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ABSTRACT 
In this paper, a functional model of a virtual communication 
interface (VCI) for embedded systems is presented. It hides the 
underlying communication technology from the application. The 
communication bus can then be changed without worrying about 
its users and without the need to rewrite the application. The VCI 
is co-designed in hardware/software to improve performance 
considering architectural issues and the needs of the application. 
Communication buses widely used in embedded systems are used 
to test the applicability of this VCI. The experimental results 
demonstrate that with careful co-design, the VCI is not only 
reusable but also can remarkably improve the overall 
performance. 

Categories and Subject Descriptors 
C.3 [Special-purpose and Application-based Systems]: Real-
time and embedded systems.  

General Terms 
Design, Performance, Measurement. 

Keywords 
Embedded systems, communication interfaces, hardware/software 
co-design, design reusability, API, optimization.  

1. INTRODUCTION 
To cope with the increasing complexity of embedded systems and 
the non-stopping pressure of time-to-market, the productivity of 
design engineers and systems programmers has to be improved 
remarkably. Design tools such as CatapultC are now available to 
help designers explore significant part of the design space at the 
electronic system level (ESL) [1]. When used properly, such tools 
could remarkably reduce the design cycle while considering 
design quality as well.  

On the software side, object-oriented programming languages 
such as Java and C++ are developed to support, among other 

objectives, code reusability. Different from C++, languages such 
as Java support the “Write Once and Run Anywhere” (WORA) 
model. Programmers can develop an application in Java and then 
run it on any platform which provides an implementation for the 
Java Virtual Machine (JVM). In recent years, it is remarkably 
noticed that Java is invading embedded systems which may 
reduce the development time. Nevertheless, Java code may have 
lower performance than native code. 

Especially in embedded systems, aspects related to 
communication should be considered by the application 
developer. In this case, applications continue to depend on the 
underlying communication protocol/bus even by using languages 
which support the WORA model. Java, for example, offers I/O 
streams to transfer and manipulate different types of data only. 
Nevertheless, no control command can be transferred and/or 
manipulated. A wide variety of communication buses are used 
especially in control/automation arenas such as I2C, SPI and CAN 
[2,3,4]. Applications must always be modified corresponding to 
the adopted bus. A new common interface can hide 
communication details and extend the concept of modular design 
further. 

In computer networks, abstracting network resources is quite 
common to access remote resources without worrying about 
differences in physical interfaces. For example, by using Jini from 
SUN, network resources can be abstracted [5]. Another machine 
independent network environment is provided by TINA [6]. 
However, these did not handle lower layer protocols and could not 
be used in embedded systems where simple and custom buses are 
usually used. Another abstraction model called a virtual bus 
(VBUS) was presented by Toshiaki et al. in [7]. The goal was to 
access a distributed resource independent of its location and 
access method. The defined application programming interfaces 
(API) to access the VBUS were implemented in software 
(C/C++). However, embedded systems communication protocols 
are usually simpler in architecture and service routines which 
differ from computer networks. Moreover, no hardware/software 
co-design approach was used to improve the performance of the 
VBUS. Another set of APIs is defined as part of the IEEE 1451 to 
permit the access of transducer data through a common set of 
interfaces whether the transducer is connected to systems or 
accessed through networks [8]. Nevertheless, these remain to 
some extent limited by the application area.  

In this paper, a parameterized VCI is developed which addresses a 
wide variety of embedded communication buses. The application 
developer always calls the VCI using “standard” APIs and the 
way in which these are interpreted and mapped onto the physical 
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bus is hidden and automatically done by a configuration tool. 
Because the VCI is usually implemented separately, further bus-
specific optimizations can efficiently be applied. Besides the 
abstract model of the VCI, a hardware/software co-designed and 
co-optimized prototype is developed and tested using 
communication buses widely used in embedded systems. Up to 
our knowledge, this issue was not tackled concretely in embedded 
systems.   

This paper divides into 4 sections: The next section overviews the 
abstract model of the VCI. Section 3 explains key implementation 
issues of the VCI. Selected experimental results are presented and 
discussed in section 4. Section 5 concludes the paper.  

2. ABSTRACT MODEL OF THE VCI 
The VCI provides an architecture-neutral hardware abstraction 
layer (HAL) to the application developer. The application 
developer uses a set of parameterized APIs in order to send and 
receive data as well as to issue abstract control commands. To do 
so, the application developer formulates a “communication form” 
(CF) independent of the underplaying communication bus. The 
CF undergoes integrated refinement in the VCI in order to 
generate bus-specific commands based on the formulated job. 
Once the CF is finished, the VCI sends an interrupt to the 
application with the necessary status information. Figure 1 shows 
the basic architecture of the VCI. 

 

Figure 1. Basic architecture of the VCI 

Physical interrupts and status signals sent by the physical bus are 
not forwarded directly to the application. Instead, these are 
received and processed by the VCI. The VCI maps the interrupts 
onto a set of abstract interrupt classes (AIC) which are “standard” 
to the application. The application always receives one of these 
AICs and responds independent of the underlying bus. The VCI 

then interprets the application response and generates a sequence 
of bus-specific commands. 

The application developer creates a new CF which has a 
predefined format by providing abstract information on “what to 
do” not “how to do”. The CF tells, for example, that the 
application needs to read/write from/to a device by providing a 
command and a device ID. Each device has a structure in memory 
to store needed information, such as device address and backed 
commands. A device table stores the addresses of all device-
specific structures. To fill an entry in the device table, the device-
specific configuration file is used. Based on the device ID, the 
device table is searched to find the address of the device-specific 
structure. To complete the CF, the application developer has also 
to provide a pointer to the first data in memory and how many 
bytes to exchange for read/write.  

The CF is then processed by the VCI in two successive steps, 
namely mapping finite state machine (M-FSM) and protocol 
interpreter (PINT). The basic function of the M-FSM and PINT is 
to translate the architecture-neutral commands into architecture-
specific commands and to guarantee correct operation of the bus. 
The efficiency of the whole VCI is directly dependent on the 
efficiency of the M-FSM and PINT. Therefore, the performance 
of applications which perform repeated I/O is directly influenced 
by how efficient the VCI is.   

The M-FSM is a state machine that performs first stage processing 
on the CF and the corresponding information in the device table. 
It determines the architecture-specific commands fed to the PINT 
and receives/sends data from/to application. Data sent/received 
can be split or concatenated upon demand and bus width (w). To 
improve flexibility, the M-FSM is functionally partitioned into 
two layers: H- and L-layer1. The H-layer interacts with the 
application only and it is bus-neutral. Therefore, the H-layer is 
reusable. On the contrary, the L-layer is bus-specific. Figure 2 
shows the structure of the M-FSM. 

The H-layer specifies the sequence and conditions required 
according to the abstract commands given by the CF. For 
example, if CF tells that n bytes have to be written, the H-layer 
knows that n/w write operations are needed and the n bytes are 
available in memory address m. A sequence of abstract commands 
is then generated in the form: config_bus (pars), write 
(dev_address), write (word_1)…write (word_n). The L-layer 
interprets these into a sequence of bus-specific commands such 
as: write register x, set flag y.  The PINT is directly controlled by 
the L-layer. The driver of the bus controller which is usually 
written in software can be replaced by the M-FSM. Moreover, a 
hardware/software co-design approach is used here which 
remarkably enhances the performance of the M-FSM over 
software drivers. 

The PINT implements the bus-specific protocol of the bus. It 
determines when data/control can be sent and when to receive 
valid data. For example, assuming I2C bus is used: The PINT 
sends the START bit, then the ADDRESS of the slave, then the 
internal register number; if any, then data (byte-wise), and then 
waits for the ACKNOWLEDGE bit sent by the slave. Having sent 
all data bytes, the PINT sends the STOP bit. The PINT then sends 
an interrupt to the M-FSM which maps it to one of the AIC and 
forwards it to the application. 

                                                 
1 H/L-layer refer to high/low layer, respectively  
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The architecture of the VCI is flexible enough to enable the 
application developer to extend it by building custom API or AIC. 
Nevertheless, it is then the duty of the application developer to 
provide an interpretation of the custom API which enables the 
VCI to control the bus correctly. In this paper, only a limited set 
of APIs needed in many applications are developed, such as: 
configure, open, close connection, read data and write data. 

Figure 2. The basic structure of the M-FSM 

3. VCI OPTIMIZATION AND 
PROTOTYPING  
On one hand, the VCI enables the application to use different 
communication technologies as a black box using a common 
interface. On the other hand, the VCI represents an additional 
abstraction layer between the application and the underlying 
communication bus. To reduce the additional overhead induced 
by the VCI, the VCI is carefully co-designed by determining the 
right mix of hardware and software to improve performance. The 
performance of the VCI is further improved by using job-lists 
wherein the nature of applications can be considered. 

A typical operational scenario in an embedded system which 
sends/receives data over an external bus is to read from external 
devices such as sensors and then to perform some computation in 
order to formulate a control command. In this case, the application 
developer has to formulate an CF to carry out a sequence of reads 
over the bus. The VCI then interrupts the application upon 
receiving the data. Frequent and consecutive short reads will 
interrupt the application frequently and negatively influence its 
performance even without using the VCI. The degree of 
performance degradation depends on the cost of handling 
interrupts and context switch.  

The performance of the VCI is enhanced by concatenating 
consecutive reads/writes CFs in one or more job-lists. It is the 
duty of the application developer to decide how to group her/his 
CFs. A single API is then used to call the VCI, namely 
process_joblist(form_type first_form). The address of the first CF 
is given by first_form. The VCI starts processing the first CF and 
then checks the pointer to the “next CF” and so on until reaching 
the last CF (next CF is NULL). The VCI then interrupts the 
application only when the whole job-list is finished. Therefore, 
the overhead and frequency of interrupting the application can be 
reduced. 

Basically, the VCI can be implemented in hardware or in software 
as well. Anyhow, using a co-design approach can be a source of 
remarkable performance improvements at reasonable area costs 
[9]. In this paper, heuristic hardware/software co-design approach 
is adopted. The VCI is firstly implemented in software for 
comparison purposes. Then functional blocks of the VCI are 
migrated to hardware to improve system performance. Additional 
communication overhead between the functional blocks is taken 
into consideration during partitioning. 

Partitioning the VCI in hardware/software considers also 
efficiency improvements enabled by job-lists: The API 
process_joblist is firstly interpreted by the M-FSM. Hardware M-
FSM will receive only the address of the first CF, first_form, and 
then read/write the data directly from/to the main memory without 
the intervention of the application program which saves many 
processor cycles. The application is interrupted when the entire 
job-list is finished. Not only implementing the M-FSM in 
hardware reduces the overhead of processing job-lists but it is also 
much faster than software. A disadvantage of partitioning the VCI 
in this way is the required additional area. Anyhow, it is less than 
5% of the available logic elements on the Altera Cyclone II 
development board. Usually, the PINT is provided as a hardware 
controller together with other bus-specific control logic. 
Therefore, only hardware implementation of the PINT is 
presented in this paper. It is worth to mention that job-lists 
together with hardware M-FSM can remarkable improve the 
overall performance and reduce the overhead at the application-
level. 

A prototype of the VCI is developed and tested on an Altera 
Cyclone II FPGA. Two different communication buses typically 
used in embedded automation systems are tested, namely: SPI and 
I2C. An exemplar application is developed to access external 
devices using the proposed VCI without paying attention to the 
architecture-specific issues in the underlying communication 
technology. Besides verifying the applicability of the VCI, the 
prototype is used to measure the performance of the entire system 
to study the influence of the proposed optimization approaches. 
Selected experimental results are presented and discussed in the 
following section. 

4. SELECTED EXPERIMENTAL RESULTS 
A simple test application is developed to access external devices 
using the VCI prototype. The application is written only once and 
the SPI and I2C buses are used. Using performance counters, the 
performance with and without VCI is then measured. Two 
different implementations of the VCI are evaluated and compared. 
Table 1 shows the required number of cycles and time in μs to 
transfer 256 Bytes using 100KB/Sec mode. 
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Table 1. Performance evaluation of the VCI 

I2C SPI 
Type 

Cycles Time Cycles Time

Without VCI 3,474,606 40,878 3,182,512 37,441

Software VCI 3,553,242 41,803 3,336,008 39,247

Co-designed VCI 2,005,072 23,589 -- -- 

The results show that implementing the VCI in software degrades 
performance by a factor of 2.3% and 4.8% for I2C and SPI, 
respectively. A basic reason for this expected performance 
degradation is the overhead of processing CFs in software by the 
M-FSM besides software handling of interrupts. It is worth to 
mention that performance degradation is inversely proportional to 
the data size being transferred using an CF. Transferring for 
example only 4 Bytes degrades performance by a factor of 17% 
and 51.5% for I2C and SPI, respectively. 93 KB additional 
memory is needed by the software VCI. Co-designing the VCI in 
hardware/software remarkably improves the performance: Major 
portions of the M-FSM and the PINT are implemented in 
hardware. This accelerates the processing of CFs and reduces the 
overhead. As a result, the performance is improved by a factor of 
42.3% compared to the reference implementation (without VCI) 
using I2C at an additional cost of 1240 LUTs2. In the same 
manner, the performance improvement is proportional to the size 
of data being transferred. Unfortunately, the M-FSM hardware 
implementation of the SPI is not ready yet.  

5. CONCLUSION AND FUTURE WORK 
The proposed VCI provides the application with an architecture-
neutral common interface. Code reusability is improved because 
the application should not be re-written when the communication 
bus is changed or updated. Despite the performance overhead 
introduced by the VCI which is inversely proportional to the data 
transferred size, co-designing the VCI in hardware/software 
improves the performance of the entire system remarkably. This 
improvement in performance is proportional to the size of data 
being transferred. Being able to group sporadic reads/writes using 
job-lists, the application can enhance the performance and reduce 
overhead remarkably. 

 

 

 

 

 

 

 

 

 

 

                                                 
2 LUT: look up table 

In order to reconfigure the VCI automatically when the 
communication bus is changed, a builder is currently under 
development. More APIs, such as search_dev, are also under 
consideration.  
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