
A Programming Language for Adaptation Control:
Case Study

Soufyane Aboubekr, Gwenaël Delaval, Éric Rutten
INRIA Grenoble

{Soufyane.Aboubekr, Gwenael.Delaval, Eric.Rutten}@inria.fr

ABSTRACT

We illustrate an approach for the safe design of adaptive em-
bedded systems. It applies the BZR programming language,
featuring a special new contract mechanism: its compilation
involves automatical discrete controller synthesis. The con-
tribution of this paper is to illustrate how it can be used
to enforce the correct adaptation control of the application,
meeting execution constraints, with the case study of a video
module of a multimedia cellular phone.

1. ADAPTIVE COMPUTATION

AND ITS CONTROL

The management of dynamical adaptivity can be consid-
ered as a control loop, on continuous or discrete criteria.
It is illustrated in Figure 1 (left): on the basis of monitor
information and of an internal representation of the sys-
tem, a control component enforces the adaptation policy or
strategy, by taking decisions w.r.t. the adaptation or recon-
figuration actions to be executed, forming a closed control
loop.

Embedded systems are also by nature safety-critical, and
must be statically checkable for guarantees of predictabil-
ity. The design of control loops with known behavior and
properties is the classical object of control theory. Appli-
cations of continuous control theory to computing systems
have been explored quite broadly [3], concerning typically
quantitative problems (e.g. throughput, delays, load), based
on differential equations. In contrast, qualitative or logical
aspects, as addressed by discrete control theory, or even by
hybrid systems combining continuous and discrete dynam-
ics, have been considered only recently for adaptive com-
puting systems [5], with models such as Petri nets or finite
state automata. The reactive approach to embedded sys-
tems precisely proposes languages, tools and methods rely-
ing on such models, such as StateCharts. Formal techniques
have been developed for their specification, verification, and
implementation targeted at a variety of execution platforms.

The synchronous approach [1] offers all this support, and
particularly a Discrete Controller Synthesis (DCS) technique
and its tool, for the design of discrete closed-loop controllers
[4]. Amongst other applications, the case a video processing
mode controller has been treated manually [6] In our new
approach, DCS is embedded in the compilation of a user-
friendly programming language called BZR [2]. Models of
the possible behaviors of the managed system are specified
in terms of hierarchical parallel automata, and adaptation
policies are specified in terms of contracts, on invariance
properties to be enforced. Compiling BZR yields a correct-
by-construction controller, produced by DCS, as illustrated
in Figure 1 (right). The contribution of this paper is to il-
lustrate the new BZR language with a case study of a video
processing mode controller.

2. CASE STUDY: A MULTIMEDIA APPLI-

CATION

We consider a multimedia mobile device, such as a mod-
ern cellular phone, with multiple functionalities: camera,
games, mp3 music, video, or even telephone. We focus on
the video part, from source to display. This kind of image
data processing can also be found in multimedia systems
such as high-definition digital television (HDTV), biometric
data processing, sonar and radar signal processing.

Functionalities available. Interface buttons (up and
down) allow the user to select amongst various modes. The
displayed videos source can be either on-line from the net-
work, or from the camera, or from the local memory. There
are different style modes: Black & White; Negative, a tonal
inversion style; Sepia, a dark brown-grey color style; or Nor-
mal. The resolution of the video can be set to High, Medium
or Low. Finally, the color can be in either of Color or
Monochrome options. Besides user commands, the video

representation
system

system
managed

decision

policy / strategy

monitor execute

model
automaton

system
managed

DCS ctrl

BZR program

executemonitor

Figure 1: Adaptive system, and BZR program.



display modes are controlled by the adaptive system accord-
ing to the status of computing resources, of the energy level,
and of the available communication level.

display

source

DCS ctrl

cv, av

resolution
colorstyle

battery
manager

cr, ar
cc, ac

ec
estu, estd
eru, erd
evu, evd

memory
camera

network

pu, pd fEA

Figure 2: Components of video case study.

Our case study multimedia processing module can be struc-
tured as illustrated in Fig. 2, where black-pointed arrows
indicate the flow of the video images. It is composed of the
following subcomponents: battery manager indicates the en-
ergy level fEA according to inputs pu or pd from the bat-
tery (power going up ou down resp.). source chooses video
source according to user requests evu, evd and controller ’s
permission cv, av. resolution computes resolution according
to user requests eru, erd and controller ’s acceptance cr, ar.
color is similar to resolution, as well as style which does not
need control. On top of this, the controller validates mode
change requests according to current component states (not
shown in the Figure for clarity) and according to the avail-
able resources (here: battery). This specific component is
automatically obtained by DCS.

Consumption and Quality of Service. When embed-
ded in mobile devices, such data processing systems have
resource constraints: memory capacity, processor load, en-
ergy, etc. For an efficient resource management, adaptivity
and reconfigurability mechanisms are needed so as to enable
a flexible system execution w.r.t. environment and plat-
form constraints for e.g., power-aware management, fault-
tolerance and recovery. Possible behaviors involving these
characteristics are, e.g., that the consumption of a resource
must respect the bounds defined by its capacity. There-
fore, if a new functionality is executed, then the other tasks
that are already running should switch to lower consump-
tion modes, and possibly reduce their quality as well. Or,
if battery level goes down, the control should switch task
modes so that the lower energy capacity is respected.

This video processing module has different configuration
modes, where components execute different algorithms for
image display. Hence, each mode is associated with non-
functional properties, which must be satisfied in order to
display images at a good quality level. In our example, the
modes defined in the components are characterized by quan-
titative attributes representing the following non-functional
properties: energy consumption (E), communication qual-
ity required (CQ), computing resource consumption (CR)
and memory consumption (M). These non-functional re-
quirements are to be understood as instantaneous values of
quantitative resources that may vary from one system mode
to another. The values associated locally with the modes
are combined additionally when components are composed

in parallel, so as to obtain global costs for the whole system
from the local costs of its components.

In the next section, we describe the BZR specification of
this case study (behaviors as well as non-funtional aspects),
where the adaptation controller is obtained automatically.

3. BZR AUTOMATON MODEL

For clarity reason, the BZR specification is described here
with an ad-hoc graphical syntax. Some extracts of the whole
example in concrete syntax can be found in appendix A.

We propose a a safe design approach, that guarantees that
the designed multimedia functionality module actually meets
its specification requirements, with easy specification and
modifiablity. As shown in Figure 1 (right), the system model
is programmed in terms of reactive automata, describing
possible behaviors of the systems, where states represent
each configuration, and transitions indicate which switches
are a priori allowed. The decision part of the adaptation
controller will be specified in BZR in a declarative way, in
terms of contracts: invariance properties that should be sat-
isfied by the sequences of reconfigurations, and it will be
produced automatically by DCS.

high med
pu

pd

low

fEA = 110 fEA = 100

pd

pu
fEA = 120

fEA

statepu

pd

battery manager(pu, pd) = state, fEA

node energy_status (down, up:bool)

returns (high, medium, low:bool;

energy_quantity:int)

let

automaton

state High

do

(high,medium,low) = (true,false,false);

energy_quantity = 120;

until down then Medium

state Medium

do

(high,medium,low) = (false,true,false);

energy_quantity = 110;

until up then High

| down then Low

state Low

do

(high,medium,low) = (false,false,true);

energy_quantity = 100;

until up then Medium

end

tel

Figure 3: Energy resource model

Basic behaviors. They can be represented as nodes, as
usual in the synchronous languages [1]. A simple example
is the battery manager component seen in Figure 2, now
detailed in Figure 3: it shows the interface, with inputs
and outputs, and the body, consisting of a mode automaton



high medium

[50,50,50,30] [40,40,40,20]
eru.ar

erd + cr

low

erd + cr

eru.ar
[30,30,30,10]

normal

[10,0,25,20]

B&W neg

estu

estu

[10,0,25,20]

[10,0,25,20] [10,0,25,20]

estd

sepia

mem cam

[20,0,35,30] [30,0,35,25]
evu.av

net

evd.av

[30,40,50,20]

evu.av evu.avestu

estd

estu

estd

estd

color

ecu + cc

chrome
mono-

[30,50,40,20] [20,40,25,20]
ecd.ac

resolution color effect

sourceimage style

Figure 4: Mode automata for VideoSource, ColorEffect, ImageStyle and Resolution components.

with three states. The intial state is high. Upon occurrence
of inputs, each step consists of a transition according to
their values; when no transition condition is satisfied, the
state remains the same. In each state, an equation defines
the output flow fEA: it is an integer value characterizing
the available power, which will be used as an upper bound,
as part of the policy to be enforced by the control of the
adaptive system.

Composed behaviors. Such nodes and automata can be
composed in parallel, according to the synchronous compo-
sition [1]. Fig. 4 shows the composition of the automata of
the four video processing components.

There is an assumption on interface buttons (up and down):
they are managed so that they are not present at the same
time, hence corresponding inputs (subscribed with u and d
resp.) are not true at the same time. Therefore, in par-
ticular, in the automaton of imagestyle, there are no am-
biguities and behavior is deterministic; also, there are no
diagonal transitions, taking into account that buttons are
used to navigate in a circular list of modes.

In the composed automaton, the global behavior is defined
from the local ones: a global step is performed synchronously,
by having each automaton making a local step, within the
same logical instant.

A tuple [E, CQ, CR, M] is associated with each mode, de-
noted as a state, characterizing the quantitative attributes
associated with the resources defined before. The global
characterization of the non-functional aspects is simply de-
fined by the sum of the local ones for each term.

When assembled according to Fig. 2, these specifications
define all possible behaviors of the system, before any con-
troller is defined. The correct adaptation control will be
derived from this model, using the BZR compiler encapsu-
lating its formalization as a transition system and DCS.

Equational model and DCS. A transition system such
as specified before, can be seen equivalently as a sequen-
tial transition function, as in classical Boolean circuits, il-
lustrated e.g., in the body box in the lower part of Fig. 5.
A transition function Trans takes the current value of the
State and the inputs, and computes the new value of the

State; another function Out computes outputs. Logical
properties of such automata typically concern reachability
of states, or invariance of subsets of states, or required or
forbidden sequences of transitions.

Ctrlr

OutCTrC StC

Trans State

eA, eG

X

contract

Out
Y

XC

Xc

body

Figure 5: BZR contract node as DCS problem

On the other hand, DCS consists of considering on the one
hand, the set of possible behaviors of a discrete event system,
where inputs are partitioned into uncontrollables (X) and
controllable (Xc), as illustrated in the lower part of Fig. 5.
On the other hand, it requires the specification of a control
objective: a property, typically an invariance. DCS consists
of the computation of the necessary constraint Ctrlr on con-
trollable events Xc, in function of the current state and all
possible uncontrollable inputsX, so that the objective prop-
erties are satisfied by the resulting controlled system. These
computed constraints yield a controller which defines, to-
gether with the initial system, a controlled system, satisfying
the synthesis objectives. This can be formulated as:

Whatever the uncontrollable inputs sequences, the controlled
behavior satisfies the objectives.

We encapsulate these notions in the compilation of the BZR
language [2], thereby making them more user-friendly.

4. BZR CONTRACTS AND ADAPTATION

POLICY

BZR contracts and corresponding DCS problem. As
illustrated in Figure 6, we associate a contract to a node: it
is itself a program, with its internal state, and with two out-
puts: eA, assumption on the node environment, and eG,
to be guaranteed or enforced by the node. A set C =
{c1, . . . , cq} of local controllable variables will be used for



f(x1, . . . , xn) = (y1, . . . , yp)
eA =⇒ eG

with c1, . . . , cq

y1 = f1(x1, . . . , xn, c1, . . . , cq)
· · ·
yp = fp(x1, . . . , xn, c1, . . . , cq)

Figure 6: BZR contract node graphical syntax

ensuring this objective. This contract means that the node
will be controlled, i.e., that values will be given to c1, . . . , cq
such that, given any input trace yielding eA, the output
trace will yield the true value for eG. This will be done by
DCS. One can remark that the contract can itself feature
a program, e.g., automata, observing traces, and defining
states.

Without giving details [2] out of the scope of this case study,
we compile such a BZR contract node into a DCS problem
as in Figure 5, where the contract part has its inputs XC
coming from the node’s input X and the body’s outputs Y ,
its own transition function TrC and its own state StC, and
its output function OutC computing eA, eC . Assuming eA
produced by the contract program, , we will obtain a con-
troller Ctrlr for the objective of enforcing eG (i.e., making
invariant the sub-set of states where eA ⇒ eG is true), with
controllable variables c1, ...cq . As shown in Figure 5, the
controller takes the state of the body and the state of the
contract, and the inputs of the node X and the outputs of
the contracts eA, eG, and it computes the controllables Xc
such that the resulting behavior satisfies the objective.

Adaptation policy in the case study. We will specify it
by a BZR contract of a simplified form, as in our case there
is no assumption on the environment i.e., eA is true, and
the policy can be decomposed in different parts i.e., eG is a
conjunction & of terms as follows.

A first example of a state property is the exclusivity of two
modes of two components. For example, in order to avoid
waste of resources, it can be useful to specify that the modes
B&W (ImageStyle component) and Color (ColorEffect com-
ponent) are never active at the same instant. This is noted
in the code of the contract simply by a flow:

excl_modes = not (mode_color & style_bw);

Another example involves cost functions, e.g. for memory
footprint, there is a bound on cost defined by the size of
the memory e.g., 90. We have a BZR equation defining
the value of the global consumption in a flow by that of
the components: m_global = m1+m2+m3+m4; hence we want to
enforce (m_global ≤ 90):

bounded_memory = (m_global <= 90);

On some of the resources, we have a bound varying in time,
as is the case for the available power. We model this as seen

in Fig. 3. We have the value of the currently available power,
which we use as a bound for the energy consumption: we
want to enforce (fE ≤ fEA):

bounded_energy = (e_global <= e_available);

It is also interesting to define conditioned objectives, e.g.,
according to the battery status, which will lead to adap-
tive strategies. An example of such adaptive strategy is to
forbid costly modes in medium or low battery states, so as
to limit the energy consumption in time. We identify two
modes, high resolution and color mode, which will be en-
forced exclusive when not in high battery state: we want
(

(

HighRes ∧ Color
)

⇒ HighEnergy

)

which is written:

cond_obj = (not (resol_high & mode_color)

or energy_high);

In summary the contract says simply, in textual syntax:

assume true

enforce excl_modes & cond_obj

& bounded_memory

& bounded_energy

with (cr, ar, cc, ac, av : bool)

where in the with part relevant inputs of the different com-
ponents are given as controllable variables.

5. CONCLUSION

This paper describes a case study illustrating the use of
a new contract mechanism, and its compilation involving
DCS. It is implemented in the BZR compiler [2], with gen-
eration of Java and C executable code. It encapsulates in
a user-friendly way the formal DCS operations, which oth-
erwise had to be done manually [6]. Different adaptation
policies can be obtained automatically by changing the ob-
jectives, hence improving separation of concerns and reuse
of models. The code can be plugged into a system as of
Fig. 1, thereby providing for safe adaptation control.

6. REFERENCES
[1] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs,

P. Le Guernic, and R. de Simone. The synchronous
languages twelve years later. Proc. of the IEEE,
91(1):64–83, jan. 2003.

[2] G. Delaval, H. Marchand, and E. Rutten. Contracts for
modular discrete controller synthesis. In Draft available
from the authors, 2009.
http://sardes.inrialpes.fr/~rutten/docs/BZR-draft.pdf .

[3] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury.
Feedback Control of Computing Systems. Wiley-IEEE,
2004.

[4] H. Marchand, P. Bournai, M. Le Borgne, and P. Le
Guernic. Synthesis of discrete-event controllers based
on the Signal environment. Discrete Event Dynamic
System: Theory and Applications, 10(4):325–346,
October 2000.

http://sardes.inrialpes.fr/~rutten/docs/BZR-draft.pdf


[5] Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and S. A.
Mahlke. The theory of deadlock avoidance via discrete
control. In Proc. of the 36th ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages, POPL
2009, Savannah, GA, USA, January 21-23, pages
252–263, 2009.

[6] H. Yu, G. Delaval, A. Gamatié, and E. Rutten. A case
study on controller synthesis for data-intensive
embedded systems. In Proc. of the 6th IEEE Int. Conf.
on Embedded Software and Systems, ICESS’09,
HangZhou, Zhejiang, China, May 25–27, 2009, pages
75–82, 2009.

APPENDIX

A. EXAMPLE IN CONCRETE SYNTAX

node color_effect (ctr_color,aut_color:bool;

up,down:bool;

i:rgb_pixel)

returns (o:rgb_pixel;

mode_color:bool;

e,cq,cr,m:int)

let

automaton

state Color

do

o = color(i);

mode_color = true;

(e,cq,cr,m) = (30,50,40,20);

until up or ctr_color then Monochrome

state Monochrome

do

o = monochrome(i);

mode_color = false;

(e,cq,cr,m) = (20,40,25,20);

until down & aut_color then Color

end

tel
.
.
.

node cell_phone (event_energy_up,

event_energy_down,

event_comm_quality_up,

event_comm_quality_down,

event_computing_resource_up,

event_computing_resource_down,

event_color_up,

event_color_down,

event_image_style_up,

event_image_style_down,

event_video_source_up,

event_video_source_down,

event_resolution_up,

event_resolution_down:bool;

camera, local, online:rgb_pixel)

returns (mode_color,

style_bw,

resol_high,

mode_color,

energy_high:bool;

m_global:int;

e_global:int;

energy_quantity:int;

o:rgb_pixel)

contract

var excl_modes,

bounded_memory,

bounded_energy,

cond_obj:bool;

let

excl_modes = not (mode_color & style_bw);

bounded_memory = (m_global <= 90);

bounded_energy = (e_global <= e_available);

cond_obj = (not (resol_high & mode_color)

or energy_high);

tel

assume true

enforce excl_modes & cond_obj

& bounded_memory

& bounded_energy

with (ctr_resolution,aut_resolution,

ctr_color,aut_color,

aut_video_source:bool)

var ...;

let

(energy_high, energy_medium, energy_low,

e_available) =

inlined energy_status(event_energy_down,

event_energy_up);

(ov, e1,cq1,cr1,m1) =

inlined video_source(ctr_video_source,

event_video_source_up,

event_video_source_down,

camera,online,local);

(ores,

resol_high, resol_medium, resol_low,

e2,cq2,cr2,m2) =

inlined resolution(ctr_resolution,

aut_resolution,

event_resolution_up,

event_resolution_down,

ov);

(ois,

style_normal,style_negative,

style_sepia,style_bw,

e3,cq3,cr3,m3) =

inlined image_style(event_image_style_up,

event_image_style_down,

ores);

(o,

mode_color,

e4,cq4,cr4,m4) =

inlined color_effect(ctr_color,aut_color,

event_color_up,

event_color_down,

ois);

e_global = e1+e2+e3+e4;

cq_global = cq1+cq2+cq3+cq4;

cr_global = cr1+cr2+cr3+cr4;

m_global = m1+m2+m3+m4;

tel


	Adaptive computation and its control
	Case study: a multimedia application
	BZR automaton model
	BZR contracts and adaptation policy
	Conclusion
	References
	Example in concrete syntax

