
KALIMUCHO

Software Architecture for Limited Mobile Devices

Cyril Cassagnes
LaBri/Univ. Bordeaux I

350, Cours de la Libération

33405 Talence - FRANCE

cyril.cassagnes@gmail.com

 Philippe Roose
LIUPPA / IUT Bayonne

2, Allée du Parc Montaury

64600 Anglet - FRANCE

Philippe.Roose@.univ-pau.fr

Marc Dalmau
LIUPPA / IUT Bayonne

2, Allée du Parc Montaury

64600 Anglet - FRANCE

Marc.Dalmau@.univ-pau.fr

ABSTRACT

This paper presents a software platform (called Kalimucho) for

mobile and embedded hardware. The architecture of such

application is based on two component models: Osagaia for

software containers and Korrontea for connector containers.

Kalimucho uses service factory permitting the creation of

instances of software components. This factory allows making the

most suitable configuration according to services decision

managing reconfiguration. The reconfiguration service decisions

depend on data sent by control interfaces and the users defined

rules (via the platform and control interfaces).

Categories and Subject Descriptors

D.2 [Software Engineering]: Requirements/Specifications,

Design, Software Architectures, Interoperability, Adaptable

Architecture, Reusable Software.

General Terms

Design, Experimentation.

Keywords

Heterogeneity, embedded devices, CDC/CLDC, platform.

1. INTRODUCTION
Because of the massive growing of embedded mobile and limited

devices uses in everyday life [19] (public transport, workplace,

cars, domestic appliance, etc.), the study of distributed

applications for such devices becomes a major thematic. Such

tools do exist but are still too strongly relative to underlying

technologies. Proposing design methods and software

architectures models for the design, implementation and running

of applications on mobile limited hardware is crucial. The

objective of this paper is to present our platform able to manage

dynamic reconfigurations of distributed applications deployed on

various and heterogeneous embedded devices. The goal of the

platform is also to ensure the dynamic management of software

components in order to guarantee an adequate quality of service to

the end user. The reminder of this paper is the following. We

firstly present component and service-oriented component

characteristics, and then we present related work our component

model. In the third part, we introduce the Kalimucho platform:

objectives, architecture, and functionalities. Finally, we present

some perspectives before the conclusion.

2. DISTRIBITED APPLICATIONS
An application for heterogeneous mobile embedded and

limited (low bandwidth, power consumption, etc.) device has to

firstly prevent hardware and mobility limitation. We decided to

use dynamic reconfiguration to bypass this problem. Intervention

on the architecture of the application needs to have a specific

software component model. Such model permits to act on the life-

cycle of the components instances and to provide information on

their execution state. Because we implemented the platform upon

the OSGi service based platform, let’s briefly make an

introduction to OSGi.

2.1 Open Service Gateway Initiative (OSGI)
The OSGi (Open Service Gateway Interface) Framework

implements a complete and dynamic service model [4]. Projects

such as Apache Felix, Oscar or Concierge implement OSGi

specifications. We use the power of OSGi with a component

model over it.

2.2 Heterogeneity
The hardware heterogeneity leads an important limit for a

full OSGi development. The platform is not available on all

devices, and particularly on sensors or smart sensors. So, we

cannot deploy the OSGI framework to the Sun SPOTs because the

Squawk VM hosted on Sun Spot Sensors implements CLDC 1.1

specifications whereas OSGI requires CDC due to its need of the

java.lang.ClassLoader mechanism. On such devices we shall thus

use the isolate (JSR 121) mechanism intead. The component

framework that we have designed and implemented take into

account such limitations to bypass the heterogeneity limit.

2.3 Service oriented software components
A classic component model provides a separation of

concerns (functional/non-functional preoccupations) but do not

provide a tool for dynamic management. Service oriented

approaches proposed new models called service oriented

components. Several service oriented models do exist [5] and

particularly over the OSGi one on which we will base the Osagaia

model.

Certainly the most used by professionals is the Spring

Framework (Spring Dynamic Modules) [17]. Nevertheless, it has

two unacceptable restrictions: it does not permit substitution of

service providers (into a composition) and doesnt support

reconfiguration [16]. Moreover, Spring is more oriented for

application server development. It exists other models, more

opened and extendable as iPOJO [15]. This model, proposed by

the Apache foundation is based on OSGi. It mainly proposed

customization by handlers. A handler is an object who can be

plugged on an instance container. It is possible to extend the

component model by creating a specific handler. A handler

manages one non-functional requirement of the instances

[16][17][18]. Nevertheless, it depends on the following OSGi

platforms: Apache Felix, Eclipse Equinox, Knoplerfish and

cannot implemented without OSGi platform (or on other OSGi

platforms), this is a problem for the heterogeneity, because it can

not manage hosts as Sun Spots. Nevertheless, the handler

mechanism is very interesting and the Osagaia model widely

draws with: InputUnit, OutputUnit and ControlUnit, able to

manage input/output data flows as well as control flows and

commands. We also (as others models) will use component

description [13][2] in order to describe the architecture of the

application. So, the non-functional part of the Osagaia model is

the same for all components composing the application.

2.4 Related Works
In [16] authors explain how interesting it is to provide

dynamic reconfiguration with sensor networks. In [20] we can

find a software component model for sensors with connectors

dedicated to measures. Our approach is close to this philosophy.

We propose to goes on and uniform the deployment of

components for dynamic reconfiguration of application of

heterogeneous hosts.

Building such applications has been the topic of several

works [4][5][17][19] [13]. Nevertheless, none of such design

method integrates strongly limited hosts. Some of them use

additional software layers highly consumer of resources,

unacceptable for very limited hosts.

The goal of out software component model is to facilitate the

work of the software developer. He focuses on the

applicative/functional part and dont care about mobility, dynamic

nor heterogeneity. So, we propose a Java uniform framework.

Software architectures are often coupled to specific hardware [13]

and highly power consumer. We propose a lightened architecture

able to be deployed on (very) limited hosts. We do not use

middleware but a set of services integrated to the Java platform

with specific component and connectors containers, called

Osagaia (means component in Basque language) and Korrontea

(means connector in Basque language). The following part details

each of these containers and how they interact with the platform.

3. COMPONENT MODEL
Functional properties implemented into the components are the

core of the application. Non-functional ones deal with

mechanisms implementing the dynamic of the architecture and the

supervision of the application by the platform which manages its

QoS (user and hardware oriented).

3.1 Osagaia Component Model

Osagaia

...

Access Port

Access Port

Input

Unit

ReadF low s

Output

Unit

W riteF low s

AccessPort Acces sPort

Business
Component

WriteFlows

ControlCommands

Control

Unit

QoSInformations

NotificationQdS ControlCommands

States Commands{Interactions with the platform

Figure 1. Osagaia Component

The Osagaia is a first class component container (Fig. 1) divided

into three non-functional entities: InputUnit (IU), OutputUnit

(OU) and ControlUnit (CU). The functional part of the

component is called the Business Component (BC). The CU

exports the interface for managing the life cycle (creation,

configuration, validity, destruction), initializes configurable

values of component, receives commands and sends states. The

configuration deals with the management of QoS events. These

events are then captured and evaluated by the platform which

triggers dynamic reconfiguration [3]. The IU and OU allow the

container to be connected to the corresponding Korrontea

connectors according to the connection commands send by the

platform.

3.2 KORRONTEA CONNECTOF MODEL

Container

Input

Unit
AccessPort

Output

Unit
AccessPort

client/server

process

GetData ProvideData

ControlProcess

InformationsConduitQdS InformationsConduitQdS

Control

Unit

QoSConnectorNotification ConnectorControl

Interactions with platform{

Figure 2. Korrontea Component

Because the assembling of Osagaia components may need

various communications paradigms, we decided to design a

connector model. The Korrontea container is based on the same

architecture as Osagia (first class component). The main

difference is that the Business Component implements

communications modes. Each one is made of a triplet:

Communication (local, distant), Mode (Synchronous/

Asynchronous/Real-Time/With-Without loss), Interface (socket,

RPC, RMI)}. Thanks to the CU, the platform also supervises

connectors in order to detect transmission problems (bandwidth,

loss of connection, errors, etc.) and to change communication and

interface characteristics. A distributed application is deployed

with Osagaia components instantiations linked by Korrontea

connectors. Our component model allows creating a dynamic

architecture as well as giving QoS information through the CU.

The platform receives such QoS data; compute them in order to

decide if a reconfiguration is needed.

4. KALIMUCHO platform
The objective of the distributed platform, called Kalimucho

(means “lot of quality”) is to supervise the Osagaia software

components and Korrontea connectors as well as to reconfigure

the application acting on life cycle of components/connectors or

moving them on other hosts. A reconfiguration is done in order to

ensure an adequate QoS [3].

Table. 1. JVM with corresponding JSR

As previously mentioned, the hardware heterogeneity is

hidden with the use of the Java Virtual Machines (JVM). This

language is quit natural because of the wide variety of

devices/hardware supported, and with the wide possibility to get

light JVM for (strongly) limited (mobile) devices. The Java

environment is also suitable for devices without OS as Sun Spot

Sensors. It is made of several platforms (J2EE, J2SE, J2ME), Java

API, and a JVM specific to each device.

4.1 Services

The Kalimucho platform is based on services. As the

platform will be deployed on each device, including limited ones,

the question is how to distribute those services (it is a utopia to

deploy the whole platform on too limited devices) according to

limitations of the host. So, all services cannot be deployed

verbatim on all devices. Consequently, the platform has various

architectures, which is totaly compatible with the Kalimucho

service based platform. Kalimucho proposes the following

functionalities:

1. Creation of Osagaia containers encapsulating the business

component (service factory).

2. Création of Korrontea connectors establishing communications

between two components (service factory).

3. Capture of QoS events from components/connectors and

determine when they imply to reconfigure the application.

4. Provide new configurations (ie. new assembling) with

addition/suppression/moving/substitution of components and

links between them.

5. Ensure coherency between services distributed over devices

(discovering, unicity, addition, suppression, etc.).

6. Manage the mobility of the business code, ie, BC.

Container and Connectors factories are a solution for the first

and second point. They create entities specifically adapted to the

host onto which they are deployed (it exists a container for each

kind of host). The Supervision Service and Configuration

Generator correspond to the third point. When an event occurs,

the supervision needs the evaluation of the current QoS. Then the

Configuration Generator provides another configuration,

corresponding to the fourth point. The fifth point is solved with

the Component Register having the knowledge and maintaining

the list of available components for mobile and/or limited devices

which are not able to run the OSGi platform. So the Kalimucho

platform has a global vision of the deployed application.

Each service needs more or less resources. For example, the

configuration generator needs numerous calculations. So, the

selection of services to be deployed on limited hosts is done

according to resources available on devices. That is why all

services are not deployed on each one. The objective is to

maximize the distribution of the platform in order to maximize the

autonomy of each device according to its potential (memory,

energy, power, etc.).

We present here the deployment of the platform according to

resources available of the host. On mobile devices (see. Fig. 3),

development is adapted to the CDC API. For example, the

Configuration service is not implemented, so the Supervision

service does not exactly run as on a fixed device with no

limitations (desktop PC) because it can’t directly access to this

service. Consequently, the configuration evaluation will be done

by the nearest non limited host. Factories still have the same role

but they are adapted to the CLDC implementation interface.

Figure 3. Deployment example of a limited device

4.2 Component Container factory service

Figure 4. Component Container Factory

The container factory service allows building Osagaia

containers. This service is available on each device family because

instantiation of a software component is strongly coupled to the

hosting device.

This service interacts with the supervision service in ordre to

get the ID Card (a component description as used with COTS [1])

of the business component from a component repository available

on the network. When using Squawk JVM on very limited devices

(CLDC), the repository is embedded onto the device. This choice

is done because such devices do not provide class loader

mechanisms (the number of BC has to be limited due to storage

limits on such devices). ID Cards contain static properties (name,

version, etc.) as well as dynamic information (input/output

connectors, target host, etc.).

4.3 Connector Container factory service

Figure 5. Connector Container Factory

Connector Container Factory as well as Component

Container Factory receives commands from the Supervision

Service. Such factory creates links between component instances.

The connector encapsulates a business component implementing

the communication mode/politic. If the connector is distributed on

two devices, each supervision service builds one part of the

connector. The supervision service provides information

necessary to build the connection hosts (IP address, port, etc.).

For a given communication politic, the designer has to provide as

much connectors as device types. In order to modify the QoS, we

must have several components able to provide the same service

with various qualities, or we must provide various components or

components combinations ensuring this service. The choice of the

adequate combination is done by the platform.

4.4 Component Register Service

Figure 6. Component Register Service

The main task of the Component Register Service is to

provide the two following interfaces: ReachSensorComponent

and UpdateSensorComponent. Its role is to replace the lack of the

OSGi platform, and especially the Service Register on CLDC

devices. With this service, the platform is aware of components

deployments of each CLDC compliant sensor. When

reconfiguring, the Component Register Service sends the new

deployment schema to the Supervision of the nearest non limited

host. Then, the register is updated if needed and components

hosted on sensors are reconfigured with the new local deployment

schema.

4.5 The Supervision Service

The Supervision Service uses the set of previously presented

interfaces. This service supervises all the components of the

application using their Control Unit (CU) interface.

Communication between the application and the platform are only

done between CU and the Supervision Service hosted on the

device onto which components are hosted. The Supervision

Service controls the execution of the application using QoS events

raised by each container and monitors the hardware resources

(battery, memory, CPU, number of current connections, etc.).

Figure 7. Supervision on a non limited device.

Because all services are not hosted on all devices, when QoS

information is captured, according to the device type, it has to be

relayed towards a Supervision service able to access to all

services. Such organization implicitly expresses a hierarchy

between Supervision Services (Supervision, SupervisionCDC,

SupervisionCLDC) as well as it exists between devices (more or

less limited). The organization is detailed in the figure 3:

When a local Supervision Service express the lack of a

hardware resource (memory, energy, etc.), it raises a QoS event.

The platform decides to act according to its configuration and

thresholds values defined by the designer. If the device is mobile,

the reconfiguration has to follow the Supervision hierarchy. When

re-deploying, the Supervision service send query to the

Configuration Generator with the QoS states. According to the

values, the evaluation can be positive or negative. If so, according

to the device, the Supervision Service gets the list of components

causing the failure. This list comes from a description file sent by

a distant device or by the Component Register and is transmitted

to the Configuration Generator. It makes evaluation and starts the

reconfiguration process. The new generated configuration is

provided to the Supervision Service which broadcast the new

deployment to corresponding hosts and starts its deployment.

Concerning the functional parts, the CU of the container

detects that the QoS level is no more ensured. It then raises an

event to the local Supervision Service ant the process goes on.

4.6 Configuration Generator Service

Figure 8. Configuration Generator Service

This service provides EvaluateConfiguration and

ComputeReconfiguration interfaces. It uses an enhancement

criterion and a configurable user defined criterion [2]. The final

user can configure the platform by modifying critical range values

(energy level, CPU charge, memory, execution time, etc.).

A reconfiguration can have consequences on the

architectures. A local or distributed reconfiguration can trigger

other reconfigurations of the architecture. The evaluation is firstly

based on parameters given by the user, secondly, the

Configuration Generator obtained from the description file of the

application, the list of related components. Consequently, the

configuration generator provides the list of component to

suppress, to migrate and to deploy on each corresponding device.

5. Conclusion and Future work
The design of ubiquitous applications needs to integrate the

management of the hardware hosts heterogeneity as well as

functional aspects. This implies to provide solutions in order to

reconfigure applications (software deployment) in such mobile

and versatile environment.

The service based Kalimucho platform has been

implemented in order to adapt its own structure to application

hosts possibilities as well as functional adaptations. These works

are supported by Sun Microsystems (for the use of SunSpot

sensors), “Conseil Général des Pyrénées Atlantiques” with a

technological transfer with Dev 1.0. Software components,

connectors and the Kalimucho platform are available on PC

(OSGi/Felix platform), PDA (iPaq/OSGi/concierge) and SunSpor

smart sensors (Squawk Java Virtual Machine).

6. REFERENCES
[1] Philippe Roose - IS-COTS: a help to COTS Products

Integration - Third International Off-The-Shelf-Based

Development Methods Workshop (IOTSDM '08) - Position

Paper - Held in conjunction (ICCBSS '08), 25/02/2008,

Madrid, Spain, 2008.

[2] C. Louberry, M. Dalmau, P. Roose – Architectures

Logicielles pour des Applications Hétérogènes Distribuées et

Reconfigurables – NOTERE’08 - 23-27/06/2008,

Lyon/France.

[3] S. Laplace – « Conception d’Architectures Logicielles pour

intégrer la qualité de service dans les applications

multimédias réparties » – PhD Thesis – University of Pau.

2006, France.

[4] M. Cremene, M. Riveill, C. Martel, C. loghin, C. Miron -

Adaptation dynamiques de services – DECOR’04

Déploiement et (Re) Configurations de Logiciels, 28-

29/10/2004 – Grenoble, France

[5] A. Ketfi, H. Cervantes, R. Hall, D. Donsez – Composants

adaptable au dessus d’OSGi – Journée Systèmes à

composants adaptables et extensibles - 17 et 18 octobre 2002

[6] P. Grace, G. Coulson, G. S. Blair, B. Porter – Dynamic

Reconfiguration in Sensor Middleware – MidSens’06,

Proceedings of the international workshop on Middleware

for sensor networks - November 1, 2006 Melbourne,

Australia.

[7] K. Geihs, M. U. Khan, R. Reichle, A. Solberg, S.

Hallsteinsen - Modeling of Component-Based Self-Adapting

Context-Aware Applications for Mobile Devices – IFIP

Working Conference on Software Engineering Techniques,

October 18-20, 2006, Poland.

[8] K. Balasubramanian, J. Balasubranian, J. Parsons, A.

Gokhale, D. C. Schmidt – A Plateform-Independent

Component Modeling Language for Distributed Real-time

and Embedded Systems – In Proc. of the 11th IEEE Real-

Time and Embedded Technology and Applications Sym.,

San Francisco, CA, Mar. 2005.

[9] R-OSGi and Distributed OSGi: differences and similarities -

http://mauriziostorani.wordpress.com/2008/09/04/r-osgi-

and-distributed-osgi-differences-and-similarities/ - 4

september 2008.

[10] J. S. Rellermeyer M. Duller, G. Alonso – Using Non-java

OSGi Services for Mobile Applications – MiNEMA’08,

March 31-April 1, 2008, Glasgow, Scotland.

[11] J. S. Rellermeyer, G. Alonso – Services Everywhere: OSGi

in distributed Environments – EclipseCon, 2007 March 5-8,

Santa Clara.

[12] The SquawkVM Project - https://squawk.dev.java.net/

[13] The MUSIC Project - http://www.ist-music.eu/

[14] Y. Royon, S. Frénot - Un environnement multi-utilisateurs

orienté service – In CFSE'2006, Octobre 2006, Perpignan,

France, 2006.

[15] Apache iPOJO - http://felix.apache.org/site/apache-felix-

ipojo-supportedosgi.html

[16] C. Escoffier, R. S. Hall - Dynamically Adaptable

Applications with iPOJO Service Components - 6th

International Symposium on Software Composition (SC

2007), Vienne, Autriche.

[17] C. Escoffier – « iPOJO : Un modèle à composant à service

flexible pour les systèmes dynamiques » - PhD Thesis

University of Grenoble , 2008

[18] A. Diaconescu, J. Bourcier et C. Escoffier, " Autonomic

iPOJO: Towards Self-Managing Middleware for Ubiquitous

Systems ", 1st International Workshop on Social Aspects of

Ubiquitous Computing Environments (SAUCE 2008), Joint

with : 4th WiMOB, October 2008, Avignon, France.

[19] C. Lee. S. Ko, S. Lee, W. Lee and A. Helal, "Context-Aware

Service Composition for Mobile Network Environments,"

Proceedings of the 4th International Conference on

Ubiquitous Intelligence and Computing (UIC), Hong Kong,

July 11-13, 2007.

[20] M. Desertot, C. Marin, D. Donsez - SensorBean : Un

modèle à composants pour les services basés capteurs -

Proceeding in Journées Composants JC'05, Le Croisic,

France, 2005-04-01

