
Enhanced Aperiodic Responsiveness by Multi Budget Bandwidth Preserving Server

Ranvijay1, Rama Shankar Yadav1, Smriti Agrawal2
1Department of Computer Science and Engineering,

Motilal Nehru National Institute of Technology, Allahabad. India.
2Department of Computer Science and Engineering,

Jaypee University of Information Technology, Solan, India.
ranvijaymnnit@gmail.com, rsy@mnnit.ac.in, smriti.agrawal@juit.ac.in

Abstract

This paper presents multi budget bandwidth preserving

server (MBBPS) to improve the quality of service in terms of
better responsiveness of the aperiodic task by utilizing the
concept of multi budget and multi priority of the server while
ensure the feasibility of periodic task at the same time.
Feasibility analysis is done at offline by assigning the
priority of periodic tasks as well as server to service the
aperiodic tasks by fixed priority rate monotonic first
algorithm. Theorem has been formulated to ensure the
feasibility of the periodic tasks with enhanced budget.
Besides providing better responsiveness to the aperiodic
tasks, this work also improves the quality of service (QoS) by
accepting aperiodic tasks that were rejected by the existing
deferrable server. The complexity of proposed MBBPS
algorithm is same as deferrable server. The extensive
examples and simulation results illustrate that our approach
can effectively reduce the average response time of aperiodic
tasks as well as reduce the rejection ratio while guaranteeing
the periodic tasks at the same time.

Keywords: Real time systems, schedulability, aperiodic, rate
monotonic first, response time.

1. Introduction

A real-time system is a system in which computations must

satisfy stringent timing constraints besides providing logical
correctness, i.e., a correct computation of the result must finish
before its specified deadline. Failure to meet the specified
deadline in such systems leads to catastrophic loss in case of
hard real-time systems. A system may be classified as static or
dynamic in nature. Static system follows fixed arrival pattern
[1] examples of such applications include process control
automated manufacturing system. Feasibility of static system
can be determined through offline whereas feasibility of
applications with random arrival patterns (termed as aperiodic
tasks) are determine through online. For example, in aircraft
control application system has to respond the pilot’s command
while continuing to execute the tasks from air traffic controller
for flying the airplane. The pilot commands are random in
nature and are activated as a result of certain event such as
variation in pressure, cloudiness, emergency landing etc.

however the command issued by air traffic controller
regarding of altitude, position velocity etc are periodic in
nature. The periodic tasks typically arise from sensor data,
radar or control loops. Failure to complete the tasks within
their deadline can have catastrophic loss while the aperiodic
tasks generally arise from operator actions (pilot action) or
random events. The problem is to service the aperiodic tasks
as quickly as possible without jeopardizing the deadlines of
the periodic tasks. Full guarantee can be given to fixed arrival
pattern task while, no guarantee can be achieved for the case
of random arrival pattern. The predictability can be used to
measure the performance of dynamic system. More the
predictability betters its performance. Offline feasibility
analysis is used for static system consider worst case
requirement in terms of execution time, arrival pattern, critical
instance release (a task is released along with all higher
periodic tasks) task. Thus, there is a need of recourse manager
that gives full guarantee for static system while receiving
better predictability for dynamic one. On the way to design
such a system, there are two major design objectives. The first
objective is to maintain the feasibility of periodic tasks set in
the presence of aperiodic tasks. The second objective is to
minimize the average response times for aperiodic tasks while
reducing the rejection ratio of aperiodic task. The authors [5,
7, 8, 10] have formulated the scheduling policies for both
periodic as well as aperiodic task, but they have not
considered additional budget apart from assigned budget at
offline to the server.
The next section deals with overview of existing work
available to tackle system having both periodic and aperiodic
tasks.
2. Related work

 This section summarises the scheduling algorithm used for
system having a mixture of aperiodic tasks and periodic hard
real-time tasks. Full guarantee for periodic tasks are gives
using offline rate monotonic first [2], deadline monotonic first
[2] over the full guarantee assigned to periodic tasks, aperiodic
tasks are scheduled at run time. The simplest way of
scheduling aperiodic tasks is background approach [6] where
aperiodic task executing only when there is no periodic tasks
available at that time. Besides honouring feasibility of periodic
task assigned at offline, the background approach suffer
greater set back of having either longest response time for

aperiodic one or lesser number of aperiodic tasks completes
within their respective deadlines. In contrast of assigning
lower priority for aperiodic tasks than that assigned to periodic
one, a group of researcher [1, 4, 5] assign highest priority to
aperiodic tasks. This gives best response time for aperiodic
tasks. However, it may leads to failure of feasibility given to
periodic task at offline. Over these two extreme priority
assignment approach a group of researchers [6, 7, 8] schedule
aperiodic tasks through utilizing the concept of periodic
budget allocation. That is, they allocate budget at fixed point
of time and aperiodic task if available execute by consuming
the budget. This is termed as server composed of budget
replenishment and consumption rules. The server is
characterized by an ordered pair ሺݍ௦, ௦ is theݍ ௦ሻ, where݌
budget replenished at interval of ݌௦ with utilization ratio, Us ൌ
 ௦. The simplest server is the polled server (PS) [7] which݌/௦ݍ
replenishes the budget of amount ݍ௦ at integral multiple of ݌௦
and process any pending aperiodic requests within the limit of
its budget ݍ௦ . However, if no aperiodic requests are available,
the sever immediately suspends itself until next replenishment
time. The aperiodic request arrives just after the server has
suspended itself (lapse the budget) has to wait till the next
replenishment time. To incorporate the above shortcoming
authors [7] extended polled server as deferrable server. Here,
consumption rules of polled server has modified through the
utilizing the concept of preserving the budget (if not consumed
by execution of aperiodic tasks) up to next replenishment time.
At next replenishment time fresh budget of amount ݍ௦ is
released. Though deferrable server provides opportunities for
execution of aperiodic task all the time provided budget is
available however, it may accumulate budget of amount twice
the ݍ௦ in some interval of length ݌௦ . This may leads to
infeasibility of periodic task that were feasible without
deferment of budget. Although the Deferrable Server
algorithms do significantly improve aperiodic responsiveness,
but they have several important scheduling issues for aperiodic
tasks are not addressed by this algorithm. A lower priority
periodic task could miss its deadline even if the total
utilization of the system with n tasks is not greater than 0.693.
in other word a lower-priority periodic task could miss its
deadline even if the total utilization of the system with n tasks
is not greater than nሺ2

భ
౤ െ 1ሻ.

This paper proposed a scheduling algorithm provide fast
responsiveness to aperiodic tasks while still ensure the
feasibility of the periodic tasks at a high level of periodic tasks
utilization. The proposed algorithm, called multi budget
bandwidth preserving server (MBBPS), is extension of
existing deferrable server which is able to substantially reduce
the response time of aperiodic tasks by additional budget apart
from assigned budget and improve the priority of the server
for the case when server is consuming additional budget.
Besides providing better responsiveness to the aperiodic tasks,
this work improves the quality of service (QoS) by accepting
aperiodic tasks previously rejected by the existing techniques
due to lacking of budget and their replenishment and
consumption rule. Theorem 1 has been formulated to ensure
the feasibility of the periodic tasks. The proposed multi budget

bandwidth preserving server has additional feature to provide
better quality of service (QoS), predictable behaviour, and
ease of implementation. The rest of the paper is organized as
follows: in section 3, we describe our system model,
terminologies used. Section 4 elaborates our proposed
approach with feasibility analysis followed by results and
analysis in section 5. Finally, paper concludes with section 6.

3. SYSTEM MODEL

 This system deals with fixed arrival pattern periodic tasks
along with random arrival pattern of aperiodic tasks. The
feasibility of periodic tasks is determined as offline using
static priority assignment technique, Rate monotonic first
[2].The rate monotonic algorithm assigns priorities in inverse
relation to task periods, that is the shorter the task’s period, the
higher the task’s priority. In case two tasks have same priority
any one can be given higher priority. The priority assigned to
server is the priority for execution of aperiodic tasks limiting
to availability of budget.
Following considerations are taken same as considered in [7]
1. System consists of n independent periodic tasksτଵ, τଶ,
τଷ … τ୬. Each task τ୧ has the attributes, worst-case execution
timeሺe୧ሻ, periodሺp୧ሻ, and relative deadlineሺd୧ሻ.
2. Relative deadline of a periodic task is less than or equal to
its period.
3. In addition to periodic there is another periodic task τୱ
characterized by an ordered pair (ݍ௦, ݌௦) that is used to provide
execution budget for aperiodic one. Here, ݍ௦ are amount of
budget released with period ݌௦.
4. All overhead for scheduling, context switching considered
negligible.

The terms used in this paper are summarized as follows
Terms used:
Finish Time൫࢏࢚ࢌ

൯: For ݆௧௛ release of a task ߬௜, ߬௜࢐
௝ it is the sum

of its own requirement and requirement of the higher priority
tasks released between ߬௜

௝ and its completion time.

௜ݐ݂
௝ ൌ ௜݈݁ݎ

௝ ൅ ݁௜ ൅ ෍ ሺݐڿ ⁄௞݌ ሻۀ כ ݁௞

௞ୀ௜ିଵ

௞ୀଵ

௜݈݁ݎ ݁ݎ݄݁ݓ
௝ ൑ ݐ ൑ ݌

Response Time൫߬࢏
 ൯: It is difference between the finish time࢐

and the release time of a release ߬௜
௝. Mathematically,

௜ݏܴ݁
௝൫߬௜

௝൯ ൌ ௜ݐ݂
௝ െ ௜݈݁ݎ

௝
Critical instance release of taskτ࢏: It is defined as time when a
task τ࢏ is released along with all higher priority tasks.
Periodic task set (T): Periodic task set T is the set of union of
n periodic task and server (τୱሻ.
Mathematically, T ൌ ሼτଵ, τଶ, τଷ … τ୬ሽ ׫ ሼτୱሽ
Hyperperiod (L): it can be defined as the point after which all
the task in the task set T are in phase and schedule pattern for
each task is restarted i.e. the release pattern of tasks at time
ݐ ൌ 0 is repeated at integral multiple of hyperperiod.
Mathematically, ܮ ൌ ,ଵ݌ሺ ܯܥܮ ,ଶ݌ ଷ݌ … … … . ,௡݌ ௦ሻ݌
Budget1: budget 1 is the original fixed budget (ݍ௦) allotted to
the server and replenished at every integral multiple of ݌௦.

Budger2: budget 2 is the budget generated by laxity of a
release of lowest priority periodic task.

4. PROPOSED MULTI BUDGET
BANDWIDTH PRESERVING SERVER

 The proposed MBBPS algorithm is extension of deferrable
server [7] through utilizing the concept of providing additional
budget over the (budget 1) supported by deferrable server.
This additional budget is limiting to slack available for lowest
priority periodic task. The amount of excess budget (termed as
budget 2) is computed for each release of lowest priority
periodic task up to hyperperiod ሺܮሻ. Hence, budget 2 may not
same for each release and form budget pattern of length equal
to hyperperiod. This budget 2 pattern is repeated from one
hyperperiod to another hyperperiod. The server is executed at
two priority levels (assigned at offline and highest priority).
For consumption of budget1, server executes at assigned
priority whereas it priority is raised to highest priority for the
case of budget2. Server loses any unused budget 1 at the end
of the period of server and its full capacity budget1 (ݍ௦) is
restored. However, unused budget 2 drop at the deadline of
lowest priority release and new budget 2 will be computed to
the laxity of the laxity of the next release. The detailed
consumption and replenishment rules for two types of budgets
are given below.

4.1 Consumption rules:

 Among two available budget, the consumption of budget is
preferred whose expiry time is least. The expiry time of
budget1 is next replenishment time whereas, absolute deadline
of lowest priority task’s release is the expiry of budget2. The
rules are as below.
1. The budget of the server is consumed at the rate of one per
unit time whenever the server executes aperiodic tasks.
2. Whenever the system is idle (periodic and aperiodic queues
are empty) and server has budget then budget is consumed at
the rate of one per unit time.

4.2 Replenishment rule
 For budget1:
The budget1 of the server is set to ݍ௦ at time instant ݌ܭ௦, for ܭ
=0, 1, 2, 3,……..and ݌௦ is the period of server.In other word
fresh budget1 "ݍ௦" is replenished at every period ݌௦ of the
server.
 For budget2:
1. The budget is replenished at every integral multiple to the
period ሺ݌௟ሻ of lowest priority periodic task.
2. Budget2 of is set to laxity of that lowest priority periodic
task released at replenishment time.
3. Laxity of the lowest priority release τ୪

୨ is computed using
equation (1)
laxity τ୪

୨ ൌ d୪ െ e୪ െ ∑ ሺڿjd୪ p୩⁄ ۀ െ ሺjڿ െ 1ሻd୪ p୩⁄ ሻۀ כ ሺe୩ሻ୩஫τಹ׫τ౩ (1)

Where τு is the set of all higher priority tasks released
between release time of ߬௜

௝ and its deadline and ݆ ൌ
1, 2, 3, … … … … . Lہ p୪⁄ .ۂ
The proposed multi bandwidth preserving server defers the
unused budget up to its expiry time. Theorem has been
formulated to ensure feasibility of periodic tasks at run time
with enhanced budget.
Theorem 1:
In multi budget bandwidth preserving server having fixed
budget governed by periodic replenishment time, and variable
budget computed on the basis of laxity of lowest priority
periodic task, feasibility of periodic task set is retained at run
time iff waiting time ௟ܹ

௝ for
݆௧௛ ݇ݏܽݐ ܿ݅݀݋݅ݎ݁݌ ݕݐ݅ݎ݋݅ݎ݌ ݐݏ݁ݓ݋݈ ݂݋ ݁ݏ݈ܽ݁݁ݎ ߬௟ is not more
than ݀௟ െ ݁௟.

Proof: when j୲୦ release of task τ୪ is comes with all higher
priority periodic release along with the server in this case the
finish time for the j୲୦release of task τ୪ is maximum and
completed within their deadline then all periodic task is also
schedulable. Since we are using fixed priority rate monotonic
first algorithm so all the higher priority task released between
the release time of ߬௟

௝ and its deadline are must be completed
up to their respective deadline if we ensure the feasibility of
j୲୦ release of task τ୪
The maximum waiting time for j୲୦ release of a task τ୪ will be
the sum of execution time of all higher priority periodic tasks
released between the release time of ߬௟

௝ and the deadline of ߬௟
௝.

Mathematically,
W୧

୨ ൌ ∑ ሺڿj כ d୪ p୩⁄ ۀ െ ሺjڿ െ 1ሻd୪ p୩⁄ ሻۀ כ ሺe୩ሻ୩஫τಹ׫τ౩ ൅ laxityτ୪
୨

(2)
For ensuring feasibility of τ୪

୨, wait time W୧
୨ not more than

d୪ െ e୪
Mathematically,
W୪

୨ ൌ d୪ െ e୪ (3)
Substitute the value of W୧

୨ from equation 2 into equation 3, we
get
∑ ሺڿj כ d୪ p୩⁄ ۀ െ ሺjڿ െ 1ሻd୪ p୩⁄ ሻۀ כ ሺe୩ሻ୩஫τಹ׫τ౩ ൅ laxityτ୪

୨ ൌ d୪ െ e୪ ,
put the value of laxityτ୪

୨ from equation 1. We get,
∑ ሺڿj כ d୪ p୩⁄ ۀ െ ሺjڿ െ 1ሻd୪ p୩⁄ ሻۀ כ ሺe୩ሻ୩஫τಹ׫τ౩ ൅ d୪ െ e୪ െ
∑ ሺڿj כ d୪ p୩⁄ ۀ െ ሺjڿ െ 1ሻd୪ p୩⁄ ሻۀ כ ሺe୩ሻ୩஫τಹ׫τ౩ ൌ d୪ െ e୪
First and fourth terms are cancelled, we get, LHS = RHS,
hence, proved.

Offline approach for consumption of budget 1
The proposed multi budget band width preserving server
improves the quality of service (QoS) in terms of
responsiveness and number of aperiodic tasks completed up to
their respective deadline. This is a result of laxity based
budget pattern and improved priority in case server is
consuming budget2. The scheduling algorithm for schedule
periodic tasks along with the aperiodic by using the proposed
multi budget band width preserving server (MBBPS) is
summarized as below.

MBBPS Algorithm (task set T= ሼૌ૚, ૌ૛, ૌ૜ … ૌ׫ ܖ ૌܛሽሻ
// periodic task set T is union of periodic tasks and server ሺτୱሻ.
// critical instance release of tasks in T is considered
Begin
1. Check the feasibility of tasks in T using fixed priority rate
monotonic first algorithm.
2. for ܬ௧௛ release of ௟ܶ where ௟ܶ is the lowest priority task in the
periodic task set ܶ and ݆ ൌ 0,1,2 … .௟݌/ܮ
Do
 a. allocate budget1 of ݍ௦
 b.expiry_time_budget1=replenishment time + period of
 replenishment
 c. next_replanishment _time_budget1 = expiry_time_budget1
 d Compute the ݈ܽ߬ݕݐ݅ݔ௟

௝ using equation 1
 e. expiry_time_budget2= replenishment time + deadline of lowest
 priority task.
 f. next_ replenishment _time_budget2=next release of lowest
 priority periodic task.
 g. Formation of budget pattern from one hyperperiod to another
 hyperperiod
 While (aperiodic queue is not empty)
 If ሺݐ݁݃݀ݑܾ ݈ܽݐ݋ݐ ൐ 0ሻ
 If(݁1ݐ݁݃݀ݑܾ_݁݉݅ݐ_ݕݎ݅݌ݔ ൑ 1 ݐ݁݃݀ݑܾ && 2ݐ݁݃݀ݑܾ_݁݉݅ݐ_ݕݎ݅݌ݔ݁ ൐ 0ሻ
 Consume budget 1 first at server assigned priority in offline
 followed by the budget2 at highest priority as per as the
 consumption rule
 Else
 Consume budget 2 first at highest priority followed by the
 budget1 at server assigned priority in offline and consume as
 per as the consumption rule
 Else
 Aperiodic task is waiting for the next replenishment of
 budget 1 and budget 2which is earlier.
 End if
 End if
 End for
End
The effectiveness of proposed approach can be observed in the
example 1.
Example1: Considering a periodic task set T ൌ ሼτଵ, τଶሽ ൌ
 ሼ൏ ݁୧ , p୧, d୧, ൐: ൏ 12, 20, 20 ൐, ൏ 6,60, 60 ൐ ሽ and
deferrable server having attribute ૌܛ ൌ ሺݍ௦, ,௦ሻ =ሺ6݌ 30ሻ. The
four aperiodic tasks A1, A2 and A3 A4 arrives at times 12, 34,
72 and 92 with their respective execution time 8.0, 8.0, 2.0 and
12.0. Their respective deadlines are 34, 77, 80 and 118 units.

The schedule for deferrable server (DS) [7] and proposed
multi budget bandwidth preserving server (MBBPS) are
shown in figure 1 and figure 2 respectively. Here, at time t=0,
budget1=6 units is replenished. The laxity of τଶ

ଵ is 6 units
(computed using equation 1) as a result budget 2=6 units is
available at time t=0. That is, for MBBPS, the total budget
(sum of budget 1 and budget 2) available at t=0 is 12 units
against 6 units budget is available in case of existing DS. The
expiry times for budget 1and budget 2 are 30 and 60
respectively. Thus, consumption of budget 1 is preferred over
budget 2 as expiry time of budget is less than budget 2.

 On the arrival of first aperiodic task, A1, at t=12, τଶ
ଵ

and A1 are available in periodic and aperiodic queues
respectively. As priority of server is more than priority of τଶ,
A1 starts executing with consumption of budget 1 and its
budget 1 exhaust at t=18. Now server starts consuming budget
2 with raised (highest) priority and complete A1 at t=20.
While, having unused budget2 of amount 4 units. This unused
budget is retained up to its expiry time t=60. The next
replenishment time of budget 1 is t=30, so in the interval 30 to
60, 10 units of budget is available for the case of MBBPS
against only 6 units is available in DS [7]. That is, in MBBPS
each interval of length equal to hyperperiod (60) amount of
total budget available is 18 units as compared to 12 units’
budget in DS. The modified approach not only reduces the
average response time of aperiodic tasks but also reduces the
rejection ratio of aperiodic tasks to improve the quality of
service (QoS). Besides reduction in response time and
rejection ratio of aperiodic task it also reduces idle time of the
system giving improved system utilization. The effectiveness
of proposed approach has been summarized in table 1.

Thus, it can be observed from example that proposed multi
budget bandwidth preserving server improve the quality of
service (QoS) in term of better responsiveness of aperiodic
task and accept more number of aperiodic tasks while
retaining feasibility of periodic tasks. The next section deals
with performance measurement of multi budget bandwidth
preserving server through simulations.

5. SIMULATION RESULTS AND
DISCUSSION

In this section simulation of synthesized task set are performed
to evaluate the performance of the proposed multi budget
bandwidth preserving server, with exiting deferrable
bandwidth preserving server. Here, we compare the
performance of multi budget bandwidth preserving server
refer as MBBPS with exiting deferrable server refer as DS [7].
The key parameters for performance measurment are average
response time and acceptence ratio. For that we taken ten

Table 1: performance measurement of example 1
Aperiodic

task
Response time with DS

[7] / status
Response time with MBBPS

A1 22 (accepted) 8 (accepted)

A2 42 (accepted) 8 (accepted)

A3 20 (accepted) 6 (accepted)

A4 64 (rejected) 12 (accepted)

Budget available within hyperperiod,

DS MBBPS
12 units 18 units

System idle time with or without budget
DS MBBPS

6 units without budget 6 units with budget
System utilization with in hyperperiod

DS MBBPS
54/60= (0.9) 58/60= (0.966)

different periodic task sets each containing eight periodic
tasks, and it is randomly generated. The other parameter of
simulation is summarized in table 2. The aperiodic task are
genearted using poision distribution and simulation is run for
10000 aperiodic tasks.

τଵ

τୱ

τଶ

τଵ

τୱ

τଶ

40 11418 54 10038 60 120 0 20 78 80 98 52

300 120 18 60 90 12 34 76 96 98 7838

20 0 4032 12 6052 72 8 92 100 112 120

Figure 1: Scheduled for existing deferrable server

Indicates the release time Indicates the finish time Indicates execution of release Indicates system idle

20 0 40 3212 60 54 72 80 92 100 116 120 104

98 0 5430 120 60 90 12 34 7820 42 72 104

11632 0 60 120 58 8078 34

Figure 2: Scheduled for proposed multi budget bandwidth preserving server

A1 A2 A3 A4

Table 2: Simulation Parameters
Parameter Condition Range
UTh Utilization
Threshold

Is assigned 0.01

ܷ ௜ Utilization Ifݑ െ ∑ ௜ିଵݑ ൒ ܷ݄ܶ the select a
uniform random number

ሺ0, ܷ െ ∑ ௜ିଵሿݑ

If ܷ െ ∑ ௜ିଵݑ ൏ ܷ݄ܶ then assign ݑ௜ ൌ ܷ െ
∑ ௜ିଵݑ

݁௜ worst case
execution time

select a uniform random number (0,100]

[௜ period select a uniform random number (0,1000݌
݀௜ deadline select a uniform random number ሾ݁௜, ௜ሿ݌
For each
periodic task set,
three periodic
loads were
chosen for
simulation

assigned 40%, 60%,80%

Aperiodic task
arrival time

Using a Poisson arrival process

Aperiodic
service times

Using exponential service time
distribution

2%, of the
server’s period

In the following section we measure the effect of variation in
aperiodic load, periodic load and server utilization on the
average response time of aperiodic task and rejection ratio of
aperiodic task.
Effect of load on Average response time of aperiodic task:

The effect of load on the average response time of aperiodic
task ca n be seen from the figure 3 figure 4 and figure 5.
Figure 3 compare the performance of proposed multi budget
bandwidth preserving server MBBPS with existing deferrable
sever DS when periodic load is 40% of total load and server is
of utilization of 0.2 and aperiodic load varies from 10% to

60%. We observe from the figure as total load increase
average response time of aperiodic task increases. when the
aperiodic load is 30% to 60% MBBPS approach have
significant reduction almost 15% in average response time of
aperiodic tasks over existing DS[7]. This is because budget 2
will be better utilized by occurrence of more aperiodic task.
While when the aperiodic load is varied from 10% to 20%
MBBPS approach have almost 5% reduction in average
response time of aperiodic tasks This is due to the most of the

time aperiodic will complete within its allotted budget i.e.
budget 1 (Qs). Because periodic load is less (40%) so it will
less interference to aperiodic task. Figure 4 compare the
performance of proposed multi budget bandwidth preserving
server MBBPS with existing deferrable sever DS when
periodic load is 60% of total load and aperiodic load varies
from 5% to 40%. In figure 3 the periodic load is fixed and it ig
40% but in figure 4 it is 60% so as the periodic load increase
the amount of budget 2 will be deceases. As aperiodic load
varied from 5% to 20% MBBPS perform almost 7% better to
the existing one. While in the figure 3 it is 5 % better because
more periodic interfere the aperiodic task so it may be budget
1 is not properly utilize so most of the time our approach
utilizes the budget 2 while when aperiodic varied from 20% to
40%, 10% improvement is received over existing one. While
in figure 5 compare the performance of proposed multi budget
bandwidth preserving server MBBPS with existing deferrable
sever DS when periodic load is 80% of total load and
aperiodic load varies from 5% to 20%. Our proposed approach

is almost 3% better over exiting one due to the amount of
budget 2 is less as compare to figure 3 and figure 4.

0

2

4

6

8

10

12

0.5 0.6 0.7 0.8 0.9A
vg

. r
es

po
ns

e
tim

e
of

 a
pe

ri
od

ic
 ta

sk

Total Load
Figure 3:Average Response time of aperiodic with

periodic load 40%

MBBPS DS
0
2
4
6
8

10
12
14
16
18
20

0.65 0.7 0.75 0.8 0.85 0.9

A
vg

. r
es

po
ns

e
tim

e
of

 a
pe

ri
od

ic
 ta

sk

Total load
Figure 4: Average Response time of aperiodic with

periodic load 60%

MBBPS DS

0

5

10

15

20

25

0.8 0.82 0.84 0.86 0.88 0.9

A
vg

. r
es

po
ns

e
tim

e
of

 a
pe

ri
od

ic
 ta

sk

Total load

Figure 5: Average Response time of aperiodic with
periodic load 80%

MBBPS DS

Effect of load on rejection ratio of aperiodic task:
The effect of load on the rejection ratio of aperiodic task can
be seen from the figure 6 figure 7 and figure 8. Figure 6
,figur7, figure 8 compare the performance of proposed multi
budget bandwidth preserving server MBBPS with existing
deferrable sever DS when periodic load is 40%, 60% and 80%
of total load and aperiodic load varies from 10% to 60% , 5%
to 40% and 5% to 20% respectively. In figure 6 when periodic

load is 40% and aperiodic varied from 10 to 20%, only 3%
more aperiodic task are accepted because most of the time
aperiodic will service by budget 1 hence, most aperiodic will
be accepted by both the approach. But when the aperiodic load
varied from 30% to 60% our approach accept 10% more
aperiodic task by assigning higher value to budget 2 as well as
better utilization of budget 2. While, in figure 7 and figure 8
almost 5% and 3% more aperiodic tasks are accepted
respectively over existing one.

Effect of server utilization on Average response time of
aperiodic task:
The effect of server utilization on the average response time of
aperiodic task can be seen from the figure 9. Figure 9 compare

the performance of proposed preemption control deferrable
server PDS with existing deferrable sever DS when periodic
load is 40% of total load and aperiodic load is 20%. It is
observed that the average response time of aperiodic task of
both approaches decreases with the increment in sever
utilization. As the server utilization increases aperiodic task
have a better opportunity to finish earlier leading to better
responsiveness to the user. At lower server utilization (0.1-
0.2) almost 10% while at utilization (0.2-0.4) 2% is
improvement is received as compare to exiting one in terms of
average response time.

0
1
2
3
4
5
6
7
8
9

0.5 0.6 0.7 0.8 0.9

%
 r

ej
ec

tio
n

of
 a

pe
ri

od
ic

 ta
sk

Total load

Figure 6: % rejection of aperiodic task with periodic load
40%

MBBPS DS

0
2
4
6
8

10
12
14
16
18

0.65 0.7 0.75 0.8 0.85 0.9

%
 r

ej
ec

tio
n

of
 a

pe
ri

od
ic

 ta
sk

Total load

Figure 7: % rejection of aperiodic taskwith periodic load
60%

MBBPS DS

0
5

10
15
20
25
30
35
40
45

0.8 0.82 0.84 0.86 0.88 0.9

%
 r

ej
ec

tio
n

of
 a

pe
ri

od
ic

 ta
sk

Total load

Figure 8: % rejection of aperiodic taskwith periodic
load 80 %

MBBPS DS

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4

A
vg

. r
es

po
ns

e
tim

e
of

 a
pe

ri
od

ic
 ta

sk

Server utalization

Figure 9:Average Response time of aperiodic with
periodic load 40% and aperiodic load 20%

MBBPS DS

6. CONCLUSION
In this paper we have proposed multi budget bandwidth
preserving server for scheduling of mixed task set. We provide
better responsiveness to aperiodic task by reducing the
response time by improving the availability of enhanced
budget through out. The improved budget and its availability
are achieved through utilizing the concept of multi budget
with deferment. Here, server maintains two types of budget
one follow periodic server while lowest priority periodic task
is source for other. The replenishment and consumption rules
have thoroughly modified to ensure feasibility of periodic
tasks with excess budget pattern. The proposed algorithm has
improvement in terms of responsiveness, budget availability
and its utilization. The examples and simulation studies has
carried out. It has been observed that the proposed scheduling
algorithm reduce the overall average response time of
aperiodic tasks is approximately 12 % at lower periodic load
(40%), 6% at medium periodic load (60%) and 3% at higher
periodic load (80%) while 7% at lower periodic load (40%),
5% at medium periodic load (60%) and 2% at higher periodic
load (80%) improvement is received for acceptance ratio of
aperiodic tasks over existing one. Thus, extensive simulation
and illustrative example shows that our proposed approach is
capable of performing better in terms of average response time
of aperiodic task as well as acceptance ratio of aperiodic task
while retaining the feasibility of periodic tasks.

 References:
[1] Lehoczky, J. E, and Ramos-Thuel, S “An optimal algorithm for
scheduling soft-aperiodic tasks in real-time systems”. In Proceedings
of Real-Time Systems Symposium, December, pp. 110-123. 1992.
[2] J. P. Lehoczky. L. Sha, and Y. Ding, “The rate monotonic
scheduling algorithm: exact characterization and average case
behavior,” in proc. 10th IEEE Real-Time Syst. Symp., 1989, pp. 166-
171.
[3] M. Joseph and P. Pandya, “Finding response times in a real-time
system,’’ Compur. J., vol. 29, no. 5, pp. 390-394, 1986.
[4] A.Burns, K.Tindell, A.J.Wellings, “Fixed Priority Scheduling
with Deadlines prior to Completion”, IEEE 1994.
[5] Lin, T. H., and Tarng, W.Scheduling periodic and aperiodic tasks
in hard real-time computing systems. In Proceedings ACM
Sigmetrics Conference on Measurement and Modeling of Computer
Systems, May, 1991, pp. 31-38.
[6] P.L., “Fixed Priority Scheduling of Periodic task sets with
arbitrary deadlines”, Proceedings 11th IEEE Real-Time Systems
Symposium, Lake Buena Vista, FL, USA, pp.201-209, December
1990
[7] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The deferrable
server algorithm for enhanced aperiodic responsiveness in hard real-
time environments,” IEEE Trans. Comput., vol. 44, no. 1, pp. 73–91,
Jan. 1995.
[8] B. Sprunt, L. Sha, and J. P. Lehoczky, “Aperiodic task scheduling
for hard real-time systems,” J. Real-Time Syst., vol. 1, no. 1, pp. 27–
60, 1989
[9] L. Abeni and G. Buttazzo, “Integrating multimedia applications in
hard real-time systems,” in Proc. IEEE Real-Time Systems Symp.,
Madrid,Spain, 1998, pp. 4–13.
[10] Jane W. S. Liu, “Real-Time Systems” Prentice Hall, 2000,
ISBN-10: 0130996513

