
A tool for component-based schedulability analysis of distributed real-time pipelines

Nicola Serreli, Giuseppe Lipari, Enrico Bini
Scuola Superiore Sant’Anna, Pisa, Italy
Email: {n.serreli,g.lipari,e.bini}@sssup.it

I. INTRODUCTION
In many scenarios, such as in the automotive context [1],

[2], the complexity of developing a distributed real-time
embedded (DRE) system is reduced by dividing the system
into separate components, possibly developed by a different
teams or third-party companies. The component-based ap-
proach does simplify both the analysis and the integration,
although it introduce some waste of resource.
In distributed real-time embedded (DRE) systems, a soft-

ware component is often modeled as a chain of tasks (also
called transaction or pipeline) [3]. Each task of the pipeline
is allocated on a (possibly different) processing node. The
first task is activated periodically, or by external events
characterized by a minimum interarrival time. The other
tasks are activated in accordance with the chain order, i.e.
they start upon the completion of the preceding one. The
last task must complete within an end-to-end (EE) deadline
relative to the activation of the first task.
In [4], [5], we presented a methodology to perform a

component-based analysis of task pipelines. In our model,
the interface of a pipeline component consists of a set of
demand bound functions (dbf) [6], one for each node on
which the pipeline runs. In [4] we presented a heuristic
algorithm to assign intermediate task deadlines to minimize
the dbf of the pipeline. In [5] we presented a methodology
to compute the dbf of sporadic pipelines.
In this paper, we present a software tool for analyzing

DREs. The tool consists mainly of a C++ library. The library
models virtual processing nodes and task pipelines, and can
perform both classical holistic schedulability analysis [7] as
well as the algorithms described in [4], [5]. The library has
been designed to be easily extended with new schedulability
analysis, and more complex task models (e.g. DAGs). We
show the internal structure of the library and show its usage
on a simple example.

II. STRUCTURE OF THE SOFTWARE LIBRARY
A. Tasks, Transactions, dbf

The library has been written in C++ and designed ac-
cording to Object Oriented design methodology, to enhance

The research leading to these results has received funding from the
European Communitys Seventh Framework Programme FP7 under grant
agreement n.214777 “IRMOS Interactive Realtime Multimedia Applica-
tions on Service Oriented Infrastructures” and n.248465 “S(o)OS Service-
oriented Operating Systems.”

modularity and extendability.
The basic class Task models a sporadic/periodic non-

concrete task (also called offset-free task). The class contains
the main features of a task: worst-case execution time
(wcet), relative deadline (dline), and period (period).
To extend the Task class with other properties, it is possible
to either derive a new specific class, or use the methods:

void set_property(string &s, double val);
double get_property(const string &s) const;

that associate the name of the property with a numerical
value. For example, some algorithm could use the additional
property jitter. If we want to specify that a task tsk has
jitter equal to 3.5, we have just to invoke:

tsk.set_property("jitter", 3.5);

the algorithms can retrieve such information with:

j = tsk.get_property("jitter");

The Task class also exports some helper function to
simplify the schedulability analysis algorithms implemented
in the tool. These are:

• double get_next_arrival(double t), which re-
turns the next arrival time after t;

• double get_num_next_deadline(double t),
which returns the next absolute deadline after t;

• int get_num_arrived_instances(double t1,
double t2) that returns the number of instances
arrived in interval [t1, t2], and

• int get_contained_instances(double t1,
double t2) the ones entirely contained in [t1, t2].

Finally, appropriate operators for reading/writing a task
from/to a file are available:

ostream & operator<<(...);
istream & operator>>(...) throw(IllegalValue);

The class Transaction represents a chain of tasks.
The way to create a transaction is to first create the
Transaction object, and then repeatedly invoke the
add_task method, specifying the index of the node on
which the task has been allocated. Also, it is possible to
read/write the transaction parameters from/to a file.
In this version of the tool, no allocation algorithm has

been implemented yet. Therefore, we assume that tasks are
already allocated to nodes by some other external tool.



The dbf of a task chain is represented by a function object
called dbf. For example, it is possible to compute the dbf

of a task by simply invoking the constructor:
dbf (const Task &t);

To obtain the value of the dbf in a certain interval of length
t, it is sufficient to apply operator (). For example:
Task tsk(10, 20, 30);
dbf fun(tsk);
double v = fun(50);

will assign 20 to the variable v, since in the worst case there
are 2 instances of task tsk in an interval of length 50.
We enable the combination of two dbfs by the operators:

dbf operator+(const dbf &d1, const dbf &d2);
dbf sup(const dbf &d1, const dbf &d2);

The first one returns the sum of the two dbf functions passed
as parameters. The latter one returns the function that for
every point t is the max of d1(t) and d2(t).
Finally, the invocation of

bool check_sched(double alpha, double delta);

allows checking if the dbf is below the linear bound α(t −
Δ)0.

B. Assigning intermediate deadlines
The algorithms for assigning intermediate deadlines have

been collected in the namespace scan::opt. We imple-
mented a few versions of the simulated annealing algorithm
which tries different alternative assignments until it finds
a “good one” (not necessarily optimal). The versions only
differ in the objective function to be minimized. We imple-
mented the following ones:

• optimize_slope() minimizes maxk,t(dbf(t)/t −
Uk), where Uk is the total utilization of all tasks of
the transaction on node k.

• optimize_ratio() minimizes maxk,t(
DBF(t)/t

Uk

), i.e.
we are minimizing the maximum ratio between the dbf

in any point, and the value of the linear function of
slope Uk.

Obviously, the two functions are only wrapper functions of
a more general optimization that is not part of the interface.
This general optimization function uses the GSL library1
that already implements many optimization algorithms.
We also provided some sub-optimal polynomial function

for assigning deadlines. The ORDER function [4] can be
executed by
vector<double> ordered_assignment(...);

Unfortunately, with some pathological parameters the func-
tion may fail to find a solution. In such cases, the
NoSolution exception is raised, and the user can revert
to apply some simpler heuristic [8]:

1available as open source software at www.gnu.org/software/gsl/.

void slack_assignment(...);

or assign intermediate deadlines proportionally the tasks’
WCETs by invoking:
void proportional_dlines(...);

C. Computing the sporadic dbf

The dbf of pipelines activated sporadically may exceed
the one with strictly periodic activation [5]. We implemented
the functions to compute the dbf in the sporadic case, that
is
vector<dbf> spor_dbf_transaction(...);

The algorithm for computing the dbf of sporadic pipelines
is rather time-consuming since it requires to span over all
the possible arrival patterns [5]. Hence we implemented also
the following two upper bounds to the exact dbf:
vector<dbf> test_ub_dbf_transaction(...);
vector<dbf> test_iub_dbf_transaction(...);

D. Holistic Analysis
In addition to the analysis based on the demand bound

function, we have implemented also the holistic analysis
described in [7]. This analysis is global, so it can only
be executed on the whole set of transactions in a system.
The holistic algorithms have been implemented in a separate
namespace scan::EDFHolistic. The analysis is invoked
by the function
bool offsetAnalysisTransMax(...);

which corresponds to algorithm MDO-TO in the paper. The
function returns true is the set of transactions is schedu-
lable, false otherwise. If all the pipelines are schedulable
then the function offsetAnalysisTransMax stores the
response times of the tasks in the Transaction classes.
Finally the function

vector<Transaction> plainTransactions(...);

can randomly generate set of pipelines. It reads the fol-
lowing input parameters: desired number of transactions
(numTrans), minimum and maximum number of tasks
per transaction (numTasks_min, numTasks_max), total
utilization (U), minimum and maximum transaction period
(minPeriod, miaxPeriod), the greatest common divisor
among all transaction periods (GCD), the minimum and
maximum end-to-end deadline (minDead, maxDead), and
the number of processors (numProc).

III. CASE STUDY
To illustrate the tool developed, we present a sim-

ple case study (the source code is fully available at
retis.sssup.it/∼bini/sw/). This example can be run by ex-
ecuting dbfs_try after a proper configuration, with
./configure, and compilation with make). We assume



to have two pipelines distributed among a set of CPU. The
number of tasks and the number of available CPUs are
read from standard input. The output contains a consider-
able amount of data, such as the demand bound function
on each node computed considering the initial deadline
assignment and the ones computed with ORDER deadline
assignment [4]. The data extraction is performed by php
scripts. We choose php because it can be run from command
line, it easy to read and can elaborate text with few lines of
code.
All the steps, except the compilation, are collected to-

gether in one bash script dbfs_tests.sh, that runs the
analysis, extract all the computed dbfs and invokes gnuplot
to generate comparative diagrams, that show the difference
among different methods used to assign the deadlines: initial
(i.e. random) assignment, ORDER assignment [4] and slack
assignment [8].
In Figure 1 we plot the linear upper bounds to the

dbfs, as generated by gnuplot. We can observe that only
the ORDER deadline assignment produces a schedulable
transaction (with slope not larger than 1).

800 10 20 30 40 50 60 70

40

30

20

10

0
interval length

lin
ea

r d
em

an
d 

bo
un

d

ORDER

initial
SLACK

U=1

Figure 1: Bandwidth of pipelines.

Figure 2, instead, shows all the details of the dbfs. We
highlight that the plotting is fully automatized by the script
files.

800 10 20 30 40 50 60 70

40

30

20

10

0
interval length

de
m

an
d 

bo
un

d 
fu

nc
tio

ns

ORDER

initial
SLACK

Figure 2: Bandwidth of pipelines.

REFERENCES
[1] K. Richter, R. Racu, and R. Ernst, “Scheduling analysis inte-

gration for heterogeneous multiprocessor SoC,” in Proceedings
of the 25

th Real-Time Systems Symposium, Cancun, Mexico,
Dec. 2003, pp. 236–245.

[2] W. Zheng, Q. Zhu, M. Di Natale, and A. Sangiovanni-
Vincentelli, “Definition of task allocation and priority assign-
ment in hard real-time distributed systems,” in Proceedings
of the 28

th IEEE Real-Time Systems Symposium, Tucson, AZ,
Dec. 2007, pp. 161–170.

[3] K. W. Tindell, A. Burns, and A. Wellings, “An extendible
approach for analysing fixed priority hard real-time tasks,”
Journal of Real Time Systems, vol. 6, no. 2, pp. 133–152, Mar.
1994.

[4] N. Serreli, G. Lipari, and E. Bini, “Deadline assignment for
component-based analysis of real-time transactions,” in 2nd
Workshop on Compositional Theory and Technology for Real-
Time Embedded Systems, Washington, DC, U.S.A., Dec. 2009.

[5] ——, “The demand bound function interface of distributed
sporadic pipelines of tasks scheduled by edf,” in Proceedings
of the 22nd ECRTS, July 2010, pp. 187–196.

[6] S. K. Baruah, R. Howell, and L. Rosier, “Algorithms and
complexity concerning the preemptive scheduling of periodic,
real-time tasks on one processor,” Real-Time Systems, vol. 2,
pp. 301–324, 1990.

[7] R. Pellizzoni and G. Lipari, “Holistic analysis of asynchronous
real-time transactions with earliest deadline scheduling,” Jour-
nal of Computer and System Sciences, vol. 73, no. 2, pp. 186–
206, Mar. 2007.

[8] M. Di Natale and J. A. Stankovic, “Dynamic end-to-end
guarantees in distributed real time systems,” in Proceedings of
the 15

th IEEE Real-Time Systems Symposium, San Juan, Puerto
Rico, Dec. 1994, pp. 215–227.


