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Abstract—A challenging research issue in analyzing proba-
bilistic real-time systems is to model the tasks composing the
system and the resource provided to the system. In this paper
we propose a solution based on a probabilistic component-
based model that abstracts the functional and non-functional
requirements of real-time components. The obtained interfaces
encode timing requirements and probability information of the
component in a probabilistic version of the real-time calculus.
Besides, it has been derived probabilistic scheduling and

compositional guarantees to provide real-time analyses of
probabilistic real-time systems. Finally, a test case illustrates
the potentialities of the proposed model and its applicability in
a large variety of problems within the probabilistic real-time
scenario.

I. INTRODUCTION
The performances of the real-time systems depend on the

correctness of those systems and mostly from the perspective
of time. Nowadays these systems have become more com-
plex and they are composed by different elements exploiting
functional aspects of the system.
Recent trends depict real-time systems as component-

based systems where the applications or dedicated HW/SW
components provide information about the processing se-
mantics that are used to execute the various applications
[1]–[3]. Component-based design provides a means for
decomposing a real-time system into components reducing
a single complex problem into multiple simpler design
problems. A real-time system is then composed through
component interfaces that abstract the internal complexity
of the components and encode the timing requirements of
real-time components. In particular, hierarchical scheduling
frameworks [4]–[6] provide a way to compose large and
complex real-time systems from independent sub-systems.
Furthermore, abstraction frameworks are applied with the

purpose of analyzing complex real-time systems and their
timing requirements, [7]–[9]. Those frameworks work with
different methods. Among those techniques we are interested
in the real-time calculus (RTC) [10], which is derived from
network calculus [11]. The real-time calculus is a worst-
case analysis framework for real-time systems based on
deterministic bounds by which model the system behavior.
The RTC allows event occurrences to be related to the
passage of quantitative deterministic time: non-deterministic
decisions can be taken throughout bounding curves.
The timing analysis of real-time systems has been exten-

sively studied by considering worst-case values. Such analy-

ses be they deterministic or non-deterministic provide overly
pessimistic results, and not all real-time systems could afford
this pessimism. For these cases other approaches could
be used and for this reason in this paper we deal with
probabilistic approaches. A probabilistic approach, allows
probabilistic choices to be defined, rather than the simple
non-deterministic choices of standard processes.
Papers related to our work had equally used the words

stochastic analysis [12], [13], probabilistic analysis [14],
statistical analysis [15] and real-time queuing theory [16].
Since the paper of Diaz et al. [17], the term stochastic
analysis of real-time systems has been used regularly by
the community regardless of the approach (probabilistic or
statistical). In order to avoid confusion, in this paper we will
not use the word stochastic, that is often associated with
unpredicted behavior, but the word probabilistic in order to
indicate that the work is based on the theory of probability.
Moreover by probabilistic real-time system we mean a real-
time system with at least one parameter defined by a random
variable. For these systems, there is the need to extend the
analysis abstractions and the classical analysis methods in
terms of probabilistic bounds, i.e., functions which expresses
the service given to a task flow can be modeled in terms
of a probabilistic bound. The stochastic network calculus
[18], [19] is a new methodology for performance evaluation
of networked systems (backlog and delay analysis) that
can account for probabilistic description of the arrivals and
probabilistic service guarantees. Although, the stochastic
network calculus does not provide information for real-time
analyses.
To the best of our knowledge there is no extension of the

real-time calculus toward a probabilistic version. Within this
paper we propose a probabilistic framework that extends the
RTC applicability to probabilistic scenarios.
Contribution of the paper. The aim of this paper is to

propose a schedulability analysis of probabilistic real-time
systems through the development of a model for probabilis-
tic real-time calculus. First, we propose probabilistic bounds
of the resource provisioning and resource demand to cope
with generic probabilistic task models. This allows to define
a probabilistic interface for the general real-time component.
Second, we translate the schedulability and composability
conditions for (deterministic) real-time systems into schedu-
lability and composability conditions for probabilistic real-
time systems.



Organization of the paper. We present the problem
in Section II together with the notations associated to the
RTC algebra. Section III proposes a component-based view
of real-time systems with the definition of composability
for components. Section IV extends the real-time calculus
notation to the probabilistic case. Constrained probabilistic
curves are defined to form the probabilistic interface of real-
time components. In Section V we consider the probabilistic
real-time calculus with discrete random variables. Section VI
shows a representative example for applying the probabilistic
real-time interfaces and doing real-time analysis. Finally, the
conclusions and the future works are outlined

II. PROBLEM STATEMENT AND REAL-TIME SYSTEM
MODELING

In a compositional real-time scheduling framework, the
main problem is to define a scheduling interface in order to
specify the collective real-time requirements of a component.
In this work we define an interface for probabilistic real-
time systems. A task is characterized by an offset Oi,
a relative deadline Di and a probability of meeting the
deadline pi. We denote by Ci

1 the random variable pro-
viding the possible values for worst-case execution time

of task τi, Ci =

(
Ci,k

P (C = Ci,k)

)
k∈{1,··· ,kCi

}

, where

Ci,k ∈ [Cmin
i , Cmax

i ] and kCi
∈ N

∗ is the number of values
that the random variable Ci has. Moreover, we denote by
Ti the random variable providing the possible values for the

task inter-arrival time, Ti =

(
Ti,k

P (T = Ti,k)

)
k∈{1,··· ,kTi

}

,

where Ti,k ∈ [Tmin
i , Tmax

i ] and kTi
∈ N

∗ is the number of
values that the random variable Ti has. We denote a task
τi by (Oi, Ci, Ti, Di, pi), and it is assumed that all random
variables are independent.
In the rest of this section we introduced the basic mod-

eling techniques that will be used for the analysis we
are proposing. In the remaining of the paper we extend
those modeling in order to cope with probabilistic real-time
systems.

A. Real-Time Calculus
We base our proposal on the framework for Modular

Performance Analysis with real-time calculus [10], which
is a compositional framework for system-level performance
analysis of distributed real-time systems. It analyzes the
flow of task streams through a network of processing and
communication resources in order to compute worst-case
backlogs, end-to-end delays, etc.

A General Event Stream Model: Considering a task, its
activations can be described as a flow of events a. A flow
is said to have a (deterministic) arrival curve α(t) if

a(t2) − a(t1) ≤ α(t2 − t1), ∀ 0 ≤ t1 ≤ t2.

1In this paper we utilise calligraphic letters to denote random variables

The curve α(t) provides an upper bound to the number of
events that arrive in any time interval of length t. In RTC
arrival curves are tuple described by upper and lower bounds
to the number of events. In this paper we make use only of
the upper bounds for the event stream as the arrival curve.
Arrival curves substantially generalize traditional task arrival
models such as periodic, periodic with jitter, and sporadic.
Event-based arrival curves can be converted into workload-
based arrival curves by scaling with the best-case/worst-case
execution demand of the events. In this paper, we make use
of the workload-based interpretation and assume that each
event has a fixed execution demand. More general concepts
for characterization of these units are discussed in [20].

A General Resource Model: Processing and communi-
cation resources are also represented abstractly. Considering
system elements providing resources, and b(ti) that denotes
the amount of workload units the resource makes available
up to a time instant ti. A system element providing the
resource is said to provide the resource with a (deterministic)
service curve β(t), if

b(t2) − b(t1) ≥ β(t2 − t1), ∀ 0 ≤ t1 ≤ t2.

The resource availability is described by β(t) which provides
a lower bound on the available service in any time interval
of length t. Although in RTC the service curve is described
by upper and lower bounding curves, in this papers we refer
to service curve as the one lower bounding the resource
provisioning. The service is expressed in a suitable workload
unit that matches the one of the arrival curve, i.e., the number
of cycles for computing resources or bits for communication
resources. The service curve abstraction allows to model the
possible resource supply functions in a generic form of the
service.
A system element receives inputs (α, β) and provides

outputs as the task execution α′ and the residual service β′.
For details about how to derive the outputs from the inputs
please refer to [7], [10].
The RTC makes use of the convolution and deconvolution

operators of the min-plus and max-plus algebra to compute
the RTC curves. From the min-plus algebra we have � :
β � α(t) = supλ≥0{β(t + λ) − α(λ)} and ⊗ : β ⊗
α(t) = inf0≤λ≤t{β(t) + α(t − λ)}. From the max-plus
algebra we have � : β�α(t) = infλ≥0{β(t+ λ)−α(λ)}
and ⊗ : β⊗α(t) = sup0≤λ≤t{β(t) + α(t− λ)}.
In the RTC the real-time element behavior is characterized

in a deterministic manner by the tuple (α, β, α′, β′), where
α, β are the input ports, and α′, β′ the output ports compos-
ing the interface of a real-time component. Figure 1 shows
examples of real-time representations for real-time system
elements.

B. Real-Time Schedulability
The RTC applies the bounds in order to guarantee the

timing requirements of the tasks. α that upper bounds the



event stream and β lower bound the service provisioning are
sufficient to guarantee schedulability of the system.
To verify the schedulability of a system under a fixed

priority (FP) policy, the workload curve is used [21]. A task
set Γ is schedulable with a resource provisioning β(t) if

∀ i ∃t0 such that ωi(t0) ≤ β(t0), (1)

In this case t0 is searched among a reduced set schedPi of
intervals and the schedulability can be checked as in [22].
The level-i workload ωi is defined as the i-th task arrival
curve and the interference from its higher priority task.
ωi(t) = αi(t) +

∑
τj ∈ hp(τi)

αj(t) is then the cumulative
workload of the higher priority tasks than τi, hp(τi). For
space reasons in this paper we consider the case of fixed
priority scheduling, but the same reasoning can be applied
to dynamic priority scheduling paradigms.

III. COMPONENT-BASED REAL-TIME SYSTEMS
A component-based view of real-time systems is de-

fined such that each system element can be modeled as
a component [4], [8]. The component interface describes
how the component relates to the other components and
the environment in terms of inputs/outputs. In particular,
real-time interfaces codes the timing requirements of the
component [23], [24]. Figure 1 shows a generic real-time
interfaces and its assume-guarantee version.

α α′

β

β′

α α′

β

β′

α

β

Figure 1. A real-time component: its representation, the RTC interface
and the assume-guarantee version.

Henzinger et al. [25] propose assume-guarantee interfaces
which are particular instances of real-time interfaces and
consider a) the requirements of a component in terms of
resource or expected arrivals in order to work properly,
and b) the resource or arrivals a component provides. At
this stage of our analysis we are interested in the resource
composability, but also in the arrival curve in order to have
the full composability among components.
By comparing the resource request and the resource

availability, it is possible to conclude on the composability
of components, which is equivalent to the classical schedu-
lability criteria: the resource provided to a component by
another component has to be enough to satisfy the timing
requirements of the component itself.
1) Composability: According to the assume-guarantee

abstraction, in a real-time component-based system there is
a component requesting for the computational resource and
another component providing such resource [26], [27].

For example, in case of a scheduling component i which
schedules an application Γi, it assumes a minimum amount
of resource in order to work properly. A resource provi-
sioning component j guarantees a minimum amount of
resource. The assume-guarantee interface defines the bounds
for the computational resource, while β is the exact resource
amount that i receives and that j provides.
The composability criteria [27] compares the assumed

and the guaranteed bounds saying that two components are
composable if the assumed resource by the first component
is less than or equal to the resource guaranteed by the second
component. If that is guaranteed, β would be enough to
schedule Γ, and the composability is guaranteed.
The composability of real-time components is affected by

the scheduling policy which defines the resource distribution
among the components. In case of fixed priority scheduling
the priority describes the composition order among the
tasks. Figure 2 depicts a FP scheduling for n tasks each
of them modeled as a component and the assume-guarantee
interface, where the βis are the resources passed among the
components.

τ1

β1

τ2

β2 β3

· · · τn

βn

α1 α2 αn

Figure 2. An example for fixed-priority scheduling. The computational
resource is passed according the priority assignment: form the highest
priority task to the lowest priority taks.

The composability criteria in case of FP scheduling poli-
cies applied can be derived in a compositional manner.
In [28] it has been derived the resource demand of a FP
scheduling component assuming, without loss of generality,
the task set ordered by decreasing priority. Therefore, to
guarantee the satisfaction of timing constraint for task τn
the service provided to task τn must be at least βA

n (t) =
αn(t − Dn) which is the assumed resource amount the n-
th task expect to guarantee its deadlines. In FP tasks are
ordered according their priority, meaning that the service for
task τn is provided by task τn−1. This also implies that the
remaining service curve after have served τ1, τ2, . . . , τn−1

must be at least βA
n (t). The resource requirement of the

whole FP scheduling component is the service bound of
the most priority task composing the component βA

1 (t). To
derive that, it has to be sequentially computed the service
bounds βA

n (t), βA
n−1(t), . . . , β

A
2 (t) that each element expects

to work properly. The resource requirement of a generic task
k is given as

βA
k−1(t) = max{β�

k−1(t), α
u
k−1(Δ −Dk−1)}

2. (2)

with β�
k−1(t) = βA

k (t−λ)+αk−1(t−λ) where λ = sup{ψ :
βA

k (t − ψ) = βk}, that guarantees the remaining service to
2It differs from the results of the Theorem 3.4 of [29] because of the

real-time constraints that have to be guaranteed in the RTC



be passed to the k-th component to be no less than what the
k-th component requires, βA

k (t). Furthermore, to guarantee
the timing constraint of τk−1, the service provided to the
k − 1-th element βA

k−1(t) must be no less than αk−1(t −
Dk−1). Applying Equation (2) for k = n − 1, n− 2, . . . , 2
we guarantee the tasks timing constraints by computing the
resource required. βA

1 (t) is the resource amount that has to
be provided in order to satisfy the timing constraints of all
the tasks scheduled: the assumed resource requirements.

Theorem III.1 (FP Composability). A FP component is
composable with a resource provisioning component that
guarantees β amount of resource if

∀ t βA
1 (t) ≤ β(t), (3)

with βA
1 computed following Equation (2).

The composability obtained with the former assumed
bound βA

1 (t) guarantee also the schedulability of the FP
scheduling.

IV. PROBABILISTIC REAL-TIME COMPONENTS
In this section we propose a probabilistic interface model

for real-time components. Our contribution is inspired by
the probabilistic network calculus [19], [29].
Let G denote the set of non-negative wide-sense in-

creasing curves, where for each function α(t), there holds
G = {α(·) : ∀ 0 ≤ x ≤ y, 0 ≤ α(x) ≤ α(y)}.
With G we denote the set of non-negative wide-sense
decreasing functions where for each function f(x), there
holds G = {f(·) : 0 ≤ x ≤ y, 0 ≤ f(y) ≤ f(x)}.
The process a is upper bounded by the arrival curve α(t)−

x, then for any time instant 0 ≤ t1 ≤ t2 and t = t2 − t1
there holds a(t2) − a(t1) ≤ α(t) − x which means that
α(t2 − t1) − [a(t2) − a(t1)] ≥ x. In [19] the definition of
the probabilistic arrival curve as follows.

Definition IV.1 (Probabilistic Arrival Curve). A task is said
to have a probabilistic arrival curve (pac) α ∈ G with
bounding function f ∈ G, denoted by 〈f, α〉, if for all
t2 ≥ t1 ≥ 0 and all x ≥ 0, there holds

P{sup0≤t1≤t2{α(t2 − t1) − [a(t2) − a(t1)]} > x} ≤ f(x).

With the same reasoning it is also possible to define
the probabilistic service curve. The service provisioning b
is lower bounded by the curve β(t) + x, then for any
0 ≤ t2 ≤ t1 there holds b(t2) − b(t1) ≥ β(t2 − t1) + x

which means [b(t2)− b(t1)]−β(t2− t1) ≥ x. We define the
probability service curve as follows.

Definition IV.2 (Probabilistic Service Curve). A system is
said to provide the arrival with a probabilistic service curve
(psc) β ∈ G with bounding function g ∈ G, denoted by
〈g, β〉, if for all t2 ≥ t1 ≥ 0 and x ≥ 0, there holds

P{sup0≤t1≤t2{[b(t2) − b(t1)] − β(t2 − t1)} > x} ≤ g(x).

The probabilistic output curves can be inferred by apply-
ing the relationship among the arrival and service inputs.
From [29], the probabilistic output arrival curve is charac-
terized as follows.

Definition IV.3 (Output Characterization). Consider a sys-
tem component providing an probabilistic service curve
〈β, g〉, with β ∈ G and bounding function g ∈ G; consider
the component arrival which has a probabilistic arrival
curve 〈α, f〉, with α ∈ G and the arrival bounding function
f ∈ G. The departure flow has a probabilistic output curve
(poc) 〈α′, f ′〉 with α′ = α�β(t2 − t1) and the bounding
function f ′ = f ∗ g ∈ G3, bounded as

P{sup0≤t1≤t2{α�β(t2 − t1) − [a′(t2) − a′(t1)]} ≥ x}

≤ f ∗ g(x).

We propose the probabilistic version of the residual curve.

Theorem IV.4 (Residual Service Curve). Consider a system
component providing an probabilistic service curve 〈β, g〉
with β ∈ G and its bounding function g ∈ G, and the arrival
which has a probabilistic arrival curve 〈α, f〉 with α ∈ G

and the bounding function f ∈ G. Let b′(t2) = b(t2)−a(t2)
be the system residual process and β′ its bounded residual
service curve, then b′ is bounded by

P{[b′(t2) − b′(t1)] − β � α(0) > x} ≤ f ∗ g(x). (4)

〈β′, g′〉 is the probabilistic residual curve (prc) with β′ =
β � α(0)4, and g′(x) = f ∗ g(x).

Proof: For any t2 ≥ t1 ≥ 0, by the definition of residual
service b′(t2) = b(t2) − a(t2), there holds

b′(t2) − b′(t1) = b(t2) − a(t2) − b(t1) + a(t1)

= [b(t2) − b(t1)] − [a(t2) − a(t1)]

= [b(t2) − b(t1)] − β(t2 − t1)

+β(t2 − t1) − α(t2 − t1)

+α(t2 − t1) − [a(t2) − a(t1)]

≤ sup
0≤t1≤t2

{[b(t2) − b(t1)] − β(t2 − t1)}

+ sup
0≤t1≤t2

{β(t2 − t1) − α(t2 − t1)}

+ sup
0≤t1≤t2

{α(t2 − t1) − [a(t2) − a(t1)]}

b′(t2) − b′(t1) − sup
0≤k≤t2

{β(k) − α(k)} =

= sup
0≤t1≤t2

{[b(t2) − b(t1)] − β(t2 − t1)}

+ sup
0≤t1≤t2

{α(t2 − t1) − [a(t2) − a(t1)]}.

3Among bounding functions it is the convolution ∗ with the classical
algebra; with the RTC curves is the min-plus convolution ⊗.
4As defined in the classical RTC [10], and by the notion of min-plus

deconvolution



where the right-hand side of the equation implies a sufficient
condition to obtain P{b′(t2) − b′(t1) − sup0≤k≤t2

{β(k) −
α(k)} < x}, which are that P{sup0≤t1≤t2{α(t2 − t1) −
[a(t2) − a(t1)]} > x} and P{sup0≤t1≤t2{[b(t2) − b(t1)] −
β(t2 − t1)} > x} are known. To ensure the system stable,
assume there yields

limk→∞
1

k
[β(k) − α(k)] ≤ 0.

From the lemma in [29] and supk≥0{β(k) − α(k)} = β �
α(0) we conclude that

P{b′(t2) − b′(t1) − β � α(0) ≥ x} ≤ f ∗ g(x)

We have derived a probabilistic interpretation of the
RTC curves where each curve has a probability function
associated. With the inputs and the outputs of a generic real-
time systems component and the algebra for probabilistic
curves we have defined probabilistic real-time interfaces for
real-time components by which start reasoning in terms
of probabilistic real-time calculus. The interface is given
(〈α, f〉, 〈β, g〉, 〈α′, f ′〉, 〈β′, g′〉).

〈α, f〉

〈β, g〉

〈α′, f ′〉

〈β′, g′〉

Figure 3. Probabilistic real-time component with it probabilistic real-time
interface representation.

A. Probabilistic Schedulability and Composability
We propose a schedulability conditions for the tasks that

that have the worst-case execution times and the inter-arrival
times given by random variables as modeled in Section II.
The tasks are scheduled under a FP policy.
The schedulability conditions comes from the the ar-

rival and service curves. The main interest of these con-
ditions is that they involves tasks with parameters given
by random variables. Considering a task set Γ of n tasks
τi = (Oi, Ci, Ti, Di, pi) with τ1 the highest priority task
and τn the lowest. In this case all the arrivals are upper
bounded by αu

i (t) = � t
T min

i


Cmax
i and lower bounded by

αl
i(t) = � t

T max
i


Cmin
i .

Theorem IV.5 (Probabilistic FP Schedulability). A task set
Γ is schedulable under FP with a probabilistic resource
provisioning 〈β, g〉 if

∀i ∃t0 ∈ schedPi ωi(t0) ≤ β(t0), (5)

with the probabilistic level-i workload 〈ωi, hi〉 defined as
ωi(t) =

∑
τj ∈hp(τi)

αu
j (t), and hi(x) =

∑
τj ∈hp(τi)

fi(x).

As for the schedulability, the composability can be ex-
tended to the case of probabilistic service curves.

Theorem IV.6 (Probabilistic Resource Composability). A
component i asking for resource 〈βi, gi〉 is composable to a
component j providing resource 〈βj , gj〉 if

∀ t βi(t) ≤ βj(t) (6)

The former two theorems applies the classical schedula-
bility conditions although with probabilistic curves, thus do
not need a demonstration. In future works the probability
function will be accounted for in the schedulability criteria
resulting in more flexible conditions.

V. DISCRETE PROBABILITY BOUNDS
In this section we apply the probabilistic real-time calcu-

lus formerly introduced, to real cases with discrete probabil-
ity distributions. In particular, we couple the RTC represen-
tation, and its defined probabilistic version with the known
probabilistic real-time modeling.
The probabilistic task model tells that each task instance

can have a certain inter-arrival interval and computation
time, and the probability associated to them tells the prob-
ability to have that arrival instant and computation time for
the next job instance.
In case of probabilistic tasks, specifically the case where

the period of τ is described by a random variable, the upper
bound to the arrivals is obtained from the least possible
period for the task, αu(t)

def
= � t

T min 
 ·C. The lower bound
instead comes form the largest possible period for that task,
αl(t)

def
= � t

T max �·C. Those two curves bounds any possible
instance of the task period within [Tmin, Tmax].

Example V.1. Given a task τi

τi = (0, 1,

(
2 3 4

0.5 0.3 0.2

)
, 2),

with the period described by a random variable, while the
rest of its parameter are deterministic. All the possible
arrivals of τ in the interval domain along all of its instances
are upper bounded by the curve αu

i (t) = � t
2
 · 1. The lower

bound is described by αl
i(t) = � t

4� · 1. See Figure 4.
αu

αl

Figure 4. Upper and lower bound of the arrivals for τi and all the possible
arrivals in between in the interval domain.

The rest of the period distribution derives a set of arrival
curves which are not bounding the whole arrivals of the
probabilistic task. The curve αi,0(t) = � t

3
 · 1 is obtained
assuming all the job instances with arrivals every 3 time
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(a) Distribution

1

0.5
0.2

0
0 1 2 3

(b) Cumulative distribution
Figure 5. The example distribution of the samples with the relative
probabilities and a cumulative version.

units. Such a curve cannot bound 100% of the job instance
arrivals; instead it can bound the case where all the in-
stances have arrivals either every 3 time unit, or every 4
or a mixture among the two According to the distribution
provided, the cases bounded by αi,1 represents the 50% of
the total, where 50% = 30% + 20%. The remaining 50%
is the probability of having instances with arrivals every 2
time units. It is enough just one instance with such a period
(T = 2) that the task arrivals cannot be bounded by αi,1

anymore. This means that αi,1 does not bound the remaining
50% of the cases. Finally, αi,2(t) = � t

4
 · 1 bounds only
20% of the cases, those that have only arrivals every 4 time
units. Figure 5 shows the distribution of the values and the
cumulative function obtained. The indexes are relative to the
distribution values.

We consider the task model τi =

(O,Ci,

(
Tmin

i ≡ Ti,0 Ti,1 . . . Ti,kTi
≡ Tmax

i

Pi,0 Pi,1 . . . Pi,kTi

)
, Di).

Given a discrete distribution, it is easy to derive its
cumulative probability function fi(x) such as

fi(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pi,0 + Pi,1 + . . . Pi,kTi
= 1 if x ≤ Ti,0

Pi,1 + Pi,2 + . . . Pi,kTi
if x = Ti,1

· · ·
Pi,kTi

if x = Ti,kTi

0 if x > Ti,kTi

The cumulative function fi(x) is applied for the upper bound
analysis, as intuitively expressed by Example V.2. fi(x) is
the bounding function for the discrete arrival curve which is
defined as

αi(t, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αu
i,0(t) if x ≤ Tmin

i ≡ Ti,0

αu
i,1(t) if x = Ti,1

· · ·
αu

i,kTi
(t) if x = Ti,kTi

,

αl
i(t) if x > Ti,kTi

,

That curve depends on x and it bounds the application ar-
rivals for any interval t. αi and fi(x) defines the probabilistic
arrival curve 〈αi, fi〉 such that

P{ sup
0≤t1≤t2

{αi(t2 − t1, x) − [ai(t2) − ai(t1)]} > 0} ≥ fi(x).

The same idea can be applied for tasks with a computation
time described by a random variable. An order among the
samples and cumulative functions of the distribution can be
created.

Example V.2. Given a task τi

τi = (0,

(
1 2 3

0.5 0.3 0.2

)
, 10, 10),

with the computation time described by a random variable,
while the rest of its parameter are deterministic. All the
possible arrival of τi in the interval domain along all its
instances are upper bounded by the curve αu

i (t) = � t
10
 · 3

upper bounds all the possible arrivals of τi because given
by the least possible period for arrivals of τi. The lower
bound is described by αl

i(t) = � t
10� · 1. See Figure 6.

αu

αl

Figure 6. Upper and lower bound of the arrivals for τi and all the possible
arrivals in between in the interval domain.

The rest of the distribution derives a set of arrival
curves which are not bounding the whole arrivals of the
probabilistic task. The curve αi,0(t) = � t

10
 · 2 is obtained
assuming all the job instances with a computation time of
2 time units. Such a curve cannot bound 100% of the job
instances, while it can bound the case where all the instances
have computation time of 2 or 2. Even a mixture among the
two cases is still bounded by αi,0. According to the sample
distribution, the cases bounded by αi,1 represents the 50%
of the cases, which comes form the summation of 30% and
20%. The remaining 50% is represented by the probability
of having instances with computation time larger than 3:
αi,1 does not bound 50% of the cases. αi,2(t) = � t

10
 · 1
bounds only 20% of the cases, those that have computation
time of 4. Since the probability distribution is the same as
the former example, Figure 5 depicts this case as well.

The probabilistic computation time case and the prob-
abilistic period one can be combined obtaining the most
general case for a task τi = (Oi, Ci, Ti, Di). Its probabilistic
arrival curve is 〈αi, fi〉 follows the former definitions.
The probabilistic interface for a real-time component is

defined by the tuple (〈α, f〉, 〈β, g〉, 〈α′, f ′〉, 〈β′, g〉), and
with that it is possible to verify the schedulability and the
composability of probabilistic real-time components as ex-
ploited in the previous section. With the probabilistic curves
model it is possible to define more flexible schedulability
conditions by taking into account the bound and the accuracy
level we want to consider.
The real-time calculus abstraction allows to model both

the random inter-arrival time and the random computation
time of a task. This unifies the probabilistic real-time anal-
ysis.



〈α(t, x), f(x)〉

〈β(t, x), g(x)〉

〈α′(t, x), f ′(x)〉

〈β′(t, x), g′(x)〉

Figure 7. Probabilistic real-time component with its probabilistic real-time
interface representation. Discrete random variable case.

VI. TEST CASE
We consider a peculiar case where to apply the probabilis-

tic framework we have developed. We refer our test-case to a
basic hierarchical scheduling system, with two components
representing two tasks τ1, τ2 that are scheduled according a
fixed-priority scheduling policy.
The hierarchy among the components is defined through

priority of the tasks. The most priority one receives the
computational resource first. The resource amount it does
not apply to execute is the passed to the second one which
can execute only when the first is not executing. We assume
τ1 and τ2 as probabilistic tasks and τ1 with an higher priority
than τ2. The two tasks are defined as

τ1 = (0,

(
1 2

0.3 0.7

)
,

(
5 6

0.6 0.4

)
, 10)

τ2 = (0,

(
1 2

0.3 0.7

)
, 10, 10)

where τ1 has inter-arrival time and computation time de-
scribed by random variable, while τ2 has just the computa-
tion time as a random variable.

f1(x) =

⎧⎪⎨
⎪⎩

0.42 + 0.28 + 0.18 + 0.12 = 1 if x ≤ 0
0.28 + 0.18 + 0.12 = 0.58 if x = 1

0.18 + 0.12 = 0.3 if x = 2
0.12 if x = 3

0 if x ≥ 4

α1(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

� t

5
� · 2 if x ≤ 0

� t

6
� · 2 if x = 1

� t

5
� · 1 if x = 2

� t

6
� · 1 if x = 3

� t

6
	 · 1 if x ≥ 4

f2(x) =

{
0.4 + 0.6 = 1 if x ≤ 0

0.6 if x = 1
0 if x ≥ 2

α2(t, x) =

{
� t

10
� · 2 if x ≤ 0

� t

10
� · 1 if x = 1

� t

10
	 · 1 if x ≥ 2

We have represented the probabilistic arrival curves of the
two task, 〈α1, f1〉, 〈α2, f2〉. See Figures 9 for details about
α1.
Because of the composition of the two tasks, to the

high priority task τ1 it has to be guaranteed a probabilistic
service curve 〈β1, g1〉 where β1 = max{β�

1, α1(t − D1)}
with β�

1(t) = β2(t − λ) + α1(t − λ) and λ = sup{ψ :
β2(t − ψ) = β2}, according to Equation (2). And g1(x) =
max{g2∗f1(x), f1(x)}, which comes from the implicit task

hierarchy due to the fixed priority scheduling. The decon-
volution ∗, as the inverse of the convolution operator in
Equation 4, derives the bounding function of high priority
service curves from lower priority ones. It has been inferred
from similar reasoning as the one applied for Equation 4,
but a more formal proof will be provided in future works.
Furthermore, g2 = f2 since β2 = α2(t − D2) in order to
have the τ2 scheduled on time.

g2(x) = f2(x) =

{
0.4 + 0.6 = 1 if x ≤ 0

0.6 if x = 1
0 if x ≥ 2

β
�
1 and β1 can be easily computed with the operators defined
in the modular performance analysis framework in [30].
〈β1, g1〉 defines the probabilistic function as the minimum

resource requirement of the fixed-priority composition of
the two tasks that guarantees the composability and then
schedulability of the FP macro component.

Res τ1

β1

τ2

β2 β′
2

α1 α2

Figure 8. Two task components with a fixed-priority resource scheduling.
αu

αl

Figure 9. Upper and lower bound of the arrivals for τ1 and all the possible
arrivals in between in the interval domain.

VII. CONCLUSIONS

We introduce in this paper the problem of timing analysis
of probabilistic real-time systems making use of abstraction
frameworks. We have extended the real-time calculus to the
probabilistic case, and the RTC algebra by taking into ac-
count probability functions. In this way we develop flexible
abstractions able to cope with different grades of real-time
schedulability and quality of service.
We would like to extend, within future work, the model

developed here toward a complete probabilistic real-time
calculus. The flexible schedulability and composability con-
ditions, that we obtained, require a deeper investigation in
order to outline their full potential.
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