is activated is formulated in the configuration guard
guardj only depending on the adaptive variables. The state
transition function next statej computes the functional local
variables and the output transition function next outj the
functional output variables. Adaptive output variables are
connected to adaptive input variables by the adaptive sys-
tem connections conna. The adaptive connections convey
information about the used configurations such that con-
nected modules can react to adaptations of other modules.
Functional output variables are connected to functional in-
put variables by the functional system connections connd.
Functional connections communicate functional values com-
puted by the modules. The system input and system output
variables are given by the module variables that are uncon-
nected.

The semantics of a system is defined by a state-transition
system T = (Σ, I,;). The set of states Σ is the set of pos-
sible valuations of the module variables. In the initial state
σ0 ∈ I, all variables have their initial values. A clocked-
synchronous transition ; evolves in two steps. First, all
modules read their inputs. Second, all modules synchro-
nously perform a local transition. A local transition of a
module proceeds as follows: First, the new valuation of the
adaptive variables is computed by the ad next state and the
ad next out functions. Then, the configuration with valid

Module = (var, init, configurations, adapt)
with var⊆ Var and init : var→ Val

configurations = {(guardj, next statej, next outj)}
guardj: a Boolean constraint over ad var
next statej, next outj : (var→ Val)→ (var→ Val)

adapt = (ad var, ad init, ad next state, ad next out)
ad var ⊆ Var and ad init : ad var→ Val
ad next state : (ad var→ Val)→ (ad var→ Val)
ad next out : (ad var→ Val)→ (ad var→ Val)

System = (M, conna, connd)
where M = {Module1, . . . ,Modulen}

Figure 1: SAS System Description

Sensor A

Sensor B
Off: inA! ¬inB ! ¬outM2

Output

Proc: ¬inA " inB ! outM2

Off: ¬inA " ¬inM2

Sensor A: inA

Sensor B: ¬inA " inM2 inA

inB

M1

M2

inM2

outM2

Environment

Figure 2: Example System and Environment

guard is activated, and the respective state and output tran-
sition functions are executed. An execution path of a system
is represented by a sequence of states.

As an example, consider the adaptive control system de-
picted in Figure 2. The system has two different sensors:
Sensor A requiring light for correct operation and sensor B
operating without light. The system adapts its mode of op-
eration depending on the brightness of the environment. If
it is light enough, the output is directly computed by config-
uration Sensor A of module M1. If it is too dark, sensor B is
used whose values have to be preprocessed by configuration
Proc of module M2. The availability of the sensors is mod-
elled by boolean adaptive variables inA and inB. In Figure 2,
both modules are depicted with their configurations and the
associated guards. Solid lines represent functional connec-
tions, dashed lines adaptive connections. The adaptation
behaviour is as follows:

• If sensor A becomes unavailable, module M1 enters its
shutdown configuration Off, and module M2 adapts
from configuration Off to configuration Proc.

• In the next cycle, preprocessed values are available,
which is signaled by the adaptive variable outM2/inM2 ,
such that M1 adapts to configuration Sensor B.

• If sensor A becomes available again, M1 returns to con-
figuration Sensor A and M2 to configuration Off.

A critical property of the system is that the output is avail-
able, i.e., module M1 is only in configuration Off for one
cycle. This can be ensured under the constraint that the
sensors A and B are not unavailable at the same time.

In order to formalize properties and environment constraints,
we use a variant of the temporal logic ACTL* [2], called

ALSAS [9], that allows expressing universal temporal prop-
erties of synchronous adaptive systems. The logic ALSAS is
strictly more expressive than the linear temporal logic frag-
ment that consists of formulas Aϕ where ϕ does not contain
any path quantifiers.

• The atomic propositions of ALSAS are constraints on
variables and values. The atomic propositions occur-
ring in a formula ϕ are denoted by Atoms(ϕ). The vari-
ables contained in a formula ϕ are denoted by Var(ϕ).
The configuration a module M1 uses in a cycle is cap-
tured by a special variable use confM1 .

• Besides Boolean connectives, we have temporal oper-
ators, e.g., Gϕ (”globally”) denotes that ϕ holds on all
states of a path, Fϕ (”finally”) that ϕ holds eventually
in a state on a path, and Xϕ (”next”) that ϕ holds in
the next state. Additionally, we have the path quan-
tifier Aϕ (”ϕ holds for all paths.”). Negation is only
applied to atomic propositions.

• T |= ϕ denotes that the property ϕ holds in all initial
states of T, and σ |= ϕ denotes that ϕ holds in the
state σ.

Using ALSAS , the property that the module M1 is only in
configuration Off for one cycle is formulated as follows. For
all paths (A) starting from the initial state, in all states (G),
if M1 uses the configuration Off, on all paths (A) in the
successor state (X), M1 does not use configuration Off.1

ψ = AG (use confM1 = Off → AX use confM1 6= Off)

The environment constraint that the sensors A and B are not
simultaneously unavailable is stated by the following prop-
erty that has to hold on all paths (A) in all states (G).

ϕ = AG ((inA ∧ ¬inB) ∨ (¬inA ∧ inB))

4. MAXIMAL ENVIRONMENTS
Only for linear time temporal logic properties, checking the
validity of a property ψ under an environment constraint ϕ
can be reduced to checking the implication ϕ→ ψ [6]. In or-
der to verify all properties of adaptive systems expressible in
ALSAS under environment constraints, we transfer the maxi-
mal model technique [4] developed for assume-guarantee rea-
soning on Kripke structures [2] to design-level models of adap-
tive systems. First, we formally define the environment of a
system. Second, we formalize conditional validity, i.e., that a
system satisfies a property under an environment constraint.
Then, we introduce maximal environments as most general
environments satisfying a constraint and show that condi-
tional validity checking can be reduced to standard model
checking by composing a system with the maximal environ-
ment and verifying the property for the composition.

The environment of a system provides input to the module
input variables that are not connected by the system con-
nections and receives output from the unconnected module
1Due to the simplicity of the example, ψ has an equivalent
formulation in the linear fragment of ALSAS , but in practice,
there are critical system properties that are not expressible
in the linear fragment, e.g., AF AGϕ.

output variables. We define an environment as a module
that closes a system such that there are no unconnected vari-
ables in the composition of the environment with the system.
In the following, we denote the input variables of a mod-
ule Mi by ini ⊆ vari and the output variables by outi ⊆ vari.
The adaptive input variables are denoted by ad ini ⊆ ad vari
and the adaptive output variables by ad outi ⊆ ad vari. The
functional output variables of a system S are defined as
outS = {v ∈

S
i outi | v 6∈ dom(connd)}. The functional sys-

tem input variables are defined as inS = {v ∈
S

i ini |
v 6∈ img(connd)}. The adaptive system input variables ad inS

and the adaptive system output variables ad outS are defined
accordingly.

Definition 1 (Environment). A module ME is an en-
vironment for a system S, if inE = {ve | v ∈ outS},
outE = {ve | v ∈ inS}, ad inE = {ve | v ∈ ad outS} and
ad outE = {ve | v ∈ ad inS}. The system S is composed with
the envionment ME by

S ‖ ME = (M ∪ {ME}, connaE, conndE)

where connaE = conna ∪ {(ve, v) | v ∈ ad inS}
∪ {(v, ve) | v ∈ ad outS}

and conndE = connd ∪ {(ve, v) | v ∈ inS}
∪ {(v, ve) | v ∈ outS}

A system S satisfies a property ψ under an environment con-
straint ϕ if for all environments ME satisfying ϕ, S composed
with ME satisfies ψ. The environment constraint ϕ only
refers to the system variables ad inS ∪ inS ∪ ad outS ∪ outS,
whereas the property ψ refers to the internal system behav-
ior expressed by all module variables. For a correct formal
account, we have to transform the constraint ϕ over the
input and output variables of S to a formula ϕ′ over the
variables of ME.

Definition 2 (Conditional Validity). Let S be a
system, ψ ∈ ALSAS with Var(ψ) ⊆

S
i vari a system property

and ϕ ∈ ALSAS with Var(ϕ) ⊆ inS ∪ ad inS ∪ outS ∪ ad outS

an environment constraint. ψ is conditionally valid for S
under the environment constraint ϕ, denoted by {ϕ}S{ψ},
iff for all environments ME with TME |= ϕ′, it holds that
TS‖ME

|= ψ where ϕ′ = ϕ[v/ve] is derived from ϕ by replac-
ing every occurrence of v ∈ inS ∪ ad inS ∪ outS ∪ ad outS by
ve ∈ varE ∪ ad varE.

A maximal environment for a constraint ϕ is an environ-
ment that is the most general environment satisfying ϕ. This
means that it has all possible behaviors consistent with the
constraint ϕ. In order to formally define maximal environ-
ments, we introduce consistent simulations as a preorder on
environments capturing when one environment is more gen-
eral than another, i.e., when it has more behaviors. An en-
vironment ME is consistently simulated by an environment
M′

E with respect to a property ϕ if all behaviors of ME have a
corresponding behavior in M′

E that cannot be distinguished
by the atomic propositions of ϕ. The environment M′

E can
have behaviors to which no behavior of ME corresponds, such
that M′

E is more general than ME.

Definition 3 (Consistent Simulation). An envi-
ronment ME is consistently simulated by an environment M′

E

with respect to a property ϕ ∈ ALSAS , ME �[ϕ] M′
E, iff there

exists a relation R ⊆ Σ × Σ′ on the states of the transition
systems TME and TM′

E
such that

1. for each σ0 ∈ I, there exists σ′0 ∈ I′ such that R(σ0, σ
′
0).

2. for all i ≥ 0, if σi, σi+1 ∈ Σ and σ′i ∈ Σ′ with R(σi, σ
′
i)

and σi ; σi+1, there exists σ′i+1 ∈ Σ′ with σ′i ;′ σ′i+1

such that R(σi+1, σ
′
i+1).

3. for all a ∈ Atoms(ϕ), if R(σ, σ′) and σ′ |= a, it holds
that σ |= a.

A maximal environment ME(ϕ) for a constraint ϕ is defined
as an environment that satisfies ϕ itself and consistently
simulates all other environments satisfying ϕ.

Definition 4 (Maximal Environment). The envi-
ronment ME(ϕ) of a system S is a maximal environment
for the property ϕ ∈ ALSAS , iff TME(ϕ) |= ϕ, and for all en-
vironments M′

E with TM′
E
|= ϕ, it holds that M′

E �[ϕ] ME(ϕ).

The existence of maximal environments can be established
by tableau-based approaches [2] and automata-theoretic re-
sults [6]. Verification of a system property under an en-
vironment constraint can be reduced to a standard model
checking problem using maximal environments.

Theorem 1 (Validity by Max. Environments).
Let S be a system, ψ ∈ ALSAS a property of S with
Var(ψ) ⊆

S
i vari and ϕ ∈ ALSAS an environment constraint

with Var(ϕ) ⊆ inS ∪ ad inS ∪ outS ∪ ad outS. It holds that

{ϕ}SAS{ψ} iff TS‖ME(ϕ) |= ψ

For the linear fragment of ALSAS and for the branching time
fragment of ALSAS (using only combinations of a path quan-
tifier and a temporal operator), maximal environments can
be constructed automatically by tableau-based
approaches [9, 6, 4, 2].

The separation of functionality and adaptation behavior in
synchronous adaptive systems can be exploited to make con-
ditional validity checking more efficient. If a property and
the environment constraint only refer to the adaptation be-
havior as in the example, it is sufficient to consider the adap-
tation behavior of the system and to construct a maximal
environment only for the adaptive input and output vari-
ables.

5. CONCLUSION
We have presented an general approach to verify tempo-
ral properties of adaptive systems under environment con-
straints. The technique is integrated in the AMOR frame-
work [9]. This framework provides verification complexity
reductions, i.e., slicing, data abstraction and decomposition

techniques, making large adaptive system models amenable
to model checking. Because the composition of a system
with a maximal environment is a standard SAS, the AMOR
reduction techniques can be immediately applied for sim-
plifying verification. For future work, we aim at generating
environment constraints that are necessary for the validity of
system properties in order to reason in which environments
a system can safely be deployed.

6. REFERENCES
[1] R. Adler, I. Schaefer, T. Schuele, and E. Vecchie.

From Model-Based Design to Formal Verification of
Adaptive Embedded Systems. In ICFEM, 2007.

[2] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT, 1999.

[3] M. Goldman and S. Katz. MAVEN: Modular Aspect
Verification. In TACAS, 2007.

[4] O. Grumberg and D. Long. Model Checking and
Modular Verification. ACM TOPLAS, 16(3):843–871,
1994.

[5] S. S. Kulkarni and K. Biyani. Correctness of
Component-Based Adaptation. In CBSE, 2004.

[6] O. Kupferman and M. Vardi. An automata-theoretic
approach to modular model checking. ACM TOPLAS,
22(1), 2000.

[7] C. Pasareanu, M. Dwyer, and M. Huth.
Assume-Guarantee Model Checking of Software: A
Comparative Case Study. In SPIN Workshop, 1999.

[8] H. Peng, Y. Mokhtari, and S. Tahar. Environment
Synthesis for Compositional Model Checking. In
ICCD, 2002.

[9] I. Schaefer. Integrating Formal Verification into the
Model-based Development for Adaptive Embedded
Systems. PhD thesis, University of Kaiserslautern,
2008.

[10] C. Sprenger, D. Gurov, and M. Huisman.
Compositional Verification for Secure Loading of
Smart Card Applets. In MEMOCODE, 2004.

[11] E. Strunk. Reconfiguration Assurance in Embedded
System Software. PhD thesis, University of Virginia,
Charlottesville, USA, 2005.

[12] J. Zhang, H. Goldsby, and B. Cheng. Modular
verification of dynamically adaptive systems. In
AOSD, 2009.

