
Sharing Resources among Independently-developed Systems on Multi-cores ∗

Farhang Nemati, Moris Behnam, Thomas Nolte
Mälardalen Real-Time Research Centre, Västerås, Sweden

{farhang.nemati, moris.behnam, thomas.nolte}@mdh.se

Abstract

In this paper we propose a synchronization protocol for
resource sharing among independently-developed real-time
systems on multi-core platforms. The systems may use dif-
ferent scheduling policies and they may have arbitrary pri-
ority settings. When using this synchronization protocol
each processor is abstracted by an interface which consists
of a set of requirements. A requirement depends only on
the worst-case time the processor may wait for resources,
i.e., the maximum number of times that the resources can be
blocked by other processors. We have derived schedulabil-
ity conditions for each processor and based on the analysis
we extract the interface of the processor. In this paper, we
focus on the cases when each system is allocated on a ded-
icated processor.

1 Introduction
The availability of multi-core platforms has attracted a

lot of attention in multiprocessor embedded software anal-
ysis and runtime policies, protocols and techniques. As
the multi-core are to be the defacto processors, the indus-
try must cope with a potential migration towards multi-core
platforms.

An important issue for industry when it comes to migra-
tion to multi-cores is the existing systems. When migrating
to multi-cores it should be possible that several of these sys-
tems coexist on a shared multi-core platform. The (often
independently developed) systems may have been devel-
oped with different techniques, e.g., several real-time sys-
tems that will coexist on a multi-core may have different
scheduling policies. However, when the systems coexist
on the same multi-core platform they may share resources.
Two challenges to overcome when migrating existing sys-
tems to multi-cores are how to migrate the independently
developed systems with minor changes, and how to abstract
systems sufficiently, such that the systems do not need to be
aware of techniques used in other systems.

∗This work was partially supported by the Swedish Foundation for
Strategic Research (SSF), the Swedish Research Council (VR), and
Mälardalen Real-Time Research Centre (MRTC)/Mälardalen University.

On the other hand, looking at industrial systems, to speed
up their development, it is not uncommon that the large and
complex systems are divided into several semi-independent
subsystems each of which is developed independently. The
subsystems which may share resources will eventually be
integrated and coexist on the same platform. This issue has
got attention and has been studied in the uniprocessor do-
main [4, 15, 21]. An interesting challenge is to extend this
issue to multi-cores. Hence, new techniques are sought for
scheduling semi-independent subsystems.

Looking at current state-of-the-art, two main approaches
for scheduling real-time systems on multiprocessors (multi-
cores) exist; global and partitioned scheduling [2, 3, 13, 17].
Under global scheduling, e.g., Global Earliest Deadline
First (G-EDF), tasks are scheduled by a single scheduler
and each task can be executed on any processor, i.e., migra-
tion of tasks among processors is permitted. Under parti-
tioned scheduling, tasks are statically assigned to processors
and tasks within each processor are scheduled by a unipro-
cessor scheduling protocol, e.g., Rate Monotonic (RM) and
Earliest Deadline First (EDF). Partitioned scheduling poli-
cies have been used more often and are supported widely
by commercial real-time operating systems [26], inherent in
their simplicity, efficiency and predictability. Besides, the
well studied uniprocessor scheduling and synchronization
techniques can be reused for multiprocessors with fewer
changes (or no changes).

In this paper, we focus on the partitioned scheduling pol-
icy and synchronization protocols. Allocation of indepen-
dently developed systems on a multi-core architecture may
have following alternatives: (i) One processor includes only
one system, (ii) one processor may contain several systems,
(iii) a system may be distributed over more than one pro-
cessor. In this paper, we concentrate on the first alternative
in which each system is allocated on a dedicated processor
(core). For the second alternative, the well studied tech-
niques for integrating independently developed systems on
uniprocessors can be used. These techniques usually trans-
form each system into the abstraction of a task, hence from
outside of the containing processor there will be one system
(task set) on the processor. Thus by reusing uniprocessor
techniques in this area the second alternative becomes the

same as the first alternative. However, extension to the third
alternative remains as a future work.

1.1 Contributions

The contributions of this paper are as follows.

• We propose a synchronization protocol for resource
sharing among independent systems on a multi-core
system, each of which allocated on a dedicated core.
We call the protocol as Multiprocessors Synchroniza-
tion Protocol for Independent Systems (MSPIS).

• For a processor we derive the resource hold time of a
global resource (i.e., a resource shared across proces-
sor) which is the maximum time that a resource can be
held by a any task on the processor. We also derive
the maximum resource wait time for a resource which
is the worst-case time that a processor may wait for a
resource to be available.

• We derive the schedulability conditions and based on
that we extract an interface for each processor which
abstracts the system on the processor. The interface is a
set of requirements that should be satisfied for the pro-
cessor to be schedulable. A requirement indicates that
an expression (e.g., summation) of resource wait times
of one or more global resources should not exceed a
certain value. Thus, the requirements in the interface
only depend on the resource maximum wait times and
hence to obtain the interface of a system, the processor
will not need any information from other processors,
e.g., scheduling protocol or priority setting policy on
other processors.

1.2 Related Work

In the context of independently-developed real-time sys-
tems (real-time open systems) on uniprocessors, a consid-
erable amount of work has been done [1, 14, 16, 20, 25, 27,
28, 30, 31, 34, 38, 37]. Hierarchical scheduling has been
studied and developed as a solution for these systems.

Hierarchical scheduling techniques have also been devel-
oped for multiprocessors (multi-cores) [12, 36]. However,
the systems (called clusters in the mentioned papers) are as-
sumed to be independent and do not share resources.

In the context of the synchronization protocols, PCP
(Priority Ceiling Protocol) [35] and SRP (Stack-based Re-
source allocation Protocol) [2] are two of the best known
methods for synchronization in uniprocessor systems.

For multiprocessor synchronization, Rajkumar et al. for
the first time proposed a synchronization protocol in [33]
which later [32] was called Distributed Priority Ceiling Pro-
tocol (DPCP). DPCP extends PCP to distributed systems
and it can be used with shared memory multiprocessors.
Rajkumar in [32] presented MPCP, which extends PCP to
multiprocessors hence allowing for synchronization of tasks

sharing mutually exclusive resources using partitioned FPS.
Lakshmanan et al. [26] investigate and analyze two alterna-
tives of execution control policies (suspend-based and spin-
based remote blocking) under MPCP. However, MPCP can
be used for one single system whose tasks are distributed
on processors. Furthermore for schedulability analysis of
each processor, detailed information of tasks allocated on
other processors (e.g., priority, the number of global critical
section, etc) may be required. Under MSPIS the schedula-
bility test of a system on a processor is represented as its
interface (requirements) which can be obtained without any
information from other systems (even before the systems
are developed) which will be allocated on other processor.

Gai et al. [23, 24] present MSRP (Multiprocessor SRP),
which is a P-EDF (Partitioned EDF) based synchronization
protocol for multiprocessors and is an extension of SRP to
multiprocessors.

Lopez et al. [29] present an implementation of SRP un-
der P-EDF. Devi et al. [18] present a synchronization tech-
nique under G-EDF. The work is restricted to synchroniza-
tion of non-nested accesses to short and simple objects, e.g.,
stacks, linked lists, and queues. In addition, the main focus
of the method is soft real-time systems.

Block et al. [8] present Flexible Multiprocessor Locking
Protocol (FMLP) which is the first synchronization protocol
for multiprocessors that can be applied to both partitioned
and global scheduling algorithms, i.e., P-EDF and G-EDF.
An implementation of FMLP has been described in [10].
Brandenburg and Anderson in [9] have extended partitioned
FMLP to the fixed priority scheduling policy and derived
a schedulability test for it. In a later work [11], the same
authors have compared DPCP, MPCP and FMLP.

In all the aforementioned existing synchronization pro-
tocols on multi-cores (multiprocessors) it is assumed that
the tasks of a system are distributed among processors and
all processors use the same scheduling policy (e.g., EDF
or RM) is used. MSPIS, however, allows each processor
use its own scheduling policy. Recently, in industry, co-
existing of several separated systems on a multi-core plat-
form (called virtualization) has been considered to reduce
the hardware costs [6]. MSPIS seems to be a natural fit for
synchronization under virtualization of real-time systems
on multi-cores.

Recently, Easwaran and Andersson have proposed a syn-
chronization protocol [19] under the global fixed priority
scheduling protocol. In this paper, for the first time, the
authors have derived schedulability analysis of the Prior-
ity Inheritance Protocol (PIP) under global scheduling al-
gorithms.

2 Task and Platform Model
In this paper, we assume that the multiprocessor (multi-

core) platform is composed of identical, unit-capacity pro-
cessors (cores) with shared memory. Each processor con-

tains a different task set (system). The scheduling tech-
niques used on each processor may differ from other pro-
cessors, e.g., a processor can be scheduled by fixed priority
scheduling (e.g., RM) while another processor is scheduled
by dynamic priority scheduling (e.g., EDF), which means
the priority of tasks are local to each processor.

In this paper, we focus on schedulability analysis of pro-
cessors with fixed priority scheduling. A task set allocated
on a processor, Pk, is denoted by τPk

and consists of n spo-
radic tasks, τi(Ti, Ci, ρi, {Csi,q,p}) where Ti denotes the
minimum inter-arrival time between two successive jobs of
task τi with worst-case execution time Ci and ρi as its pri-
ority. A task, τi has a higher priority than another task, τj ,
if ρi > ρj . The tasks on processor Pk share a set of re-
sources, RPk

, which are protected using semaphores. The
set of shared resources (RPk

) consists of two sets of differ-
ent types of resources; local and global resources. A local
resource is only shared by tasks on the same processor while
a global resource is shared by tasks on more than one pro-
cessor. The sets of local and global resources accessed by
tasks on processor Pk are denoted by RL

Pk
and RG

Pk
respec-

tively. The set of critical sections, in which task τi requests
resources in RPk

is denoted by {Csi,p,q}, where Csi,q,p is
the pth critical section of task τi in which the task locks
resource Rq ∈ RPk

and |Csi,q,p| indicates the worst case
execution time of the critical section. In this paper, we fo-
cus on non-nested critical sections (the common case). The
deadline of each job is equal to Ti. A job of task τi, is spec-
ified by Ji. The utilization factor of task τi is denoted by ui

where ui = Ci/Ti.

3 The Multiprocessors Synchronization Pro-
tocol for Independent Systems (MSPIS)

3.1 Assumptions and terminology

We assume that systems are already allocated on proces-
sors and that each processor may use a different scheduling
policy. The tasks within a system allocated on a processor
do not need any information about the tasks within other
systems allocated on other processors, neither do they need
to be aware of the scheduling policies on other processors.

Definition 1: Resource Hold Time of a global resource Rq

by task τi on processor Pk is denoted by RHTq,k,i and is
the maximum duration of time the global resource Rq can
be locked by τi. Consequently, the resource hold time of
a global resource, Rq , by processor Pk (i.e., the maximum
duration of time Rq is locked by any task on Pk) denoted
by RHTq,k, is as follows:

RHTq,k = max
τi∈τPk

(RHTq,k,i) (1)

The concept of resource hold times for composing multiple
independently-developed real-time applications on unipro-
cessors has been studied previously [22, 5], however, on a

multi-core (multiprocessor) platform we compute resource
hold times for global resources in a different way (Sec-
tion 3.4.1).
Definition 2: Maximum Resource Wait Time for a global
resource Rq on processor Pk, denoted as RWTq,k, is the
worst-case time that Rq is held by other processors than Pk,
i.e., RWTq,k is the maximum duration of time in which Rq

is not available to any task on Pk.
Definition 3: A processor, Pk, is represented by an inter-
face Qk which is a set of l requirements where l is the num-
ber of tasks on Pk that request at least one global resource,
i.e., each requirement is extracted from a task requesting
one or more global resources (Section 4). For a proces-
sor, Pk, to be schedulable all requirements in Qk should
be satisfied. A requirement, rs ∈ Qk, is the maximum
resource wait times of one or more global resources, e.g.,
r1 ≡ RWT1,k+RWT3,k ≤ 10 indicates that the maximum
waiting time for both global resources R1 and R3 should
not exceed 10 time units. The interface (requirements) of
each processor is extracted from the schedulability analysis
of the processor independently.

3.2 General Description of MSPIS

The MSPIS manages intra-processor and inter-processor
global resource requests; the tasks within a processor re-
questing a global resource are enqueued in a local FIFO
queue (intra-processor queuing) and the processors request-
ing the global resource are enqueued in a global FIFO queue
(inter-processor queuing). It is also possible to use a lo-
cal prioritized queue instead of FIFO, but the schedulability
analysis will be more complex. On the other hand no con-
crete research results have shown which type of queues is
absolutely better for queuing on global resources. For the
global queue, however, FIFO fits well since prioritizing the
systems on processors may not make sense. Besides, the
maximum resource wait times may not easily be calculated
if the prioritized global queue is used. Figure 1 shows an
overview of how the protocol works. Each processor can
hold a global resource.
Definition 4: A global resource, Rq , is available to a pro-
cessor, Pk, for at most Zq,k time units called budget which
should be greater or equal to RHTq,k, i.e., RHTq,k ≤ Zq,k.
The resource is available to the processor at the head of the
global queue and the processor holds the resource until the
budget is depleted or unless there are no tasks in the local
queue. Considering each processor, Pk, has a limited bud-
get (Zq,k) on a global resource, Rq , the worst-case waiting
time (RWTq,k) for Pk to wait until Rq becomes available is
bounded as a summation of Rq budgets of other processors
sharing Rq:

RWTq,k =
∑

Pl 6=Pk

Zq,l (2)

 �� �2 �1 … �3 Local Queue �� �2 �5 … �1 Local Queue ��
Global Queue

≤ �� ,� ≤ ���� ,�
�� Local Queue �� �� … … ≤ ���� ,� ,� … …

Figure 1: MSPIS

3.3 MSPIS Rules

The MSPIS rules are as follows:
Rule 1: Access to local resources is controlled by a unipro-
cessor synchronization protocol, e.g. PCP or SRP.
Rule 2: For a processor, Pk, a ceiling is defined as
ceil(Pk) = max {ρi|τi ∈ Pk} if PCP is used for local re-
sources (in this paper, we assume that PCP is used). How-
ever, in the case of using SRP for local resources the ceiling
of the processor is defined as ceil(Pk) = max {λi|τi ∈ Pk}
where λi is the static preemption level of τi.
Rule 3: A task, τi, within a global critical section (gcs) in
which τi accesses a global resource can only be preempted
by another task within a gcs. This bounds blocking times
on a global resource as a function of only global critical
sections. The concept that the blocking time on global re-
source should only depend on the duration of global criti-
cal sections is a basic issue in the existing multiprocessor
synchronization protocols, e.g., MPCP, MSRP [32, 24]. To
satisfy this criteria the priority of a task within a gcs has
to be greater than ceil(Pk). Thus the priority of a task, τi
within a gcs in which τi accesses a global resource is raised
to ρi + ceil(Pk). This means that a task within a gcs can
only be preempted by a higher priority task within a gcs.
Rule 4: In this paper, for a processor Pk accessing a global
resource we assume Zq,k = RHTq,k (how to fairly dis-
tribute the budget among processors remains as a future
work). The processors requesting a global resource are lo-
cated in the global FIFO queue of the resource; when a task
on a processor, Pk, requests a global resource, Rq , if Rq is
not available to Pk it will be added to the global queue (if
Pk is not already in the queue). When Rq becomes avail-
able to Pk it can lock Rk for at most Zq,k time units.
Rule 5: When a global resource, Rq , is available to proces-
sor Pk the task from the top of the local FIFO queue of Rq

locks it. The total duration of locking Rq should not exceed
Zq,k, hence there should exist a runtime mechanism to fig-
ure out the remaining budget of any global resource, Rq , at
any time instant, t. We denote the remaining budget at time
instant t by Z ′

q,k(t). When a global resource, Rq at time
instant t becomes available to task τi it will be eligible to
access the resource if RHTq,k,i ≤ Z ′

q,k(t) otherwise Rq is
released and becomes available to the next processor in the

global queue. In this case Pk is deleted from the head and
added to the end of the global queue, and τi will continue
suspending and remains at the top of the local queue until
next time Rq becomes available to Pk. Inspired by a similar
definition in [4] we call the extra overhead introduced to τi
by this suspension as self-blocking time. When τi requests
Rq , if it is not available to the processor or if it is locked by
another task on the processor, τi suspends and is added to
the end of Rq’s local queue.
Rule 6: When τi on Pk releases global resource Rq at time
instant t, if there is no more tasks waiting in Rq’s local
queue, Pk releases Rq and Pk is deleted from Rq’s global
queue even if the Pk’s budget of Rq is not finished (i.e.,
Z ′
q,k(t) > 0).

3.4 Schedulability Analysis

3.4.1 Computing Resource Hold Times

Supposing a task set on a processor is schedulable, we
describe how to compute the global resource hold time by
a task and consequently by a processor.

LEMMA 1: A task, τi, within a gcs accessing a global
resource, Rq, can be interfered with at most one gcs per
each higher priority task, τj in which τj accesses a global
resource other than Rq .

Proof: For a gcs of τi to be interferenced by two gcses
(and more) of a higher priority task, τj , τj needs to enter
a non-critical section before entering the second gcs. On
the other hand, τi within a gcs has a priority higher than
any task within a non-critical section (Rule 3). Considering
that τi within the gcs can only be preempted by other tasks
within gcses, τj will be preempted after exiting the first
gcs and will not have any chance to enter the second gcs as
long as τi has not exited its gcs.

Based on LEMMA1, the maximum interference from the
higher priority tasks (within gcses) to any gcs of task τi in
which it accesses a global resource Rq is denoted as Hi,q

and is computed as follows.

Hi,q =
∑

ρi<ρj

max
Rl∈RG

Pk
,l 6=q

∀p

{|Csj,l,p|}

Consequently the resource hold time of global resource Rq

by task τi is computed as follows:

RHTq,k,i = max
∀s

{|Csi,q,s|}+Hi,q (3)

3.4.2 Blocking times under MSPIS

In this section we describe the possible situations that a task
τi can be blocked by other tasks on the same processor as
well as by other processors. Each processor can contain a
different system and may have a different scheduling policy.

Thus the worst case blocking overhead (i.e., remote block-
ing) from other processors on a global resource introduced
to tasks on a processor, Pk, is abstracted by RWTq,k (Defi-
nition 1).

The possible blocking terms that a task τi on a processor
Pk may experience are as follows:

1. Suppose nG
i is the number of gcses of τi. Each time τi

is blocked on a global resource and suspended, a lower
priority task may arrive and lock a local resource and
may block τi when it resumes. This scenario can hap-
pen up to nG

i times. On the other hand, according to
PCP (and SRP), task τi can be blocked on a local re-
source by at most one critical section of a lower prior-
ity task which has arrived before τi. This means that
τi can be blocked at most nG

i + 1 times on local re-
sources. Thus, the worst case blocking time on local
resources (denoted by Bi,1) is calculated as follows:

Bi,1 = (nG
i + 1) max

ρj≤ρi

Rl∈RL
Pk

, ρi≤ceil(Rl)

∀ p

{|Csj,l,p|}

(4)
where ceil(Rl) = max {ρi| τi uses Rl}

2. Before τi arrives or each time it suspends on a global
resource, a lower priority task τj may access a global
resource (enters a gcs) and preempt τi in its non-gcs
sections after it arrives or resumes. Since τi can sus-
pend on global resources up to nG

i times, this type of
preemption can occur at most nG

i + 1 times (the ad-
ditional preemption can happen by τj arriving and en-
tering a gcs before τi arrives). On the other hand τj
can preempt τi at most nG

j times. Hence preemption
from τj can happen at most min {nG

i + 1, nG
j } times

and thus the worst case blocking time introduced by
τj is min {nG

i + 1, nG
j } max

Rq∈RG
Pk∀ p

{|Csj,q,p|}. Thus, the

worst case blocking time of this type, denoted by Bi,2

introduced by lower priority tasks is calculated as fol-
lows:

Bi,2 =∑

ρj≤ρi

(min {nG
i + 1, nG

j } max
Rq∈RG

Pk∀ p

{|Csj,q,p|}) (5)

3. When a global resource, Rq , is available to Pk (i.e.,
Z ′
q,k(t) ≥ 0), the task τj at the top of Rq’s local

queue will hold Rq at most for RHTq,k,j time units if
RHTq,k,j ≤ Z ′

q,k(t) otherwise it self-blocks and sus-
pends. In the case of self-blocking, τj will remain at
the top of the local queue for an extra duration of time
(i.e., wastes extra time units of Pk’s budget for Rq) up
to RHTq,k,j . Thus each task in the local queue may

consume up to 2RHTq,k,j of the budget (Zq,k). The
tasks in the local queue located before τi may consume
several instances of the budget. Each time the budget is
consumed the tasks in the local queue will wait for an-
other RWTq,k time units. When eventually τi is at the
top of the local queue the budget may not be enough
and τi has to wait for an additional RWTq,k time units.
Thus, the maximum number of budgets needed until τi
accesses Rq is

d
∑

τj ∈ τ(Rq,PK),
τj 6=τi

2RHTq,k,j/Zq,ke

where τ(Rq, PK) is the set of tasks on processor Pk

sharing Rq . Hence, the worst case blocking time of τi
each time it requests Rq is upper bounded by

d
∑

τj ∈ τ(Rq,PK),
τj 6=τi

2RHTq,k,j/Zq,keRWTq,k

This scenario may occur each time τi requests Rq ,
hence, the total blocking time of τi on Rq , denoted by
Bi(Rq) is as follows:

Bi(Rq) =

nG
i,qd

∑

τj ∈ τ(Rq,PK),
τj 6=τi

2RHTq,k,j/Zq,keRWTq,k (6)

The total blocking time of this type, denoted by Bi,3 is
calculated as follows:

Bi,3 =
∑

Rq∈RG
Pk

Bi(Rq)

or
Bi,3 =

∑

Rq∈RG
Pk

αq,iRWTq,k (7)

where αq,i = nG
i,qd

∑

τj ∈ τ(Rq,PK),
τj 6=τi

2RHTq,k,j/Zq,ke

which is a constant number.

The total blocking time of τi is the summation of the
three blocking terms:

Bi = Bi,1 +Bi,2 +Bi,3 (8)

Equation 7 shows that Bi,3 is a function of maximum re-
source wait times (e.g., RWTq,k) of the global resources ac-
cessed by tasks on Pk. Consequently Bi will also be a func-
tion of maximum resource wait times of global resources.
Considering that Bi,1 and Bi,2 are constant numbers, we
can rewrite Equation 8 as follows:

Bi = γi +
∑

Rq∈RG
Pk

αq,iRWTq,k (9)

where γi = Bi,1 +Bi,2.

4 Extracting the Interface of a Processor
In this section we describe how to extract the interface

(requirements) Qk of a processor Pk from the schedulability
analysis.

Each requirement in the interface specifies a criteria on
maximum resource wait times (Definition 2) of one or more
global resources. We will show how to evaluate the require-
ment of each task τi accessing global shared resources.

Starting from schedulbaility condition of τi, the maxi-
mum value of blocking time mtbti that τi can tolerate with-
out missing its deadline can be evaluated as follows.

τi is schedulable, using the fixed priority scheduling pol-
icy and executed in a single processor, if

0 < ∃t ≤ Ti rbfFP(i, t) ≤ t, (10)

where rbfFP(i, t) denotes request bound function of τi
which computes the maximum cumulative execution re-
quests that could be generated from the time that τi is re-
leased up to time t and is computed as follows.

rbfFP(i, t) = Ci +Bi +
∑

ρi≤ρj

(dt/TjeCj) (11)

By substituting Bi by mtbti in Equations 10 and 11, we
can compute mtbti as follows.

mtbti = max
0<t≤Ti

(t− (Ci +
∑

ρi≤ρj

(dt/TjeCj))) (12)

Note that it is not required to test all possible values of
t in Equation 12, and only a bounded number of values of
t that change rbfFP(i, t) should be considered (see [7] for
more details).

Equation 9 shows that the total blocking time of task τi
is a function of maximum resource wait times of the global
resources accessed by tasks on Pk. With the achieved mtbti
and Equation 9 we extract a requirement:

γi +
∑

Rq∈RG
Pk

αq,iRWTq,k ≤ mtbti (13)

and

ri ≡
∑

Rq∈RG
Pk

αq,iRWTq,k ≤ mtbti − γi (14)

The schedulability of each processor is tested by its in-
terface. A processor Pk is schedulable if all the require-
ments in Qk are satisfied. To test the requirements in Qk

we need maximum resource wait times (e.g., RWTq,k) of
global resources accessed by tasks on Pk. In this paper, we
have assumed Zq,k = RHTq,k, hence (according to Equa-
tion 2) for each global resource Rq the maximum resource
wait time is calculated as follows:

RWTq,k =
∑

Pl 6=Pk

RHTq,l (15)

5 An Example
In this section we present a simple example to illustrate

how MSPIS work.
The multiprocessor is comprised of two processors (P1

and P2) and each processor contains a system (task set).
The systems share two global resources (R1 and R2). The
tasks within the system on P1 also share a local resource
(R3). Figure 2 shows the task sets on each processor. A
lower index of a task indicates a higher priority, e.g., ρ1 >
ρ2. In this example each task accesses a resource once, i.e.,
a task has one critical section for each resource it accesses.
The length of critical sections are shown in Figure 2.

�� �1 �2 �3 �1 2 - 3 �2 3 - - �3 - 5 - �4 5 - 2 �5 - - 2
�� �1 �2 �′1 3 2 �′2 2 1 �′3 4 -

Figure 2: Task sets

Using Equation 3, resource hold times of global re-
sources R1 and R2 by tasks accessing them are as follows:
(1) on processor P1: RHT1,1,1 = 2, RHT1,1,2 = 7,
RHT1,1,4 = 14, RHT2,1,3 = 10,
(2) on processor P2: RHT1,2,1 = 3, RHT1,2,2 = 4,
RHT1,1,3 = 7, RHT2,2,1 = 2, RHT2,2,2 = 4.
Consequently, using Equation 1 resource hold times of
the global resources on each processor are as follows:
RHT1,1 = 14, RHT2,1 = 10, RHT1,2 = 7, and
RHT2,2 = 4. Figure 3 illustrates a snapshot of the tasks
initial execution on processors. The example shows the in-
teraction between tasks and their corresponding blocking on
resources:
At time instant 1, τ ′2 requests R1, and since R1 is free it
becomes available to P2 and τ ′2 will access the resource. At
this time instant τ2 on P1 requests R1 and P1 is put into
the global queue of R1. Since R1 is not available to P1, τ2
is blocked, is put into the local queue of R1 and suspends.
At time instant 3, on P2, τ ′2 releases R1. At the same time
instant τ ′1 requests and accesses R1 because R1 is still avail-
able to P2 (the budget is not finished) and τ ′1 is eligible to
access R1, i.e., at time instant 3, Z ′

1,2(3) = 7 − 2 = 5
and RHT1,2,1 ≤ Z ′

1,2(3). At this time instant on P1, τ1
requests R1 but the resource is not available to P1, hence it
is blocked, put into the local queue of R1 and suspends. At
this time P1 is not put into the global queue of R1 since P1

is already in the global queue. Similarly at time instant 4,
τ4 requests R1 and is blocked, put into the local queue and
suspends. At instant 5, τ3 accesses R2 (R2 becomes avail-
able to P1). At instant 6, R1 becomes available to P1 and
τ2 (since it is at the head of the local queue of R1) preempts
τ3 and accesses R1. At instant 7, τ ′1 requests R2. R2 is

not available, hence P2 is added to the global queue of R2

and τ ′1 is added to the local queue and suspends. At instant
9, τ ′2 also requests R2 and is added to the local queue and
suspends. At time instant 11, τ1 releases R1, at this instant
τ4 is not eligible to access R1 (RHT1,1,4 > Z ′

1,1(11)) and
should wait until next time R1 becomes available to P1. At
this instant P1 is deleted from the head of and is added to the
end of the global queue of R1 and R1 becomes available to
P2 and is accessed by τ ′3. At instant 14, R2 becomes avail-
able to P2 and τ ′1 preempts τ ′3 and accesses R2. Similarly
at instant 16, τ ′2 accesses R2. At instant 17, τ ′3 resumes and
continues accessing R1. At instant 19, τ ′3 releases R1 and
since there is no more tasks in the local queue, R1 becomes
available to P1 and is accessed by τ4.

P₁

P₂

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

τ₁τ ₂
Holding R ₃ : Blocked on R ₃ :Holding R ₁ : Blocked on R ₁ :Holding R ₂ : Blocked on R ₂ :

τ₃τ ₄τ ₅τ'₁τ’ ₂τ'₃

Self-Blocked on R ₁ :

Figure 3: MSPIS

6 Conclusion
In this paper, we have discussed that the emerging of

multi-core architectures has arisen the need for methods for
migrating existing real-time software systems to these plat-
forms. The methods should be developed to facilitate co-
existing of several independent/semi-independent real-time
systems on the same multi-core platform in the presence of
shared resources. While considerable work has been done
in the uniprocessor domain, we are not aware of any work to
support independently-developed real-time systems on the a
multiprocessor (multi-core) platform with shared resources.

In this paper, we have proposed a synchronization pro-
tocol which manages resource sharing among different sys-
tems. We have mentioned three possibilities for coexistence
of such systems on a multi-core architecture; (i) a system is
allocated on one processor, i.e., a processor contains only

one system, (ii) several systems can be allocated on the
same processor, (iii) a system is distributed on several pro-
cessors. Our proposed synchronization protocol supports
the first alternative. However, by using the uniprocessor
techniques for open systems the second alternative can be
transformed to the first alternative. Thus by combining our
protocol and uniprocessor protocols, e.g., SIRAP [4] which
is a protocol for sharing resources among semi-independent
systems (subsystems), both the first and second alternative
can be supported. Extension to the third alternative remains
as a future work.

Furthermore, we have derived schedulability analysis
under our synchronization protocol and defined an interface
for each processor as a set of requirements. A requirement
is a function of worst-case times that the processor may
wait for global resources. The processors may use differ-
ent scheduling policies and priority settings, however this
does not affect the schedulability analysis of a processor as
processors are abstracted by their interfaces.

Each processor has a budget for each global resource
which is the maximum duration of time that the processor
can hold a global resource. In this paper, we have set this
budget to its minimum value which is the worst-case time
any task on the processor can lock the resource. In the fu-
ture we will work on optimization of distributing budgets
among processors.

Another interesting future work is to study the
multiprocessor hierarchical scheduling protocols for
independent/semi-independent systems with presence of
shared resources.

References
[1] L. Almeida and P. Pedreiras. Scheduling within tempo-

ral partitions: response-time analysis and server design.
In ACM & IEEE Intl. Conf. on Embedded Software (EM-
SOFT’04), pages 95–103, 2004.

[2] T. Baker. Stack-based scheduling of real-time processes.
Journal of Real-Time Systems, 3(1):67–99, 1991.

[3] T. Baker. A comparison of global and partitioned EDF
schedulability test for multiprocessors. Technical report,
2005.

[4] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP: a
synchronization protocol for hierarchical resource sharingin
real-time open systems. In ACM & IEEE Intl. Conf. on Em-
bedded Software (EMSOFT’07), pages 279–288, 2007.

[5] M. Bertogna, N. Fisher, and S. Baruah. Static-priority
scheduling and resource hold times. In IEEE Parallel and
Distributed Processing Symposium (IPDPS’07) Workshops,
pages 1–8, 2007.

[6] C. Bialowas. Achieving Business Goals with Wind Rivers
Multicore Software Solution. Wind River white paper, 2010.

[7] E. Bini and G. C. Buttazzo. The space of rate mono-
tonic schedulability. In IEEE Real-Time Systems Symposium
(RTSS’02), pages 169–178, 2002.

[8] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson.
A flexible real-time locking protocol for multiprocessors. In

IEEE Intl. Conf. on Embedded and Real-Time Computing
Systems and Applications (RTCSA’07), pages 47–56, 2007.

[9] B. Brandenburg and J. Anderson. An implementation of the
PCP, SRP, D-PCP, M-PCP, and FMLP real-time synchro-
nization protocols in LITMUS. In IEEE Intl. Conf. on Em-
bedded and Real-Time Computing Systems and Applications
(RTCSA’08), pages 185–194, 2008.

[10] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev,
and J. Anderson. Synchronization on multiprocessors: To
block or not to block, to suspend or spin? In IEEE Real-
Time and Embedded Technology and Applications Sympo-
sium (RTAS’08), pages 342–353, 2008.

[11] B. B. Brandenburg and J. H. Anderson. A comparison of
the M-PCP , D-PCP , and FMLP on LITMUS. In Intl. Conf.
on Principles of Distributed Systems (OPODIS’08), pages
105–124, 2008.

[12] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger. A
hybrid real-time scheduling approach for large-scale multi-
core platforms. In IEEE Euromicro Conf. on Real-time Sys-
tems (ECRTS’07), pages 247–258, 2007.

[13] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Ander-
son, and S. Baruah. A categorization of real-time multipro-
cessor scheduling problems and algorithms. In Handbook
on Scheduling Algorithms, Methods, and Models. Chapman
Hall/CRC, Boca, 2004.

[14] R. I. Davis and A. Burns. Hierarchical fixed priority pre-
emptive scheduling. In IEEE Real-Time Systems Symposium
(RTSS’05), pages 389–398, 2005.

[15] R. I. Davis and A. Burns. Resource sharing in hierarchi-
cal fixed priority pre-emptive systems. In IEEE Real-Time
Systems Symposium (RTSS’06), pages 389–398, 2006.

[16] Z. Deng and J.-S. Liu. Scheduling real-time applications in
an open environment. In IEEE Real-Time Systems Sympo-
sium (RTSS’97), pages 308–319, 1997.

[17] U. Devi. Soft real-time scheduling on mul-
tiprocessors. In PhD thesis, available at
www.cs.unc.edu/˜anderson/diss/devidiss.pdf, 2006.

[18] U. Devi, H. Leontyev, and J. Anderson. Efficient syn-
chronization under global EDF scheduling on multipro-
cessors. In IEEE Euromicro Conf. on Real-time Systems
(ECRTS’06), pages 75–84, 2006.

[19] A. Easwaran and B. Andersson. Resource sharing in global
fixed-priority preemptive multiprocessor scheduling. In
IEEE Real-Time Systems Symposium (RTSS’09), pages 377–
386, 2009.

[20] X. Feng and A. Mok. A model of hierarchical real-time
virtual resources. In IEEE Real-Time Systems Symposium
(RTSS’02), pages 26–35, 2002.

[21] N. Fisher, M. Bertogna, and S. Baruah. The design of
an edf-scheduled resource-sharing open environment. In
IEEE Real-Time Systems Symposium (RTSS’07), pages 83–
92, 2007.

[22] N. Fisher, M. Bertogna, and S. Baruah. Resource-locking
durations in edf-scheduled systems. In IEEE Real-Time
and Embedded Technology and Applications Symposium
(RTAS’07), pages 91–100, 2007.

[23] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini,
and P. Marceca. A comparison of MPCP and MSRP when
sharing resources in the janus multiple processor on a chip
platform. In IEEE Real-Time and Embedded Technology Ap-
plication Symposium (RTAS’03), pages 189–198, 2003.

[24] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory uti-
lization of real-time task sets in single and multi-processor
systems-on-a-chip. In IEEE Real-Time Systems Symposium
(RTSS’01), pages 73–83, 2001.

[25] T. W. Kuo and C. H. Li. A fixed-priority-driven open envi-
ronment for real-time applications. In IEEE Real-Time Sys-
tems Symposium (RTSS’99), pages 256–267, 1999.

[26] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated
task scheduling, allocation and synchronization on multipro-
cessors. In IEEE Real-Time Systems Symposium (RTSS’09),
pages 469–478, 2009.

[27] G. Lipari and S. K. Baruah. Efficient scheduling of real-time
multi-task applications in dynamic systems. In IEEE Real-
Time Technology and Applications Symposium (RTAS’00),
pages 166–175, 2000.

[28] G. Lipari and E. Bini. Resource partitioning among real-
time applications. In 15th Euromicro Conf. on Real-Time
Systems (ECRTS’03), pages 151–158, 2003.

[29] J. M. López, J. L. Dı́az, and D. F. Garcı́a. Utilization bounds
for EDF scheduling on real-time multiprocessor systems.
Journal of Real-Time Systems, 28(1):39–68, 2004.

[30] S. Matic and T. A. Henzinger. Trading end-to-end latency
for composability. In IEEE Real-Time Systems Symposium
(RTSS’05), pages 99–110, 2005.

[31] A. Mok, X. Feng, and D. Chen. Resource partition for real-
time systems. In IEEE Real-Time Technology and Applica-
tions Symposium (RTAS’01), pages 75–84, 2001.

[32] R. Rajkumar. Synchronization in Real-Time Systems: A Pri-
ority Inheritance Approach. Kluwer Academic Publishers,
1991.

[33] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchro-
nization protocols for multiprocessors. In IEEE Real-Time
Systems Symposium (RTSS’88), pages 259–269, 1988.

[34] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H.
Klein. Analysis of hierarhical fixed-priority scheduling. In
Euromicro Conf. on Real-Time Systems (ECRTS’02), pages
152–160, 2002.

[35] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Tr. on Computers, 39(9):1175–1185, 1990.

[36] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling
framework for virtual clustering of multiprocessors. In IEEE
Euromicro Conf. on Real-time Systems (ECRTS’08), pages
181–190, 2008.

[37] I. Shin and I. Lee. Compositional real-time schedul-
ing framework. In IEEE Real-Time Systems Symposium
(RTSS’04), pages 57–67, 2004.

[38] I. Shin and I. Lee. Periodic resource model for compo-
sitional real-time guarantees. In IEEE Real-Time Systems
Symposium (RTSS’03), pages 2–13, 2003.

