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ABSTRACT
The next generation of IMA platforms should include recon-
figuration capabilities in order to limit the effect of hardware
failures on aircraft operational reliability. In this paper, we
investigate architecture principles for such platforms and
propose adequate reconfiguration services. A preliminary
analysis of the design feasibility and its contribution to op-
erational reliability is performed. The research leading to
these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7 / 2007-2013)
under Grant Agreement n◦ACP7-GA-2008-211439.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Design stud-
ies, Fault tolerance, Measurement techniques, Modeling tech-
niques

General Terms
Design
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1. INTRODUCTION
The trend for modern military and civilian aircrafts is to
support aircraft applications with an Integrated Modular
Avionics (IMA) platform. The current generation of IMA
(IMA-1G) replaces separate and dissimilar equipments, with
fewer common processing modules, sharing the necessary
communication links. The number of processing units in
the A380 is half that of previous generations. Reductions
in airline operating costs are expected to be significant. In-
deed, the decrease of the number of computers and cables
(for power supply or communication) contributes to the re-
duction of the aircraft weight that leads to a better fuel con-
sumption efficiency. The reduction of the number of types of
equipments will help the airline to buy and store less types
of spare parts, this should lead to maintenance savings.

A typical IMA platform is described in Fig. 1. Its hardware
architecture is made of a set of computing modules (num-
bered 1 to 5) that are connected to communication switches
(labelled S1 to S4). Computing modules are grouped into
clusters, such that all computing modules in a cluster are
connected to the same communication switch.
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Figure 1: Architecture of Reconfigurable IMA Plat-
form

Avionics applications (labelled A1 to A3) are hosted in the
partitions running on the computing modules. Data flows
exchanged by applications hosted on different computing
modules are transmitted through communication switch paths
that connect the two computing modules.

1.1 General objectives
The SCARLETT project1 funded by the European Union
and led by Thales as a coordinator is currently studying the
next generation IMA. Among other objectives, the project
aims at adding reconfiguration capabilities to the IMA-1G
platform. Fig. 1 shows in red the new spare computing mod-
ules and partitions that are added to the platform archi-
tecture. Reconfigurable IMA should be able to change the
configuration of the platform by moving applications hosted
on a faulty computing module to spare computing elements.
The main goals to be achieved by the reconfigurable IMA
platform are:

1. Improve the operational reliability of the aircraft while
preserving current levels of Safety.

2. Avoid unscheduled maintenance and associated costs.

3. Limit the impact of reconfiguration on certification prac-
tices and effort.

1http://www.scarlettproject.eu/, Point of contact: di-
dier.hainaut@fr.thalesgroup.com



Aircraft systems have to enforce stringent safety require-
ments that address the effects of failures on the life of pas-
sengers. To fulfill these requirements a minimum level of
redundancy is associated with an application on the basis
of the severity of the effects of its loss. For instance, three
occurrences of an application managing cabin air pressure
would be required because loss of cabin pressurization is
catastrophic whereas no occurrence of an application man-
aging in-flight entertainment is required as it is considered
as a comfort application whose loss has no safety effects.

Operational reliability addresses the effect of failures on eco-
nomical aspects of flight operations. One source of improve-
ment is to decrease the number of flight delays or cancel-
lations caused by faulty computing modules. Before each
flight, the health status of all equipments is assessed in or-
der to check whether for all applications the correct level
of redundancy is available. If this is not the case the air-
craft cannot be used (it is NOGO). It should be possible
to restore the minimum level of redundancy by moving the
applications running on the faulty module to a non-faulty
one. This should also help to defer maintenance operations
until the aircraft has reached an appropriate location.

Aircraft manufacturers have to show compliance with inter-
national regulations using means that have been accepted
by the certification authorities. This includes showing that
safety requirements are enforced, establishing the predictabil-
ity of communication and computing real-time performances
and developing software and hardware according to strict
development guidelines.

1.2 Reconfiguration Scenarios
A number of reconfiguration scenarios have been considered
and assessed by the SCARLETT consortium. We use three
attributes to present the scenarios :

• Granularity level: reconfiguration is either performed
at module or at partition level. For module level re-
configuration, a spare computing module is allocated
to all applications running on the faulty computing
module. For partition level reconfiguration, spare par-
titions running on non-faulty modules are allocated to
the applications running on the faulty computing mod-
ule.

• Location: reconfiguration can be performed either lo-
cally on modules belonging to the same cluster than
the faulty module or distantly on any module of the
platform.

• Time: reconfiguration can be performed during the
flight or on ground when the aircraft is stopped.

An important benefit of local reconfiguration over distant
reconfiguration is that it would require almost no reconfigu-
ration of communication equipments whereas distant recon-
figuration would involve reconfiguration of the communica-
tion equipment. This would require major evolution of the
current technology used to support communications.

The loss of applications when the aircraft is stopped has
generally very little effect on safety. So it is likely to be

much simpler to show the innocuity of reconfiguration on
safety when it is performed on ground rather than during
flight.

1.3 Outline of the paper
In the following of this paper, we first describe the services
that a platform should offer in order to be able to reconfigure
itself. The services are defined through a number of basic
steps. Then, a preliminary analysis of the proposed design
is presented.

2. RECONFIGURATION SERVICES
Several functions are available in order to manage the plat-
form, they include:

• Data-Loading function that stores all the application
software and loads the application software according
to the allocation of applications onto the computing
modules.

• Monitoring and Fault Detection function that constantly
receives information about the health of the hardware
components and is able to detect that a component is
faulty.

• Power Supply Management function that is able to
switch on and off the power supply of the various hard-
ware components of the platform.

For reconfigurability purpose, a new function, called the Re-
configuration Supervisor (supervisor for short), is embedded
in the aircraft. The role of the supervisor consists in deter-
mining when a reconfiguration can occur and in performing
a “correct by construction” modification of configurations in
order to reach a better and safe state. The supervisor be-
haviour is described below.

2.1 Triggering a reconfiguration
When a computing module fails, a reconfiguration can be
launched if this failure has an operational reliability impact,
meaning that the aircraft becomes NOGO. The Monitoring
and Fault detection function detects a NOGO module failure
and sends this event to the supervisor. First, the supervisor
applies usual maintenance procedure to check that the fail-
ure cannot be repaired by a simple reset of the module. For
this, it interacts with the Power Supply Management and
the Monitoring and Fault detection to check if the reset has
repaired the module. If the reset works, the module restarts
the hosted avionics applications and the failure is corrected.
Otherwise, the supervisor performs the next steps.

2.2 Selection of a correct configuration
When the failure is confirmed, the supervisor must deter-
mine the current state of the platform in order to select
the next configuration. The sorting takes into account the
side-effect on aircraft and the duration of the reconfigura-
tion execution. In the following, we describe the selection
process.



2.2.1 Set of configurations
We note Application the set of applications hosted by the
platform, Cluster the set of clusters of the platform, Basic
Module (resp. Spare Module) the set of modules (resp. spare
modules) in a cluster and Basic Partition (resp. Spare
Partition) the set of partitions (resp. spare partition) run-
ning on a module. Let us denote bm = |Basic Module|,
sm = |Spare Module|, c = |Cluster|, f = |Application|,
bp = |Basic Partition| and sp = |Spare Partition|.

Definition 1 (Configuration). A configuration is an
allocation of avionics applications on computing elements, it
is represented by a function

Conf : Application→ Computing Element

where the set Computing Element is defined by Cluster ×
(Basic Module ∪ Spare Module)×(Basic Partition ∪ Spare
Partition).

For module level reconfiguration, the identifier of the par-
tition for an application remains unchanged wherever the
application is allocated. Therefore, we can optimise the set
to be Computing Element = Basic Module ∪ Spare Module.

In Fig. 1, avionics application A1 is allocated in its ini-
tial partition on the first module of the first cluster. Thus
Conf(A1) = (1, 1, 1). For module level reconfiguration, there
are exactly (c × (bm + sm))f configurations. This corre-
sponds to the number of integer functions [1, f ] → [1, c ×
(bm + sm)]. For partition level reconfiguration, there are

exactly Af
c×(bm+sm)×(bp+sp) = (c×(bm+sm)×(bp+sp))!

(c×(bm+sm)×(bp+sp)−f)!
con-

figurations. This corresponds to the number of injective in-
teger functions [1, f ] → [1, c × (bm + sm) × (bp + sp)]. All
these configurations are known at design time. Note that we
only consider nominal configurations and not degraded ones
where an avionics application may not be allocated because
there are not enough fail-free computing elements. The se-
quences of possible reconfigurations starting from an initial
configuration can then be represented by a directed acyclic
graph.

2.2.2 Reconfiguration Policy
The reconfiguration policy defines generic rules to be fol-
lowed. It is chosen off-line and impacts the selection process
of the next configuration. For instance, we can decide that
there is no priority among avionics applications and then,
once a spare has been occupied, no other application can be
hosted on this spare. On the opposite, we could associate
a priority level with the applications. Then, a reconfigured
application can be removed to leave the spare to a failed
application with higher priority level. Another rule can give
an order on the spares. The policy would then consist in
reallocating on the first spare if it is available, otherwise on
the second if this one is available and so on.

Let us consider the architecture f=2, c=1, bm=2, sm=2
where a module can host at most one application. For
a module level reconfiguration, we obtain several directed
acyclic graphs of reconfigurations depending of the policy.
For any of these graphs, a node corresponds to a configura-
tion which is a list of pairs (number of application, number

of hosting module). We have drawn below the graphs asso-
ciated with two policies that both order spare modules. On
the left side, spares are not reconfigured (meaning that if
a spare fails then hosted applications are lost) while on the
right side they can be reallocated. Reconfiguration graphs
are different. For instance, the transition from (1, 3)(2, 2)
to (1, 4)(2, 2) is missing on the left side graph because when
application 1 is running on spare 3 and this spare fails it is
not possible to move 1 to spare 4.

(1,1)(2,2)

(1,3)(2,2) (1,4)(2,2) (1,1)(2,3) (1,1)(2,4)

(1,3) (2,4) (1,4)(2,3) 

(1,1)(2,2)

(1,3)(2,2)

(1,4)(2,2)

(1,1)(2,3)

(1,1)(2,4)(1,3) (2,4) (1,4)(2,3) 

The policy acts on acceptable reallocations: it determines
the number of reachable states and the number of transi-
tions. The selection of the next configuration consists in
choosing a safe reachable state and safe transition. Note
that there may be no acceptable target reconfiguration.

2.2.3 Resource and Real-time constraints
A configuration is safe if it satisfies some constraints. For
instance, an application can be hosted on a module only
if it provides adequate resources for the application such
as processing power or memory. There are other kinds of
constraints, such as segregation, that are described in [6].

A transition is safe if the intermediate steps are safe (they
do not impact the integrity of the aircraft) and the dura-
tion of the transition is bounded. The transition from one
configuration to another is done by applying several basic
procedures. All such elementary procedures are stored in
some repository attached with a WCET (worst case execu-
tion time). For instance, data-loading a complete module
is an elementary step and always takes less than a bounded
amount of time which is computed off-line. Globally, the
reconfiguration execution on ground must take less than 15
minutes to limit the flight delay.

2.2.4 Continuity of service
When a module fails, the other avionics applications should
not be impacted by a reconfiguration. In case of partition
level reconfiguration, the interactions between the supervi-
sor and modules involved in the current reconfiguration must
be transparent for the other partitions. For instance, data-
loading and initialisation must be realised during the parti-
tion time. In case of distant reconfiguration, the routing of
the impacted switches must be modified while ensuring the
continuity of the remaining traffic.

2.3 Reconfiguration execution
If a correct transition, with respect to the avionics con-
straints and the reconfiguration policy, has been found, the
reconfiguration is performed. Basically, a reconfiguration is
decomposed in elementary steps: power up of a spare mod-
ule, test that the spare is fail-free and load of the time ap-
plication sequencing (at module level), data-loading of the



code and initialisation of the partitions on the spare (dur-
ing predetermined time slots for partition level), verification
by the Monitoring and Fault detection that the spares are
correctly working. A notification and report are provided to
the maintenance terminals.

The sequence execution should be transactional and secured,
i.e. the sequence should entirely succeed or totally fail. For
this purpose, each step is acknowledged (succeeded, failed,
not performed). Any step can be aborted without side-effect
on aircraft safety, performance and security. For instance,
an access to an already allocated memory must be refused
by the Monitoring and Fault detection.

3. PROPOSED SOLUTIONS
3.1 Architecture Platform
A module is composed of a generic calculator and a generic
operating system compliant with Arinc 653 [2]. The Arinc
API provides spatial and temporal segregation for avionics
functions. Spatial segregation is enforced thanks to an off-
line segregated memory address allocation. Temporal segre-
gation is enforced by a predetermined temporal scheduling
of avionics applications. In its allocated time slot, an avion-
ics application accesses to the CPU and computes its data.
At the end of the slot, the operating system preempts the
application, empties the shared resources (such as the cache
for instance) and awakes the next avionics application.

Centralised Solution The reconfiguration supervisor func-
tion is allocated on one module and pilots all the reconfigura-
tions. This solution will be developed on a real demonstrator
in the Scarlett project for module level reconfiguration and
a simple policy.

Distributed Solution The reconfiguration supervisor func-
tion is distributed on a module in each cluster. Each local
supervisor can independently realise a local reconfiguration.
A master has in charge to keep a global view of the platform
configuration.

Whatever is the solution, to enable reconfiguration, there
must be some improvements which SCARLETT expects to
make available through platform services. Among them, it
must be possible to load some code and to make some initial-
isation without a maintenance intervention and while other
avionics applications are running.

3.2 Graph of Reconfigurations
In the following we restrict ourselves to module level recon-
figuration using the two policies described in the previous
section. They both order the modules and the first one disal-
lows reconfiguration of spares while the second reconfigures
the spares. For the demonstrator, we have implemented a
software that computes the directed reconfiguration graph
for a given architecture and a given policy.

3.2.1 Policy without Spare Reconfiguration
The simple policy produces a tree. The number of nodes
and the number of transitions from an initial configuration
can be computed:

number of configurations number
of
transitions

local NBl =
`P

0≤k≤sm Ck
bmAk

sm

´c
NBl − 1

distant NBd =
P

0≤k≤(c×sm) Ck
c×bmAk

c×sm NBd − 1

Proof. Note that the ordering of occurrence of failures
leads to a specific configuration and that a spare may fail.
There is an initial configuration. When one single failure
occurs, the avionics functions hosted by the module can be
allocated on the first spare module if it is fail-free, other-
wise they are allocated on the second spare and so on. Thus
a module can be re-allocated on the p spares and all the
modules can fail. This entails that there are n× p reachable
configurations from a single failure. For a k failures situa-
tion, there may be Ak

p possible reallocations depending on
the spares state and the ordering of failures, whereas there
are Ck

n such situations.

We now compute the number of transitions. We prove that a
node (except the root) has a unique parent. Let us consider a
node with l occupied spares. For instance the failed modules
are i1, . . . , il which are currently re-hosted (i1, sj1), . . . (il, sjl)
with j1 < j2 . . . < jl. The parent of this node has l − 1 oc-
cupied spares and the module who is not yet failed is il.
Thus, we deduce that the number of transitions is equal the
number of configurations - 1 (for the root).

3.2.2 Policy with Spare Reconfiguration
The second policy produces an acyclic graph. The number
of nodes is the same than the one for the previous policy.
The number of transitions from an initial configuration is
greater and can be computed:

number
of transitions

local (
Psm

l=1

Psm
jl=l f × Cl−1

f−1 ×Al−1
jl−1 × l(sm− jl))

c + NBl

Proof. The fact that we accept to reconfigure the spares
does not modify the number of configurations. What is
changing are the possible paths to reach such a node. For a
number l of occupied spares, in the first policy, a child has
necessary l+1 occupied spares. For this second policy, there
are additional horizontal transitions from a node to another
with the same number of occupied spares. It is sufficient
to compute the number of horizontal transitions and to add
this number to the numbers of the first policy. For a node
with l occupied spares whose reconfigured modules i1, . . . , il
are allocated on the spares Conf(ik) = jk with jl ∈ [l, sm].
If jl < sm, for k ∈ [1, l], this node can have an horizontal
transition to a node such that Conf(ik) = jl + 1 and with
the same allocation for all other modules. This means that
there are l(sm− jl) horizontal transitions from this node.

We must now count the number of such nodes with l occu-
pied spares and jl fixed. One application is necessarily on
jl thus there are C1

f possibilities. There l − 1 applications
among the last f − 1 applications allocated on the [1, jl− 1]
previous spares. This reasoning is the same that for comput-
ing the number of nodes. Finally there are C1

f×Cl−1
f−1×Al−1

jl−1

nodes.



3.2.3 Certification Issue
Certification practices require to perform safety assessment
and show real-time predictability for all configurations of a
system. Currently, in an IMA-1G platform there is a unique
configuration which is completely certified. Because of the
large number of reachable configurations (for c=4, bm=5,
sm=1 there are 1296 configurations for local reconfiguration
and there 146001 for distant reconfiguration) the certifica-
tion of IMA-2G process must evolve in order to certify a fam-
ily of configurations. Model based safety assessment, as de-
scribed in [6], should be able to cope with the large number
of reconfigurations. For real-time performances predictabil-
ity it should be possible to consider that a local module
reconfiguration in a cluster has no impact on the perfor-
mances.

3.3 Operational Reliability Improvement
To assess the operational reliability improvement of IMA-
2G over IMA-1G, we compare the causes leading to the loss
of an application A that is considered to be a NOGO situa-
tion. In an IMA-1G platform, the loss of A is mainly caused
by the loss of the basic module hosting this application. In
an IMA-2G platform, the loss of A is caused by the loss
of the basic module hosting A combined with the failure of
the reconfiguration of A that can be caused either because
the Supervisor is lost (consequently reconfiguration cannot
be performed) or reconfiguration is performed but the spare
module hosting A is lost or there is no spare available be-
cause other basic modules in the cluster have already failed.
In IMA-2G, all causes combine the loss of the basic mod-
ule with another failure. As the combination size increases
the probability of the loss of A decreases and this leads to
operational reliability improvement. When we analyze all
applications supported by the platform we notice that the
loss of the supervisor has an important contribution on the
loss probability. To significantly improve operational relia-
bility, it might be necessary to have a redundant supervisor.

4. CONCLUSION
The reconfiguration objectives in the context of the SCAR-
LETT project aims at enhancing the operational reliability
of the aircraft, this is somehow a different goal from reconfig-
urable avionic systems we found in the literature [7, 5, 8, 4, 3]
where reconfiguration is one mean to achieve fault tolerance
as stated in [7]: “reconfiguration is one fault tolerance mech-
anisation for providing expected functionality after a fault”.
In the same way, the classical FDIR (Failure Detection Iso-
lation and Recovery) procedure used in most space systems,
uses dynamic reconfiguration during the recovery phase. In
those cases the system is statically configured with a set of
may be redundant (but specialised) equipments which may
be powered off/on when failure occurs, in the SCARLETT
project we aim at configuring generic resources, i.e. IMA
modules, with uploadable software functions.

However, even if our primary objectives are different, the
methodology, the software and/or hardware architecture de-
sign [7, 4, 5], are insightful for our goals:

• the steps of reconfiguration process are usually the
same (error diagnostic, select new configuration, ap-
ply configuration,. . . )

• the widespread idea of precomputed and identified con-
figuration as mean to certify configuration seems ap-
pealing,

• the need for timing constraint consideration in the re-
configuration process for real-time application.

Furthermore, the reconfiguration principles presented in the
ASAAC standard (see [3]) for military aircraft IMA will be
of particular interest if we want to explore the distributed
implementation of the reconfiguration supervisor. Our ap-
proach is close from the one proposed by the authors of [1]
although our context is different (they study time triggered
systems and dynamic QoS management). The authors pro-
pose a bounded flexibility solution meaning that the reconfig-
uration evolves in a bounded and predefined configuration
space. This space is reduced to admissible configurations
which satisfy the system requirements such as mutual ex-
clusion and fulfil the required QoS level (the system should
remain schedulable). We should be able to formalise these
configuration space reduction techniques for avionics alloca-
tion.

Our mid-term perspectives are the implementation of on
ground module and partition level reconfiguration. We also
plan to detail the analysis of the proposed solution with re-
spect to operational reliability, safety and certification. A
longer term perspective is to study other scenarios including
in flight reconfiguration and reconfiguration for safety.
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