
Reusable and Architecture-neutral Virtual Communication
Interface for Embedded Systems

Amjad Mohsen
Fraunhofer Institute for Integrated Circuits IIS
Nordostpark 93, 90411 Nuernberg, Germany

amjad.mohsen@iis.fraunhofer.de

Jochen Brandt
Fraunhofer Institute for Integrated Circuits IIS
Nordostpark 93, 90411 Nuernberg, Germany

jochen.brandt@iis.fraunhofer.de

ABSTRACT
In this paper, a functional model of a virtual communication
interface (VCI) for embedded systems is presented. It hides the
underlying communication technology from the application. The
communication bus can then be changed without worrying about
its users and without the need to rewrite the application. The VCI
is co-designed in hardware/software to improve performance
considering architectural issues and the needs of the application.
Communication buses widely used in embedded systems are used
to test the applicability of this VCI. The experimental results
demonstrate that with careful co-design, the VCI is not only
reusable but also can remarkably improve the overall
performance.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]: Real-
time and embedded systems.

General Terms
Design, Performance, Measurement.

Keywords
Embedded systems, communication interfaces, hardware/software
co-design, design reusability, API, optimization.

1. INTRODUCTION
To cope with the increasing complexity of embedded systems and
the non-stopping pressure of time-to-market, the productivity of
design engineers and systems programmers has to be improved
remarkably. Design tools such as CatapultC are now available to
help designers explore significant part of the design space at the
electronic system level (ESL) [1]. When used properly, such tools
could remarkably reduce the design cycle while considering
design quality as well.

On the software side, object-oriented programming languages
such as Java and C++ are developed to support, among other

objectives, code reusability. Different from C++, languages such
as Java support the “Write Once and Run Anywhere” (WORA)
model. Programmers can develop an application in Java and then
run it on any platform which provides an implementation for the
Java Virtual Machine (JVM). In recent years, it is remarkably
noticed that Java is invading embedded systems which may
reduce the development time. Nevertheless, Java code may have
lower performance than native code.

Especially in embedded systems, aspects related to
communication should be considered by the application
developer. In this case, applications continue to depend on the
underlying communication protocol/bus even by using languages
which support the WORA model. Java, for example, offers I/O
streams to transfer and manipulate different types of data only.
Nevertheless, no control command can be transferred and/or
manipulated. A wide variety of communication buses are used
especially in control/automation arenas such as I2C, SPI and CAN
[2,3,4]. Applications must always be modified corresponding to
the adopted bus. A new common interface can hide
communication details and extend the concept of modular design
further.

In computer networks, abstracting network resources is quite
common to access remote resources without worrying about
differences in physical interfaces. For example, by using Jini from
SUN, network resources can be abstracted [5]. Another machine
independent network environment is provided by TINA [6].
However, these did not handle lower layer protocols and could not
be used in embedded systems where simple and custom buses are
usually used. Another abstraction model called a virtual bus
(VBUS) was presented by Toshiaki et al. in [7]. The goal was to
access a distributed resource independent of its location and
access method. The defined application programming interfaces
(API) to access the VBUS were implemented in software
(C/C++). However, embedded systems communication protocols
are usually simpler in architecture and service routines which
differ from computer networks. Moreover, no hardware/software
co-design approach was used to improve the performance of the
VBUS. Another set of APIs is defined as part of the IEEE 1451 to
permit the access of transducer data through a common set of
interfaces whether the transducer is connected to systems or
accessed through networks [8]. Nevertheless, these remain to
some extent limited by the application area.

In this paper, a parameterized VCI is developed which addresses a
wide variety of embedded communication buses. The application
developer always calls the VCI using “standard” APIs and the
way in which these are interpreted and mapped onto the physical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
APRES’09, October 11, 2009, Grenoble, France.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

bus is hidden and automatically done by a configuration tool.
Because the VCI is usually implemented separately, further bus-
specific optimizations can efficiently be applied. Besides the
abstract model of the VCI, a hardware/software co-designed and
co-optimized prototype is developed and tested using
communication buses widely used in embedded systems. Up to
our knowledge, this issue was not tackled concretely in embedded
systems.

This paper divides into 4 sections: The next section overviews the
abstract model of the VCI. Section 3 explains key implementation
issues of the VCI. Selected experimental results are presented and
discussed in section 4. Section 5 concludes the paper.

2. ABSTRACT MODEL OF THE VCI
The VCI provides an architecture-neutral hardware abstraction
layer (HAL) to the application developer. The application
developer uses a set of parameterized APIs in order to send and
receive data as well as to issue abstract control commands. To do
so, the application developer formulates a “communication form”
(CF) independent of the underplaying communication bus. The
CF undergoes integrated refinement in the VCI in order to
generate bus-specific commands based on the formulated job.
Once the CF is finished, the VCI sends an interrupt to the
application with the necessary status information. Figure 1 shows
the basic architecture of the VCI.

Figure 1. Basic architecture of the VCI

Physical interrupts and status signals sent by the physical bus are
not forwarded directly to the application. Instead, these are
received and processed by the VCI. The VCI maps the interrupts
onto a set of abstract interrupt classes (AIC) which are “standard”
to the application. The application always receives one of these
AICs and responds independent of the underlying bus. The VCI

then interprets the application response and generates a sequence
of bus-specific commands.

The application developer creates a new CF which has a
predefined format by providing abstract information on “what to
do” not “how to do”. The CF tells, for example, that the
application needs to read/write from/to a device by providing a
command and a device ID. Each device has a structure in memory
to store needed information, such as device address and backed
commands. A device table stores the addresses of all device-
specific structures. To fill an entry in the device table, the device-
specific configuration file is used. Based on the device ID, the
device table is searched to find the address of the device-specific
structure. To complete the CF, the application developer has also
to provide a pointer to the first data in memory and how many
bytes to exchange for read/write.

The CF is then processed by the VCI in two successive steps,
namely mapping finite state machine (M-FSM) and protocol
interpreter (PINT). The basic function of the M-FSM and PINT is
to translate the architecture-neutral commands into architecture-
specific commands and to guarantee correct operation of the bus.
The efficiency of the whole VCI is directly dependent on the
efficiency of the M-FSM and PINT. Therefore, the performance
of applications which perform repeated I/O is directly influenced
by how efficient the VCI is.

The M-FSM is a state machine that performs first stage processing
on the CF and the corresponding information in the device table.
It determines the architecture-specific commands fed to the PINT
and receives/sends data from/to application. Data sent/received
can be split or concatenated upon demand and bus width (w). To
improve flexibility, the M-FSM is functionally partitioned into
two layers: H- and L-layer1. The H-layer interacts with the
application only and it is bus-neutral. Therefore, the H-layer is
reusable. On the contrary, the L-layer is bus-specific. Figure 2
shows the structure of the M-FSM.

The H-layer specifies the sequence and conditions required
according to the abstract commands given by the CF. For
example, if CF tells that n bytes have to be written, the H-layer
knows that n/w write operations are needed and the n bytes are
available in memory address m. A sequence of abstract commands
is then generated in the form: config_bus (pars), write
(dev_address), write (word_1)…write (word_n). The L-layer
interprets these into a sequence of bus-specific commands such
as: write register x, set flag y. The PINT is directly controlled by
the L-layer. The driver of the bus controller which is usually
written in software can be replaced by the M-FSM. Moreover, a
hardware/software co-design approach is used here which
remarkably enhances the performance of the M-FSM over
software drivers.

The PINT implements the bus-specific protocol of the bus. It
determines when data/control can be sent and when to receive
valid data. For example, assuming I2C bus is used: The PINT
sends the START bit, then the ADDRESS of the slave, then the
internal register number; if any, then data (byte-wise), and then
waits for the ACKNOWLEDGE bit sent by the slave. Having sent
all data bytes, the PINT sends the STOP bit. The PINT then sends
an interrupt to the M-FSM which maps it to one of the AIC and
forwards it to the application.

1 H/L-layer refer to high/low layer, respectively

API

vio_job()

Job-Form

Mapping-FSM
(M-FSM)

Protocol Interpreter
(PINT)

Transfer-data
+
Commands

Device Table Device address,
Parameters

Physical Bus

 Transfer-data
 +
 bus-specific state information

General state information
&

Interrupts

Transfer-dataTransfer-data

B
us

-in
te

rfa
ce

Basic FunctionsSpecial Functions

search() broadcast() ...

Bus-exclusive Functions

The architecture of the VCI is flexible enough to enable the
application developer to extend it by building custom API or AIC.
Nevertheless, it is then the duty of the application developer to
provide an interpretation of the custom API which enables the
VCI to control the bus correctly. In this paper, only a limited set
of APIs needed in many applications are developed, such as:
configure, open, close connection, read data and write data.

Figure 2. The basic structure of the M-FSM

3. VCI OPTIMIZATION AND
PROTOTYPING
On one hand, the VCI enables the application to use different
communication technologies as a black box using a common
interface. On the other hand, the VCI represents an additional
abstraction layer between the application and the underlying
communication bus. To reduce the additional overhead induced
by the VCI, the VCI is carefully co-designed by determining the
right mix of hardware and software to improve performance. The
performance of the VCI is further improved by using job-lists
wherein the nature of applications can be considered.

A typical operational scenario in an embedded system which
sends/receives data over an external bus is to read from external
devices such as sensors and then to perform some computation in
order to formulate a control command. In this case, the application
developer has to formulate an CF to carry out a sequence of reads
over the bus. The VCI then interrupts the application upon
receiving the data. Frequent and consecutive short reads will
interrupt the application frequently and negatively influence its
performance even without using the VCI. The degree of
performance degradation depends on the cost of handling
interrupts and context switch.

The performance of the VCI is enhanced by concatenating
consecutive reads/writes CFs in one or more job-lists. It is the
duty of the application developer to decide how to group her/his
CFs. A single API is then used to call the VCI, namely
process_joblist(form_type first_form). The address of the first CF
is given by first_form. The VCI starts processing the first CF and
then checks the pointer to the “next CF” and so on until reaching
the last CF (next CF is NULL). The VCI then interrupts the
application only when the whole job-list is finished. Therefore,
the overhead and frequency of interrupting the application can be
reduced.

Basically, the VCI can be implemented in hardware or in software
as well. Anyhow, using a co-design approach can be a source of
remarkable performance improvements at reasonable area costs
[9]. In this paper, heuristic hardware/software co-design approach
is adopted. The VCI is firstly implemented in software for
comparison purposes. Then functional blocks of the VCI are
migrated to hardware to improve system performance. Additional
communication overhead between the functional blocks is taken
into consideration during partitioning.

Partitioning the VCI in hardware/software considers also
efficiency improvements enabled by job-lists: The API
process_joblist is firstly interpreted by the M-FSM. Hardware M-
FSM will receive only the address of the first CF, first_form, and
then read/write the data directly from/to the main memory without
the intervention of the application program which saves many
processor cycles. The application is interrupted when the entire
job-list is finished. Not only implementing the M-FSM in
hardware reduces the overhead of processing job-lists but it is also
much faster than software. A disadvantage of partitioning the VCI
in this way is the required additional area. Anyhow, it is less than
5% of the available logic elements on the Altera Cyclone II
development board. Usually, the PINT is provided as a hardware
controller together with other bus-specific control logic.
Therefore, only hardware implementation of the PINT is
presented in this paper. It is worth to mention that job-lists
together with hardware M-FSM can remarkable improve the
overall performance and reduce the overhead at the application-
level.

A prototype of the VCI is developed and tested on an Altera
Cyclone II FPGA. Two different communication buses typically
used in embedded automation systems are tested, namely: SPI and
I2C. An exemplar application is developed to access external
devices using the proposed VCI without paying attention to the
architecture-specific issues in the underlying communication
technology. Besides verifying the applicability of the VCI, the
prototype is used to measure the performance of the entire system
to study the influence of the proposed optimization approaches.
Selected experimental results are presented and discussed in the
following section.

4. SELECTED EXPERIMENTAL RESULTS
A simple test application is developed to access external devices
using the VCI prototype. The application is written only once and
the SPI and I2C buses are used. Using performance counters, the
performance with and without VCI is then measured. Two
different implementations of the VCI are evaluated and compared.
Table 1 shows the required number of cycles and time in μs to
transfer 256 Bytes using 100KB/Sec mode.

read_byte (X, Y)

Top-Level-FSM

-Command
-Device-ID
-Data-pointer
-Data-bytes

Form
-Device_address
-Device_description
-Custom_1
-Custom_2
-...

Device

[Command = Read] [Command = Write]

Custom_1?

[Yes]

mode configuration

read_byte(x, device_address)

[No]

-Device : Device Table[]
Device Table

read_byte(y, device_address)

...

set Bit A X = Register B ...

Device-ID

Table 1. Performance evaluation of the VCI

I2C SPI
Type

Cycles Time Cycles Time

Without VCI 3,474,606 40,878 3,182,512 37,441

Software VCI 3,553,242 41,803 3,336,008 39,247

Co-designed VCI 2,005,072 23,589 -- --

The results show that implementing the VCI in software degrades
performance by a factor of 2.3% and 4.8% for I2C and SPI,
respectively. A basic reason for this expected performance
degradation is the overhead of processing CFs in software by the
M-FSM besides software handling of interrupts. It is worth to
mention that performance degradation is inversely proportional to
the data size being transferred using an CF. Transferring for
example only 4 Bytes degrades performance by a factor of 17%
and 51.5% for I2C and SPI, respectively. 93 KB additional
memory is needed by the software VCI. Co-designing the VCI in
hardware/software remarkably improves the performance: Major
portions of the M-FSM and the PINT are implemented in
hardware. This accelerates the processing of CFs and reduces the
overhead. As a result, the performance is improved by a factor of
42.3% compared to the reference implementation (without VCI)
using I2C at an additional cost of 1240 LUTs2. In the same
manner, the performance improvement is proportional to the size
of data being transferred. Unfortunately, the M-FSM hardware
implementation of the SPI is not ready yet.

5. CONCLUSION AND FUTURE WORK
The proposed VCI provides the application with an architecture-
neutral common interface. Code reusability is improved because
the application should not be re-written when the communication
bus is changed or updated. Despite the performance overhead
introduced by the VCI which is inversely proportional to the data
transferred size, co-designing the VCI in hardware/software
improves the performance of the entire system remarkably. This
improvement in performance is proportional to the size of data
being transferred. Being able to group sporadic reads/writes using
job-lists, the application can enhance the performance and reduce
overhead remarkably.

2 LUT: look up table

In order to reconfigure the VCI automatically when the
communication bus is changed, a builder is currently under
development. More APIs, such as search_dev, are also under
consideration.

6. REFERENCES
[1] Mohsen, A., and Bargothi, A. 2008. Custom Acceleration

Solutions for Real-life Embedded Systems: Potential and
Challenges. In Proceedings of Embedded World 2008
Exhibition and Conference (Nuernberg, Germany,
February, 2008).

[2] I2C Bus Specifications. Philips Semiconductors. Document
number 9398393400II, 2000.

[3] Herveille, R. 2003. SPI Core Specifications. OpenCores.
[4] CAN Specifications. Robert Bosch GmbH, Germany, 1991.
[5] Edwards, W. 2000. Core Jini. Prentice Hall International.
[6] Lapierre, D. 1999. Tina: A Co-operative Solution for a

Competitive World. Prentice Hall.
[7] Miyazaki, T., Takahara, A., Ishihara, S., Tani, S., Murooka,

T., Fukazawa, T., Teramoto, M., and Matsuhiro, K. 2000.
Virtual BUS: a Network Technology for Setting up
Distributed Resources in Your Own Computer. Parallel and
Distributed Processing Symposium, 535-540.

[8] IEEE 1451.0, Standard for a Smart Transducer Interface for
Sensors and Actuators–Common Functions,
Communication Protocols, and Transducer Electronic Data
Sheet (TEDS) Formats. IEEE Instrumentation and
Measurement Society, the Institute of Electrical and
Electronics Engineers, Inc., New York, 2007.

[9] De Michali, G., and Gupta, R. 1997. Hardware/Software
Co-design. Proceedings of the IEEE, 85(3):349-365.

