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Abstract 

 
This paper presents multi budget bandwidth preserving 

server (MBBPS) to improve the quality of service in terms of 
better responsiveness of the aperiodic task by utilizing the 
concept of multi budget and multi priority of the server while 
ensure the feasibility of periodic task at the same time. 
Feasibility analysis is done at offline by assigning the 
priority of periodic tasks as well as server to service the 
aperiodic tasks by fixed priority rate monotonic first 
algorithm. Theorem has been formulated to ensure the 
feasibility of the periodic tasks with enhanced budget. 
Besides providing better responsiveness to the aperiodic 
tasks, this work also improves the quality of service (QoS) by 
accepting aperiodic tasks that were rejected by the existing 
deferrable server. The complexity of proposed MBBPS 
algorithm is same as deferrable server. The extensive 
examples and simulation results illustrate that our approach 
can effectively reduce the average response time of aperiodic 
tasks as well as reduce the rejection ratio while guaranteeing 
the periodic tasks at the same time. 
 
Keywords: Real time systems, schedulability, aperiodic, rate 
monotonic first, response time. 
 
1. Introduction 

 
A real-time system is a system in which computations must 

satisfy stringent timing constraints besides providing logical 
correctness, i.e., a correct computation of the result must finish 
before its specified deadline. Failure to meet the specified 
deadline in such systems leads to catastrophic loss in case of 
hard real-time systems. A system may be classified as static or 
dynamic in nature. Static system follows fixed arrival pattern 
[1] examples of such applications include process control 
automated manufacturing system. Feasibility of static system 
can be determined through offline whereas feasibility of 
applications with random arrival patterns (termed as aperiodic 
tasks) are determine through online.  For example,   in aircraft 
control application system has to respond the pilot’s command 
while continuing to execute the tasks from air traffic controller 
for flying the airplane. The pilot commands are random in 
nature and are activated as a result of certain event such as 
variation in pressure, cloudiness, emergency landing etc. 

however the command issued by air traffic controller 
regarding of  altitude, position velocity etc are periodic in 
nature. The periodic tasks typically arise from sensor data, 
radar or control loops. Failure to complete the tasks within 
their deadline can have catastrophic loss while the aperiodic 
tasks generally arise from operator actions (pilot action) or 
random events. The problem is to service the aperiodic tasks 
as quickly as possible without jeopardizing the deadlines of 
the periodic tasks. Full guarantee can be given to fixed arrival 
pattern task while, no guarantee can be achieved for the case 
of random arrival pattern. The predictability can be used to 
measure the performance of dynamic system. More the 
predictability betters its performance. Offline feasibility 
analysis is used for static system consider worst case 
requirement in terms of execution time, arrival pattern, critical 
instance release (a task is released along with all higher 
periodic tasks) task. Thus, there is a need of recourse manager 
that gives full guarantee for static system while receiving 
better predictability for dynamic one. On the way to design 
such a system, there are two major design objectives. The first 
objective is to maintain the feasibility of periodic tasks set in 
the presence of aperiodic tasks. The second objective is to 
minimize the average response times for aperiodic tasks while 
reducing the rejection ratio of aperiodic task. The authors [5, 
7, 8, 10] have formulated the scheduling policies for both 
periodic as well as aperiodic task, but they have not 
considered additional budget apart from assigned budget at 
offline to the server.  
The next section deals with overview of existing work 
available to tackle system having both periodic and aperiodic 
tasks. 
2. Related work 
 
      This section summarises the scheduling algorithm used for 
system having a mixture of aperiodic tasks and periodic hard 
real-time tasks. Full guarantee for periodic tasks are gives 
using offline rate monotonic first [2], deadline monotonic first 
[2] over the full guarantee assigned to periodic tasks, aperiodic 
tasks are scheduled at run time. The simplest way of 
scheduling aperiodic tasks is background approach [6] where 
aperiodic task executing only when there is no periodic tasks 
available at that time. Besides honouring feasibility of periodic 
task assigned at offline, the background approach suffer 
greater set back of having either longest response time for 



aperiodic one or lesser number of aperiodic tasks completes 
within their respective deadlines. In contrast of assigning 
lower priority for aperiodic tasks than that assigned to periodic 
one, a group of researcher [1, 4, 5] assign highest priority to 
aperiodic tasks. This gives best response time for aperiodic 
tasks. However, it may leads to failure of feasibility given to 
periodic task at offline. Over these two extreme priority 
assignment approach a group of researchers [6, 7, 8] schedule 
aperiodic tasks through utilizing the concept of periodic 
budget allocation. That is, they allocate budget at fixed point 
of time and aperiodic task if available execute by consuming 
the budget. This is termed as server composed of budget 
replenishment and consumption rules. The server is 
characterized by an ordered pair ሺݍ௦,  ௦  is theݍ ௦ሻ, where݌
budget replenished at interval of ݌௦ with utilization ratio, Us ൌ
 ௦. The simplest server is the polled server (PS) [7] which݌/௦ݍ 
replenishes the budget of amount ݍ௦  at integral multiple of ݌௦ 
and process any pending aperiodic requests within the limit of 
its budget ݍ௦ . However, if no aperiodic requests are available, 
the sever immediately suspends itself until next replenishment 
time. The aperiodic request arrives just after the server has 
suspended itself (lapse the budget) has to wait till the next 
replenishment time. To incorporate the above shortcoming 
authors [7] extended polled server as deferrable server. Here, 
consumption rules of polled server has modified through the 
utilizing the concept of preserving the budget (if not consumed 
by execution of aperiodic tasks) up to next replenishment time. 
At next replenishment time fresh budget of amount ݍ௦ is 
released. Though deferrable server provides opportunities for 
execution of aperiodic task all the time provided budget is 
available however, it may accumulate budget of amount twice 
the ݍ௦  in some interval of length ݌௦ . This may leads to 
infeasibility of periodic task that were feasible without 
deferment of budget. Although the Deferrable Server 
algorithms do significantly improve aperiodic responsiveness, 
but they have several important scheduling issues for aperiodic 
tasks are not addressed by this algorithm. A lower priority 
periodic task could miss its deadline even if the total 
utilization of the system with n tasks is not greater than 0.693. 
in other word a lower-priority periodic task could miss its 
deadline even if the total utilization of the system with n tasks 
is not greater than   nሺ2

భ
౤ െ 1ሻ.  

This paper proposed a scheduling algorithm provide fast 
responsiveness to aperiodic tasks while still ensure the 
feasibility of the periodic tasks at a high level of periodic tasks 
utilization. The proposed algorithm, called multi budget 
bandwidth preserving server (MBBPS), is extension of 
existing deferrable server which is able to substantially reduce 
the response time of aperiodic tasks by additional budget apart 
from assigned budget and improve the priority of the server 
for the case when server is consuming additional budget. 
Besides providing better responsiveness to the aperiodic tasks, 
this work improves the quality of service (QoS) by accepting 
aperiodic tasks previously rejected by the existing techniques 
due to lacking of budget and their replenishment and 
consumption rule. Theorem 1 has been formulated to ensure 
the feasibility of the periodic tasks. The proposed multi budget 

bandwidth preserving server has additional feature to provide 
better quality of service (QoS), predictable behaviour, and 
ease of implementation. The rest of the paper is organized as 
follows: in section 3, we describe our system model, 
terminologies used. Section 4 elaborates our proposed 
approach with feasibility analysis followed by results and 
analysis in section 5. Finally, paper concludes with section 6. 

3. SYSTEM MODEL 
 
     This system deals with fixed arrival pattern periodic tasks 
along with random arrival pattern of aperiodic tasks. The 
feasibility of periodic tasks is determined as offline using 
static priority assignment technique, Rate monotonic first 
[2].The rate monotonic algorithm assigns priorities in inverse 
relation to task periods, that is the shorter the task’s period, the 
higher the task’s priority. In case two tasks have same priority 
any one can be given higher priority. The priority assigned to 
server is the priority for execution of aperiodic tasks limiting 
to availability of budget. 
Following considerations are taken same as considered in [7]  
1. System consists of n independent periodic tasksτଵ, τଶ,
τଷ … τ୬. Each task τ୧ has the attributes,   worst-case execution 
timeሺe୧ሻ, periodሺp୧ሻ, and relative deadlineሺd୧ሻ. 
2. Relative deadline of a periodic task is less than or equal to 
its period. 
3. In addition to periodic there is another periodic task τୱ 
characterized by an ordered pair (ݍ௦, ݌௦) that is used to provide 
execution budget for aperiodic one. Here, ݍ௦ are amount of 
budget released with period ݌௦. 
4. All overhead for scheduling, context switching considered 
negligible. 
 

The terms used in this paper are summarized as follows  
Terms used: 
Finish Time൫࢏࢚ࢌ

൯: For ݆௧௛ release of a task ߬௜, ߬௜࢐
௝  it is the sum 

of its own requirement and requirement of the higher priority 
tasks released between ߬௜

௝ and its completion time.  

௜ݐ݂
௝ ൌ ௜݈݁ݎ

௝ ൅ ݁௜ ൅ ෍ ሺݐڿ ⁄௞݌ ሻۀ כ ݁௞

௞ୀ௜ିଵ

௞ୀଵ

௜݈݁ݎ ݁ݎ݄݁ݓ  
௝ ൑ ݐ ൑  ݌

Response Time൫߬࢏
 ൯: It is difference between the finish time࢐

and the release time of a release ߬௜
௝. Mathematically, 

௜ݏܴ݁
௝൫߬௜

௝൯ ൌ ௜ݐ݂
௝ െ ௜݈݁ݎ

௝ 
Critical instance release of taskτ࢏: It is defined as time when a 
task τ࢏ is released along with all higher priority tasks. 
Periodic task set (T): Periodic task set T is the set of union of 
n periodic task and server (τୱሻ.  
Mathematically,  T ൌ ሼτଵ, τଶ, τଷ … τ୬ሽ ׫ ሼτୱሽ 
Hyperperiod (L): it can be defined as the point after which all 
the task in the task set T are in phase and schedule pattern for 
each task is restarted i.e. the release pattern of tasks at time 
ݐ ൌ 0 is repeated at integral multiple of hyperperiod.  
Mathematically, ܮ ൌ ,ଵ݌ሺ ܯܥܮ ,ଶ݌ ଷ݌ … … … . ,௡݌  ௦ሻ݌
Budget1: budget 1 is the original fixed budget (ݍ௦) allotted to 
the server and replenished at every integral multiple of ݌௦. 



 
Budger2: budget 2 is the budget generated by laxity of a 
release of lowest priority periodic task.  
 
4. PROPOSED MULTI BUDGET 
BANDWIDTH PRESERVING SERVER 
 
     The proposed MBBPS algorithm is extension of deferrable 
server [7] through utilizing the concept of providing additional 
budget over the (budget 1) supported by deferrable server. 
This additional budget is limiting to slack available for lowest 
priority periodic task. The amount of excess budget (termed as 
budget 2) is computed for each release of lowest priority 
periodic task up to hyperperiod ሺܮሻ. Hence, budget 2 may not 
same for each release and form budget pattern of length equal 
to hyperperiod. This budget 2 pattern is repeated from one 
hyperperiod to another hyperperiod. The server is executed at 
two priority levels (assigned at offline and highest priority). 
For consumption of budget1, server executes at assigned 
priority whereas it priority is raised to highest priority for the 
case of budget2. Server loses any unused budget 1 at the end 
of the period of server and its full capacity budget1 (ݍ௦) is 
restored. However, unused budget 2 drop at the deadline of 
lowest priority release and new budget 2 will be computed to 
the laxity of the laxity of the next release. The detailed 
consumption and replenishment rules for two types of budgets 
are given below. 
 
4.1 Consumption rules: 
 
      Among two available budget, the consumption of budget is 
preferred whose expiry time is least. The expiry time of 
budget1 is next replenishment time whereas, absolute deadline 
of lowest priority task’s release is the expiry of budget2. The 
rules are as below. 
1. The budget of the server is consumed at the rate of one per 
unit time whenever the server executes aperiodic tasks. 
2. Whenever the system is idle (periodic and aperiodic queues 
are empty) and server has budget then budget is consumed at 
the rate of one per unit time. 
 
4.2 Replenishment rule 
     For budget1: 
The budget1 of the server is set to ݍ௦ at time instant ݌ܭ௦, for ܭ 
=0, 1, 2, 3,……..and ݌௦ is the period of server.In other word 
fresh budget1 "ݍ௦" is replenished at every period ݌௦ of the 
server. 
   For budget2: 
1. The budget is replenished at every integral multiple to the 
period  ሺ݌௟ሻ  of lowest priority periodic task. 
2. Budget2 of is set to laxity of that lowest priority periodic 
task released at replenishment time. 
3. Laxity of the lowest priority release τ୪

୨ is computed using 
equation (1) 
laxity τ୪

୨ ൌ d୪ െ e୪ െ ∑ ሺڿjd୪ p୩⁄ ۀ െ ሺjڿ െ 1ሻd୪ p୩⁄ ሻۀ כ ሺe୩ሻ୩஫τಹ׫τ౩    (1) 

Where τு  is the set of all higher priority tasks released 
between release time of ߬௜

௝ and its deadline and ݆ ൌ
1, 2, 3, … … … … . Lہ p୪⁄  .ۂ
The proposed multi bandwidth preserving server defers the 
unused budget up to its expiry time. Theorem has been 
formulated to ensure feasibility of periodic tasks at run time 
with enhanced budget.  
Theorem 1: 
In multi budget bandwidth preserving server having fixed 
budget governed by periodic replenishment time, and variable 
budget computed on the basis of laxity of lowest priority 
periodic task, feasibility of periodic task set is retained at run 
time iff waiting time ௟ܹ

௝ for 
݆௧௛ ݇ݏܽݐ ܿ݅݀݋݅ݎ݁݌ ݕݐ݅ݎ݋݅ݎ݌ ݐݏ݁ݓ݋݈ ݂݋ ݁ݏ݈ܽ݁݁ݎ ߬௟ is not more 
than  ݀௟ െ ݁௟.  
 
Proof: when j୲୦ release of task τ୪ is comes with all higher 
priority periodic release along with the server in this case the 
finish time for the j୲୦release of task τ୪ is maximum and 
completed within their deadline then all periodic task is also 
schedulable. Since we are using fixed priority rate monotonic 
first algorithm so all the higher priority task released between 
the release time of ߬௟

௝ and its deadline are must be completed 
up to their respective deadline if we ensure the feasibility of 
j୲୦ release of task τ୪  
The maximum waiting time for  j୲୦ release of a task τ୪ will be 
the sum of execution time of all higher priority periodic tasks 
released between the release time of ߬௟

௝ and the deadline of ߬௟
௝. 

Mathematically, 
W୧

୨ ൌ ∑ ሺڿj כ d୪ p୩⁄ ۀ െ ሺjڿ െ 1ሻd୪ p୩⁄ ሻۀ כ ሺe୩ሻ୩஫τಹ׫τ౩ ൅ laxityτ୪
୨         

(2) 
For ensuring feasibility of  τ୪

୨, wait time W୧
୨ not more than 

d୪ െ e୪  
Mathematically, 
W୪

୨ ൌ d୪ െ e୪                                                                           (3) 
Substitute the value of W୧

୨  from equation 2 into equation 3, we 
get  
∑ ሺڿj כ d୪ p୩⁄ ۀ െ ሺjڿ െ 1ሻd୪ p୩⁄ ሻۀ כ ሺe୩ሻ୩஫τಹ׫τ౩ ൅ laxityτ୪

୨   ൌ d୪ െ e୪ , 
put the value of  laxityτ୪

୨ from equation 1. We get, 
∑ ሺڿj כ d୪ p୩⁄ ۀ െ ሺjڿ െ 1ሻd୪ p୩⁄ ሻۀ כ ሺe୩ሻ୩஫τಹ׫τ౩ ൅ d୪ െ e୪ െ
∑ ሺڿj כ d୪ p୩⁄ ۀ െ ሺjڿ െ 1ሻd୪ p୩⁄ ሻۀ כ ሺe୩ሻ୩஫τಹ׫τ౩ ൌ d୪ െ e୪ 
First and fourth terms are cancelled, we get, LHS = RHS, 
hence, proved. 
 
Offline approach for consumption of budget 1 
The proposed multi budget band width preserving server 
improves the quality of service (QoS) in terms of 
responsiveness and number of aperiodic tasks completed up to 
their respective deadline. This is a result of laxity based 
budget pattern and improved priority in case server is 
consuming budget2. The scheduling algorithm for schedule 
periodic tasks along with the aperiodic by using the proposed 
multi budget band width preserving server (MBBPS) is 
summarized as below. 



 
 

MBBPS Algorithm (task set T= ሼૌ૚, ૌ૛, ૌ૜ … ૌ׫ ܖ ૌܛሽሻ 
// periodic task set T is union of periodic tasks and server ሺτୱሻ.   
// critical instance release of tasks in T is considered 
Begin 
1. Check the feasibility of tasks in T using fixed priority rate 
monotonic first algorithm. 
2. for ܬ௧௛ release of  ௟ܶ where ௟ܶ  is the lowest priority task in the 
periodic task set ܶ and ݆ ൌ 0,1,2 …   .௟݌/ܮ
Do 
  a. allocate budget1 of ݍ௦  
  b.expiry_time_budget1=replenishment time + period of  
 replenishment   
  c. next_replanishment _time_budget1 = expiry_time_budget1  
  d  Compute the ݈ܽ߬ݕݐ݅ݔ௟

௝ using equation 1 
  e. expiry_time_budget2= replenishment time + deadline of lowest 
 priority task. 
  f. next_ replenishment _time_budget2=next release of lowest  
 priority periodic task. 
  g. Formation of budget pattern from one hyperperiod to another 
 hyperperiod 
  While (aperiodic queue is not empty) 
    If ሺݐ݁݃݀ݑܾ ݈ܽݐ݋ݐ ൐ 0ሻ 
    If(݁1ݐ݁݃݀ݑܾ_݁݉݅ݐ_ݕݎ݅݌ݔ  ൑ 1 ݐ݁݃݀ݑܾ  &&  2ݐ݁݃݀ݑܾ_݁݉݅ݐ_ݕݎ݅݌ݔ݁ ൐ 0ሻ  
           Consume budget 1 first at server assigned priority in offline 
           followed by the budget2 at highest priority as per as the 
          consumption rule 
       Else 
         Consume budget 2 first at highest priority followed by the 
          budget1 at server assigned priority in offline and consume as 
          per as the consumption rule 
             Else 
                 Aperiodic task is waiting for the next replenishment of 
                 budget 1 and budget 2which is earlier. 
         End if  
      End if  
   End for 
End  
The effectiveness of proposed approach can be observed in the 
example 1. 
Example1: Considering a periodic task set T ൌ ሼτଵ, τଶሽ ൌ
 ሼ൏ ݁୧ , p୧, d୧, ൐: ൏  12, 20, 20 ൐,   ൏  6,60, 60 ൐ ሽ and 
deferrable server having attribute ૌܛ ൌ ሺݍ௦, ,௦ሻ =ሺ6݌ 30ሻ. The 
four aperiodic tasks A1, A2 and A3 A4 arrives at times 12, 34, 
72 and 92 with their respective execution time 8.0, 8.0, 2.0 and 
12.0. Their respective deadlines are 34, 77, 80 and 118 units. 
 
The schedule for deferrable server (DS) [7] and proposed 
multi budget bandwidth preserving server (MBBPS) are 
shown in figure 1 and figure 2 respectively. Here, at time t=0, 
budget1=6 units is replenished. The laxity of τଶ

ଵ is 6 units 
(computed using equation 1) as a result budget 2=6 units is 
available at time t=0. That is, for MBBPS, the total budget 
(sum of budget 1 and budget 2) available at t=0 is 12 units 
against 6 units budget is available in case of existing DS. The 
expiry times for budget 1and budget 2 are 30 and 60 
respectively. Thus, consumption of budget 1 is preferred over 
budget 2 as expiry time of budget is less than budget 2. 

 On the arrival of first aperiodic task, A1, at t=12, τଶ
ଵ 

and A1 are available in periodic and aperiodic queues 
respectively. As priority of server is more than priority of τଶ, 
A1 starts executing with consumption of budget 1 and its 
budget 1 exhaust at t=18. Now server starts consuming budget 
2 with raised (highest) priority and complete A1 at t=20. 
While, having unused budget2 of amount 4 units. This unused 
budget is retained up to its expiry time t=60. The next 
replenishment time of budget 1 is t=30, so in the interval 30 to 
60, 10 units of budget is available for the case of MBBPS 
against only 6 units is available in DS [7]. That is, in MBBPS 
each interval of length equal to hyperperiod (60) amount of 
total budget available is 18 units as compared to 12 units’ 
budget in DS. The modified approach not only reduces the 
average response time of aperiodic tasks but also reduces the 
rejection ratio of aperiodic tasks to improve the quality of 
service (QoS). Besides reduction in response time and 
rejection ratio of aperiodic task it also reduces idle time of the 
system giving improved system utilization. The effectiveness 
of proposed approach has been summarized in table 1.   

Thus, it can be observed from example that proposed multi 
budget bandwidth preserving server improve the quality of 
service (QoS) in term of better responsiveness of aperiodic 
task and accept more number of aperiodic tasks while 
retaining feasibility of periodic tasks. The next section deals 
with performance measurement of multi budget bandwidth 
preserving server through simulations. 
 
5. SIMULATION RESULTS AND 
DISCUSSION 
 
In this section simulation of synthesized task set are performed 
to evaluate the performance of the proposed multi budget 
bandwidth preserving server, with exiting deferrable 
bandwidth preserving server. Here, we compare the 
performance of multi budget bandwidth preserving server 
refer as MBBPS with exiting deferrable server refer as DS [7]. 
The key parameters for performance measurment are average 
response time and acceptence ratio. For that we taken ten 

Table 1: performance measurement of example 1 
Aperiodic 

task
Response time with DS 

[7] / status 
Response time with MBBPS

A1 22 (accepted) 8 (accepted)

A2 42 (accepted) 8 (accepted)

A3 20 (accepted) 6 (accepted)

A4 64 (rejected) 12 (accepted)

Budget available within hyperperiod, 

DS MBBPS
12 units 18 units

System idle time with or without budget 
DS MBBPS

6 units without budget 6 units with budget
System utilization with in hyperperiod 

DS MBBPS
54/60= (0.9) 58/60= (0.966)



different periodic task sets each containing eight periodic 
tasks, and it is randomly generated. The other parameter of 
simulation is summarized in table 2. The aperiodic task are 
genearted using poision distribution and simulation is run for 
10000 aperiodic tasks. 
 

  

τଵ 

τୱ 

τଶ 

τଵ 

τୱ 

τଶ 

40 11418 54 10038 60 120 0 20 78 80 98 52

300 120 18 60 90 12 34 76 96 98 7838 

20 0 4032 12 6052 72 8 92 100 112 120 

Figure 1: Scheduled for existing deferrable server 

Indicates the release time Indicates the finish time Indicates execution of release Indicates system idle 

20 0 40   3212 60 54 72 80 92 100 116 120 104 

98 0 5430 120  60 90 12 34 7820  42 72 104

11632 0 60 120 58 8078 34 

Figure 2: Scheduled for proposed multi budget bandwidth preserving server 

A1 A2 A3 A4 



Table 2: Simulation Parameters 
Parameter Condition Range
UTh Utilization 
Threshold 

Is assigned 0.01

ܷ ௜ Utilization Ifݑ െ ∑ ௜ିଵݑ ൒ ܷ݄ܶ the select a 
uniform random number  

ሺ0, ܷ െ ∑   ௜ିଵሿݑ

If ܷ െ ∑ ௜ିଵݑ ൏ ܷ݄ܶ then  assign ݑ௜ ൌ ܷ െ
∑ ௜ିଵݑ

݁௜ worst case 
execution time 

select a uniform random number (0,100]

[௜ period select a uniform random number (0,1000݌
݀௜ deadline select a uniform random number ሾ݁௜,   ௜ሿ݌
For each 
periodic task set, 
three periodic 
loads were 
chosen for 
simulation 

assigned 40%, 60%,80%

Aperiodic task 
arrival time 

Using a Poisson arrival process

Aperiodic 
service times 

Using exponential service time 
distribution 

2%, of the 
server’s period 

In the following section we measure the effect of variation in 
aperiodic load, periodic load and server utilization on the 
average response time of aperiodic task and rejection ratio of 
aperiodic task.  
Effect of load on Average response time of aperiodic task: 

The effect of load on the average response time of aperiodic 
task ca n be seen from the figure 3 figure 4 and figure 5. 
Figure 3 compare the performance of proposed multi budget 
bandwidth preserving server MBBPS with existing deferrable 
sever DS when periodic load is 40% of total load and server is 
of utilization of 0.2 and aperiodic load varies from 10% to 

60%. We observe from the figure as total load increase 
average response time of aperiodic task increases. when the 
aperiodic load is 30% to 60% MBBPS approach have  
significant reduction almost 15%  in average response time of 
aperiodic tasks over existing DS[7]. This is because budget 2 
will be better utilized by occurrence of more aperiodic task. 
While when the aperiodic load is varied from  10% to 20% 
MBBPS approach have  almost 5% reduction  in average 
response time of aperiodic tasks This is due to the most of the 

time aperiodic will complete within its allotted budget i.e. 
budget 1 (Qs). Because periodic load is less (40%) so it will 
less interference to aperiodic task. Figure 4 compare the 
performance of proposed multi budget bandwidth preserving 
server MBBPS with existing deferrable sever DS when 
periodic load is 60% of total load and aperiodic load varies 
from 5% to 40%. In figure 3 the periodic load is fixed and it ig 
40% but in figure 4 it is 60% so as the periodic load increase 
the amount of budget 2 will be deceases. As aperiodic load 
varied from 5% to 20% MBBPS perform almost 7% better to 
the existing one.  While in the figure 3 it is 5 % better because 
more periodic interfere the aperiodic task so it may be budget 
1 is not properly utilize so most of the time our approach 
utilizes the budget 2 while when aperiodic varied from 20% to 
40%, 10% improvement is received over existing one. While 
in figure 5 compare the performance of proposed multi budget 
bandwidth preserving server MBBPS with existing deferrable 
sever DS when periodic load is 80% of total load and 
aperiodic load varies from 5% to 20%. Our proposed approach 

is almost 3% better over exiting one due to the amount of 
budget 2 is less as compare to figure 3 and figure 4. 
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Effect of load on rejection ratio of aperiodic task: 
The effect of load on the rejection ratio of aperiodic task can 
be seen from the figure 6 figure 7 and figure 8. Figure 6 
,figur7, figure 8 compare the performance of proposed multi 
budget bandwidth preserving server MBBPS with existing 
deferrable sever DS when periodic load is 40%, 60% and 80% 
of total load and aperiodic load varies from 10% to 60% , 5% 
to 40% and 5% to 20% respectively. In figure 6 when periodic 

load is 40% and aperiodic varied from 10 to 20%, only 3%  
more aperiodic task are accepted because most of the time 
aperiodic will service by budget 1 hence, most aperiodic will 
be accepted by both the approach. But when the aperiodic load 
varied from 30% to 60% our approach accept 10% more 
aperiodic task by assigning higher value to budget 2 as well as 
better utilization of budget 2. While, in figure 7 and figure 8 
almost 5% and 3% more aperiodic tasks are accepted 
respectively over existing one. 
 
 

Effect of server utilization on Average response time of 
aperiodic task: 
The effect of server utilization on the average response time of 
aperiodic task can be seen from the figure 9. Figure 9 compare 

the performance of proposed preemption control deferrable 
server PDS with existing deferrable sever DS when periodic 
load is 40% of total load and aperiodic load is 20%. It is 
observed that the average response time of aperiodic task of 
both approaches decreases with the increment in sever 
utilization. As the server utilization increases aperiodic task 
have a better opportunity to finish earlier leading to better 
responsiveness to the user. At lower server utilization (0.1- 
0.2) almost 10% while at utilization (0.2-0.4) 2% is 
improvement is received as compare to exiting one in terms of 
average response time. 
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6.  CONCLUSION 
In this paper we have proposed multi budget bandwidth 
preserving server for scheduling of mixed task set. We provide 
better responsiveness to aperiodic task by reducing the 
response time by improving the availability of enhanced 
budget through out. The improved budget and its availability 
are achieved through utilizing the concept of multi budget 
with deferment. Here, server maintains two types of budget 
one follow periodic server while lowest priority periodic task 
is source for other. The replenishment and consumption rules 
have thoroughly modified to ensure feasibility of periodic 
tasks with excess budget pattern. The proposed algorithm has 
improvement in terms of responsiveness, budget availability 
and its utilization. The examples and simulation studies has 
carried out. It has been observed that the proposed scheduling 
algorithm reduce the overall average response time of 
aperiodic tasks is approximately 12 % at lower periodic load 
(40%), 6% at medium periodic load (60%) and 3% at higher 
periodic load (80%) while 7% at lower periodic load (40%), 
5% at medium periodic load (60%) and 2% at higher periodic 
load (80%) improvement is received for acceptance ratio of 
aperiodic tasks over existing one. Thus, extensive simulation 
and illustrative example shows that our proposed approach is 
capable of performing better in terms of average response time 
of aperiodic task as well as acceptance ratio of aperiodic task 
while retaining the feasibility of periodic tasks. 
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