
On Interrupt Scheduling based on Process Priority for Predictable Real-Time
Behavior

Minsub Lee, Juyoung Lee, Andrii Shyshkalov, Jaevaek Seo, Intaek Hong, Insik Shin
Dept. of Computer Science

KAIST, South Korea
insik.shin@cs.kaist.ac.kr

Abstract

Traditionally, kernel services are of a higher priority
than user processes. The kernel can preempt the currently
executed process in order to perform interrupt handling for
the behalf of another process, even though the latter pro-
cess is of a lower priority than the former. This can be
viewed as priority inversion. We propose a new interrupt
handling approach that couples interrupt scheduling with
the priority of a process associated with the interrupt to
handle. We present techniques to derive exact process pri-
orities in handling interrupts for incoming network packets.
The proposed approach has been implemented in Linux 2.6,
and experiment results show that it reduces interference of
lower priority processes to higher-priority process through
interrupt handling.

1 Introduction

As the number of hardware devices grows higher, gen-
eral purpose operating systems are more often used for real-
time applications. Such operating systems were not origi-
nally designed to satisfy real-time application requirements.
Therefore, a number of studies have been conducted to add
predictable and efficient task management to commodity
operating systems [8],[3].

One of the main design goals of commodity operating
systems is the system’s responsiveness. Particularly, it im-
plies that interrupt handling must be processed by an op-
erating system immediately. However, interrupts process-
ing, which can take some time, may not be useful for the
currently executed task. Additionally interrupt processing
time is often deducted from interrupted thread. Because in-
terrupted thread does not necessarily get affected by inter-
rupt processing, this can dramatically distort the real-time
performance of the operating system. Therefore, interrupts
handling is an important issue to address in order to provide
predictability on the execution of real-time tasks.

In Linux, interrupts are processed by kernel threads,
which have higher priority than any user thread. From

thread scheduler point of view, scheduling is done accord-
ing to threads’ priorities. However, because interrupts are
processed to serve different threads with different priorities,
the priority inversion may occur. As an example, consider
a running user process with priority 17, a sleeping one with
priority 21 and an incoming network packet for the second
process. This packet will be processed immediately by ker-
nel process, which in turn will delay a thread of higher pri-
ority. The more incoming packets, the less predictable is
execution of the first thread.

In this paper we addressed the priority inversion prob-
lem, which is caused by interrupt processing of network
stack. We have designed a technique to process the net-
work interface card interrupts in order of priorities of the
threads that require interrupts processing. We have also im-
plemented our technique for Linux kernel version 2.6 and
conducted performance evaluations. Our results show that
our interrupt handling approach is suitable to real-time en-
vironment.

The rest of paper is organized as follows. Section 2 sum-
marizes related work. Section 3 gives an overview of the
interrupt handling in Linux. Our approach is described in
section 4 and quantitative performance evaluation of our
implementation is provided in section 5. Finally, section
6 contains conclusions.

2 Related Work

Several other research projects have investigated inter-
rupt processing distortions on real-time performance of
Linux systems. An improved accounting of consumed CPU
time during interrupts has been proposed in [3] and [8]. A
probabilistic approach [8] has been developed to determine
possibly affected processes during top half execution and
schedule bottom half with regard to priorities. In this paper
however, we describe an approach to find exact processes,
and hence priorities, for each interruption caused by incom-
ing network packet. Therefore, our approach can make pri-
ority based interrupt scheduling decisions more accurately.

Some researchers focused on other systems than Linux
to investigate on similar issues. Scheduling of interrupts

1

���������� 	
�
������������ 	
�
������������� 	
�
������������� 	
�
������������ 	
�
�������������� 	
�
� �
ksoftirqd()

Kernel daemon

thread

�������
Top Half

NIC

interrupts

do_softirq()

raise_softirq()

Bottom Half

softirq_vec[32] pending bits

Figure 1. Top and bottom halves of interrupt
handling in Linux

and predictable interrupt management has been developed
for complex systems [5]. Improved performance of net-
work stack in UNIX operating systems has been proposed
by scheduling incoming network traffic with priorities [2].
While these studies focused on providing fairness and in-
creased throughput under high load, our technique focuses
on real-time behavior.

Many protocols have been introduced to address the pri-
ority inversion problem when tasks are accessing critical
sections in a mutually exclusive manner. Such protocols
include the Priority Inheritance Protocol (PIP) [7], the Pri-
ority Ceiling Protocol (PCP) [6], and Stack Resource Policy
(SRP) [1]. While these protocols concern the priority inver-
sion problem within the context of process scheduling, our
work concerns the problem taking process scheduling and
interrupt handling into consideration together.

3 Interrupt Handling

Interrupts can be caused by hardware as well as by soft-
ware. In Linux, interrupt handling is done by the kernel,
which is invoked every time an interrupt occurs. Interrupts
can occur at any time during execution, their number is dif-
ficult to predict.

To achieve better performance and responsiveness, inter-
rupt handling in Linux kernel 2.6 is divided into two phases.
The first one, called top half, starts when an interrupt signal
invokes the interrupt service routine (ISR). Then, ISR dis-
ables interrupts of the same type and calls the corresponding
interrupt handler. Because interrupt handlers execute asyn-
chronously, the processing at this phase should be as quick
as possible.

For instance, upon receiving incoming packets off the

network, network interface cards (NIC) issue interrupts im-
mediately to alert kernel of their availability. Then, the ISR
quickly responds to the interrupts by executing the network
card’s registered handlers. Most of all, they copy the new
packets into the main memory. For remaining processing,
network card’s registered handler must raise software inter-
rupt (softirq) [4], which means setting pending bit to 1
in a softirq vector array (softirq vec) (Figure 1).

All other interrupt processing is deferred to later, so-
called the bottom half phase. Bottom half usually requires
longer processing time than top half. Under heavy load such
as high network traffic, the frequency of interrupts is high,
and bottom half processing can consume much of the CPU
time.

In Linux, bottom half phase is executed periodically by
a set of per-processor kernel threads (ksoftirqd), which
have priority of 15. These kernel threads scan softirq vector
array for set pending bits and execute corresponding han-
dlers for further interrupt processing. Additionally, inter-
rupts are processed regardless of the priorities of the pro-
cesses, which interrupts serve.

Consider a currently running user process with the high-
est priority, which does not have any network communi-
cation. Any incoming network network packet will inter-
rupt the current thread at least once during top half phase
processing. Later, since the kernel thread has even higher
priority, the bottom half processing may interrupt current
thread for even longer time than top half, if the packet is
large. Therefore, since the packet is processed for another
process with lower priority than current, such scenario is a
priority inversion one.

Since the top half cannot be delayed, in this paper we
are particularly interested in determining when is the proper
time for executing the bottom half phase and which inter-
rupts to process first.

4 Our Approach

This section describes the design and implementation of
our new interrupt handling approach in Linux. A key idea
of our approach is that some incoming packets are associ-
ated with its intended receiver processes (and their prior-
ities) during interrupt handling. Those packets are given
process priorities in the top half, and the bottom half is
equipped with priority-based scheduling capable of delay-
ing interrupt processing even further, in order to avoid the
priority inversion problem.

UDP packets carry process-related information, which is
a port number. In the top half, an UDP packet is fetched
from the NIC’s buffer to the main memory. We then ex-
tract a port number out of the packet. This can be easily
done (with a single memory lookup), as the port number is
stored in a fixed location in the packet. In order to assign
priorities to packets, it needs to figure out which sockets are

2

A A A A

A A

A A Process with high priority

A A A A

TH TH

TH TH

BH BH

BH BH

interrupt

interrupt do_softirq()

do_softirq()

TH TH

BH BH

Top halves

Bottom halves

Our approach

Linux

Figure 2. Linux vs. our approach

coupled with which processes, which is costly. Hence, we
maintain a port number indexed process priority table, and
it helps to achieve a faster conversion of a port number to a
priority. Each entry of the table is created when a process
binds a socket and becomes invalid when the process closes
the socket. Once a port number is available, we can simply
consult this table to map the port number to the priority of
a corresponding process. Then, ISR places the packet into
the softirq vector array (softirq vec) according to its
corresponding priority. Packets are stored in the queue in a
decreasing order of priorities. The further processing of a
packet is then deferred to the bottom half.

In the bottom half, a kernel thread (ksoftirqd) peri-
odically checks out the softirq vector array for set pending
bits. When the pending bit for network packet reception
is set, our modified ksoftirqd goes through the packet
data queue of softirq vec to handle packets one by
one, as long as their corresponding priorities are no lower
than the priority of the currently executed process. Note
that the packet data queue is sorted according to packet’s
corresponding priorities. When our modified ksoftirqd
meets a packet with a priority lower than that of the cur-
rently executed process, it stops taking care of incoming
packets.

Figure 2 shows our new interrupt service approach, in
comparison to the original Linux. By using our interrupt
service routine, we can reduce interference of interrupt han-
dling to processes by as much as Tb∗Nl−Td∗Nh, where Tb

is the bottom half executing time, Td is the extra time cost
in top half for early demux, and Nh and Nl are the number
of packets for higher and lower priority processes, respec-
tively. According to its design, top half extra work is much
smaller than that of bottom half, so interference to processes
can decrease when Nl is smaller then Nh. It means our in-
terrupt service model can provide less interference to higher
priority process.

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 0 100 200 300 400 500 600 700 800 900

ex
ec

ut
io

n
tim

e(
se

c)

network workload(# of packets/sec)

HP Ours
LP Ours

HP Linux
LP Linux

Figure 3. Comparison of execution times

5 Experimental Evaluation

This section presents experimental results in order to
show that our approach is suitable in the real-time environ-
ment.

5.1 Experiment Setting

To implement our approach, we make minimum modifi-
cations to the Linux kernel and network device driver. We
patched Linux kernel 2.6.23. All experiments are performed
on the QEMU emulator with a 2.8GHz x86 single core pro-
cessor and virtual NIC, which is interconnected with a host
machine. The host machine has 2.8GHz AMD Phenom
CPU, 4GB main memory.

There are two processes executing concurrently. They
are a UDP server and a dummy job process. The UDP
server handles burst of the packets, and the dummy job pro-
cess executes Algorithm 1. We set the priority of the UDP
server to 20, which follows default Linux settings. We mea-
sure execution time of the dummy job processes with prior-
ity 17(LP) and priority 21(HP), which are higher and lower
than UDP server, respectively. We use a UDP packet as a
network workload. The UDP packets are sent from a host
machine through the virtual network device. We perform
experiments in the original Linux and in our patched Linux,
respectively.

Algorithm 1 Dummy Job Algorithm
start time ← current clock();
i ← ∞;
while(i--) { i←(i+i)/2+(i-i)/2; }
end time ← current clock();

3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900

de
al

in
e

m
is

s
ra

te

network workload(# of packets/sec)

Our model
Linux

Figure 4. Comparison of deadline miss ratios

5.2 Results

First, we compare execution times of processes with dif-
ferent priority under different network workload. Figure 3
shows measured execution times with the increasing size of
burst of packets. In the original Linux, the higher prior-
ity process (HP) and the lower priority process (LP) show
similar behavior. The reason why two processes show sim-
ilar behavior is that the network interrupt handling routine
preempts both processes without regard to their priorities.
Under our interrupt handling approach, the higher prior-
ity dummy job process (HP) shows stable execution times.
This means that HP is less affected from the interrupts
which are associated with the lower priority process (LP).
In the top half, the early demux procedure assigns the prior-
ity of a receiver process to a bottom half interrupt handling
routine. By using this information, the bottom half sched-
uler is able to “delay” interrupt handling if it is intended for
the process with a lower priority than the current process.
Such delaying bottom half interrupt handling can reduce the
number of times that HP should yield to the interrupt han-
dler. The execution time gap between under original Linux
and under our patched Linux process represents how much
of bottom halves has been delayed.

In our interrupt service approach, the execution time of
HP is only increased about 6% when the client sends 900
packets per second. While the higher priority process shows
stable behavior over different network workload, the lower
priority process shows similar behavior to other processes
under the original Linux setting.

Second, we compare the deadline miss ratio of processes
of higher priorities than the UDP server in both Linux and
our patched Linux. To measure the deadline miss ratio, we
execute the dummy job periodically every 8 seconds and
its deadline is 8 seconds. Figure 4 shows the result of this
experiment. Under our interrupt service approach, it misses
no deadlines. This shows that our interrupt service model

is suitable to real-time environment, as it can reduce the
interference from lower priority processes through interrupt
handling.

6 Conclusion

This paper presents the design and implementation of a
new Linux interrupt handling approach for incoming pack-
ets. It couples packets with the priorities of their receiver
processes, and their interrupt handling is performed accord-
ing to priorities. This approach is able to prevent the priority
inversion problem, in particular, between the currently ex-
ecuted process and the receiver process of a packet under
interrupt handling.

We demonstrate the effectiveness of this approach by
implementing it over Linux. Experiments show that it ef-
fectively provides the predictable execution of processes
of higher priorities. In this paper, only UDP packets are
covered. Our future work includes accommodating more
sophisticated protocols, such as TCP. While TCP employs
flow control, delaying interrupt handling can defer TCP ac-
knowledge and may put the TCP communication unstable.
We plan to incorporate TCP packets addressing such con-
cerns.

Acknowledgement

We thank anonymous reviewers for their constructive
comments. This research was supported in part by IT R&D
program of MKE/KEIT of Korea [2009-KI002090, Devel-
opment of Technology Base for Trustworthy Computing],
and KAIST ICC, KIDCS, KMCC, OLEV, and URP grants.

References

[1] T. P. Baker. Stack-based scheduling of realtime processes.
Real-Time Systems, 3(1):67–99, March 1991.

[2] P. Druschel and G. Banga. Lazy receiver processing (lrp): A
network subsystem architecture for server systems. In Proc.
of USENIX Symposium on Operating Systems Design and Im-
plementation, 1996.

[3] K. J. Jung, S. G. Jung, and C. Park. Stabilizing execution time
of user processes by bottom half scheduling in linux. In Proc.
of Euromicro Conference on Real-Time Systems, 2004.

[4] R. Love. Linux Kernel Development. Novell Press, 2005.
[5] G. Parmer and R. West. Predictable interrupt management

and scheduling in the composite component-based system. In
RTSS, 2008.

[6] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchro-
nization protocols for multiprocessors. In RTSS, 1988.

[7] L. Sha, J. P. Lehoczky, and R. Rajkumar. Task scheduling
in distributed real-time systems. In Proceedings of the Inter-
national Conference on Industrial Electronics, Control, and
Instrumentation.

[8] Y. Zhang and R. West. Process-aware interrupt scheduling
and accountability. In RTSS, 2006.

4

