
Passivity-Based Self-Triggered Control: A Case Study On
The Trajectory Tracking Control Of A Robotic Manipulator

Over Wireless Network.

Emeka Eyisi
emeka.p.eyisi@vanderbilt.edu

Xenofon Koutsoukos
xenofon.koutsoukos@vanderbilt.edu

Institute for Software Integrated Systems
Department of Electrical Engineering and Computer Science

Vanderbilt University
Nashville, TN, USA

ABSTRACT
In this paper we present a case study on the trajectory tracking con-
trol of a robotic manipulator over a wireless network. We use pas-
sivity and self-triggered control to achieve two important desirable
properties of Cyber Physical Systems (CPS), efficient use of re-
sources and stability in the presence of network uncertainties. By
using a passivity based approach, our design ensures the stability
of the overall system even in the presence of network uncertainties
while the self-triggered strategy ensures efficient use of network re-
sources. We present preliminary simulation results to demonstrate
our approach for the case study.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Manipulators

General Terms
Design, Experimentation, Theory

Keywords
Passivity, Self-Triggered Control, Networked Control System

1. INTRODUCTION
Cyber Physical Systems (CPS) are characterized by the integra-

tion of physical systems through computing and networking. CPS
are typically composed of multiple feedback loops, some may be
local while others may be connected over a network. Feedback
loops are increasingly deployed over wireless communication net-
works, as they provide great convenience in terms of deployment
and mobility support. On the other hand, uncertainties in wireless
networks such as time-varying delays and data dropouts present
significant challenges and require the development of novel anal-
ysis and synthesis methods in order to achieve overall desirable
system properties.

In this paper, we introduce a case study on the trajectory tracking
control of a robotic manipulator over a wireless network. We focus
on the challenges of the uncertainties and limitations of the net-
work. The robotic manipulator receives information from a collo-
cated local controller about the desired trajectory it needs to track.
It has no additional information about it’s environment. A sepa-
rate agent called networked controller, has additional information
about the robotic arm’s environment. In the event that an obstacle
is observed in the path of the robotic arm, the networked controller
sends control signals to the local controller to adjust the robotic
arm’s trajectory. In our approach, we show that based on the con-
trol command, the robotic arm still maintains the pattern of the
desired trajectory but with an offset correponding to a function of
the modelled obstacle as observed by the networked controller. We
also integrate a self-triggered strategy based on [4] in order to re-
duce the amount of network resources utilized.

This case study presents a CPS application because it is com-
posed of multiple feedback loops, both local and over the wire-
less network, that involves the interaction of the physical system
through computing and network with the ultimate goal of achieving
overall desirable system behavior under various network uncertain-
ties.

Our contribution are the following: We introduce a passivity-
based self-triggered network control architecure for the trajectory
control of a robotic manipulator over a wireless network. We pro-
vide simulations using Simulink/TrueTime to illustrate our
approach.

2. PASSIVITY-BASED SELF-TRIGGERED
CONTROL ARCHITECTURE

The proposed passivity-based self-triggered control (PBSTC) ar-
chitecture used in the trajectory tracking control of a robotic ma-
nipulator is shown in Fig. 1.

2.1 Composite System
The enclosed box denoted composite system in Fig. 1 represents

the model resulting from a transformation of the robotic manipula-
tor dynamics into a desirable passive input-output mapping. Fig. 2
shows the components of composite system. The resulting passive
input-output mapping is used to derive an overall passivity based
self-triggered networked control system to enable tracking.

In the absence of friction and disturbances, the Euler-Lagrange
equations of motion for an n-degree-of-freedom robotic manipula-



Figure 1: PBSTC Networked Control Architecture.

Figure 2: Composite System Model.

tor can be generally described by the following dynamic model [5]:

M(q)q̈ + C(q, q̇)(q̇) + g(q) = τ ; (1)

where q(t) ∈ Rn is the vector of joint angles, τ(t) ∈ Rn is the
input torque vector, M(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈
Rn×n is the matrix of centrifugal and coriolis effects, and g(q) ∈
Rn is the gravity vector.

It is well-known that a passive proportional derivative (PD) con-
troller can be used in set-point tracking control of a robotic manip-
ulator in a passivity-based framework but it is not an appropriate
controller for the case of trajectory tracking [10] [3].

In order to achieve the goal of trajectory tracking in a passivity-
based framework, we employ the approach proposed in [9]. We
introduce a sliding variable based on sliding-mode technique. The
sliding variable is described in terms of the tracking error dynamics
such that when the sliding variable converges to zero the tracking
error dynamics converges to zero as well. This new sliding variable
introduces an integral action via the reference trajectory. The com-
posite system is the transformation that results in a passive input-
output mapping from a virtual input z(t) to the sliding variable
output s(t).

Let qd be defined as the desired trajectory that is twice differen-
tiable. The tracking error is given by e = q − qd.

We choose the local controller as:

τ = M(q)q̈r + C(q, q̇)q̇r + g(q) + z; (2)

where z is the control signal from the networked controller and qr

is the modified reference trajectory defined by

qr = qd − Λ

∫ t

0

e; q̇r = q̇d − Λe;

where Λ is a positive diagonal matrix. Then by combining (1) and
(2), the closed-loop dynamics can be derived. Based on the defini-
tion of qr , the sliding variable, s appears in the closed-loop dynam-
ics as

M(q)ṡ + C(q, q̇)s = z; (3)

where s is defined as

s = q̇ − q̇r = ė + Λe. (4)

2.2 Self-triggered Control Policy
The triggering policy box in Fig. 1 outputs sampling intervals,

Ti, using a self-triggered policy inspired by the the work in [4]. The
algorithm is adapted and presented in the framework of passive sys-
tems and for the purpose of achieving tracking performance rather
than stability. This is possible because our passivity-based frame-
work inherently guarantees stability. The system model used for
our self-triggered policy is derived from the relationship between
tracking error, e, and the sliding variable, s. This model can be
represented as

ė(t) = −Λe(t) + s(t); y = Ie; (5)

where I is the identity matrix.

s(t) = s(ti), t ∈ [ti, ti+1) (6)

where [ti]i∈N is a sequence of sampling times. In this system
model, the output y is the tracking error, while the sliding variable,
s, is the input.

A self-triggered implementation for the system given by (5) and
(6) is given by a map Γ, determining the sampling instants, ti+1,
as a function of the tracking error output, y at the time ti, i.e.,
ti+1 = ti + Γ(y(ti)). If we denote by Ti, the sampling interval
Ti = ti+1 − ti we have Ti = Γ(y(ti)). Similar to the approach
in [4], design of a self-triggered policy involves a sequence of steps.
First, an output function to describe the evolution of the system’s
tracking error needs to be determined. The output function for our
self-triggering policy is the storage function of the system defined
by (5).

V (y) = yTPy (7)

where P is a positive definte matrix. The output function defined
in (7) has an estimated decay rate, λ0 [8]. Next, we define a per-
formance specification in terms of the tracking error output. Our
performance function is an exponentially decaying function of the
output function with an initial value as the current sampled error.
The perfomance specification can be formally defined as:

D(t) = V (y(ti))exp−λ(t−ti) (8)

In order to guarantee that the performance function bounds the
output function, the decay rate of the performance specification is
choosen as λ < λ0.

Using the output function and performance specification we de-
termine a continuous time event-triggering function. From (7) and
(8), the event-triggering condition is given as

hc(ti, y(t), y(ti)) := V (y(t))− V (y(ti))exp(−λ(t−ti)) ≤ 0;
(9)

for some 0 < λ < λ0. From the event-triggering function we can
then determine a self-triggered policy. In order to check the event
triggering condition defined in (9) ∀t ∈ R+, we consider a discrete-
time implementation based on a discrete step size, ∆ ∈ R+ since
no digital implementation can be used to perform this check. With,
Ti defined as the sampling interval, let Tmin and Tmax be de-
fined as the minimum and maximum sampling intervals respec-
tively. Also ∀i ∈ N , Nmin := bTmin/∆c, Nmax := bTmax/∆c.
The discrete-time implementation can be defined as follows:

hd(y(ti), n) := hc(ti, y(t), y(ti)) ≤ 0 ∀n ∈ [0, bTi/∆c)
(10)



From this discrete-time implementation, the map Γd : Rn 7→ R+,
for computing the next sampling interval or time for the tracking
error system model given in (5) is given by:

Γd(y(ti)) := max{Tmin, ni∆} (11)

ni := max
n∈N

{n ≤ Nmax|hd(y(ti), c) ≤ 0, c = 0, ..., n} (12)

Tmin and Tmax explicitly enforce lower and upper bounds, respec-
tively for the sampling intervals. The upper bound enforces robust-
ness of the implementation and limits computational complexity.
The discrete time step, ∆, can be choosen based on desired accu-
racy and computational complexity.

2.3 Wave Variables
In [1], the authors showed that by transmitting wave variables

over the network, the communication channel maintains passivity
even in the presence of time-varying delays and packet loss. We
take advantage of this notion in order to ensure that the passivity of
the transmitted information across the network is preserved.

On the composite system’s side of the network, the control input
signal, z(t) and sliding variable, s(t) are transformed into the wave
domain through the scattering transformation which produces the
continuous power waves up(t) and vp(t) ∈ Rm and is represented
by the block b in Fig. 1. On the networked controller’s side of
the network, the scattering transformation produces digital power
waves uc[i] and vc[i] ∈ Rm. Due to limited space, the details of
the scattering transformation is omitted, see [2] for more details.

2.4 Variable Passive Sampler and Variable
Passive Hold

In Fig. 1, the variable passive sampler (VPS) and variable pas-
sive hold perform the task of sample and hold devices respectively
but are implemented in such a way to preserve passivity. These
two components execute their tasks based on the adaptive sampling
interval provided by the self-triggering policy described above in-
stead of the traditional fixed sampling interval as the equivalent
components described in [2]. The VPS and VPH are designed such
that the following two inequalities are satisfied:

∫ tn

0

up(t)Tup(t)dt ≥
n−1∑
i=0

Tiup[i]Tup[i] (13)

n−1∑
i=0

Tivp[i]Tvp[i] ≥
∫ tn

0

vp(t)Tvp(t)dt (14)

Denote the jth element of the column vectors up(t) and up[i] as
upj(t) and upj [i], respectively, j = 1, ..., m and let upj(t) = 0 if
t< 0. An implementation of the VPS that ensures condition in (13)
is given by

uj [i] =
1√

Ti−1Ti

∫ ti

ti−1

uj(t)dt, ∀ j ∈ {1, . . . , m}. (15)

In a similar manner, an implementation of the VPH that satisfies
condition in (14) is given by

vj(t) =

√
Ti−1

Ti
vj [i− 1], t ∈ [ti, ti + Ti). (16)

2.5 Networked Controller
The networked controller is denoted as Gc in Fig. 1. The net-

worked controller is a passive event-based proportional controller
with gain, Kc. The networked controller is located remotely away

from the robot and is assumed to have more information about the
robot’s environment than the robot itself. There are two types of
event that will trigger the execution of the controller, one such event
is the arrival of a control update request from the composite system
for error correction and the other event is the presence of an ob-
stacle in the robot’s path, in which case the controller sends an up-
date with a control command to modify the system’s path to ensure
safety.

3. SIMULATION
The experimental setup involves a networked passive compos-

ite system and an event-based networked controller communicating
over a wireless network as shown in Fig. 1. The dynamics of the
composite system as well as the networked controller are imple-
mented using Simulink models while TrueTime is used to simulate
the wireless network dynamics and the communication between the
two subsystems. The network protocol used is 802.11b, with a
speed/bandwidth of 11Mbps. The CrustCrawler robot has four de-
grees of freedom with AX-12 smart servos at each joint. The robot
can be modeled using four points of mass. These points of mass are
located at the mid-point of each joint. The point masses are: m1 =
0.362 kg, m2 = 0.401 kg, m3 = 0.059 kg, and m4 = 0.177 kg.
We derived the dynamic model of the CrustCrawler robotic arm for
our simulation. Using this model, we implemented the transfor-
mation discussed in Section 2. The design parameters for the self-
triggered policy are Tmin = 0.01,Tmax = 0.1 and ∆ = 0.001. The
goal of these experiments is for the robotic arm to track a specified
trajectory while using fewer network resources and also maintain-
ing stability in the presence of network uncertainties.
Experiment 1: PBSTC Approach vs Traditional Approach. In
this experiment we consider, nominal network conditions with no
additional delays and packet losses. We model the presence of an
object as a step reference input to the networked controller. An
obstacle modelled as a step input of magnitude 0.9 is introduced in
the robot’s environment between the time interval from 3 seconds
to 7 seconds. For our PBSTC approach, Fig. 3a shows the resulting
trajectory while Fig. 3c shows the sampling times, or controller
activation intervals.

We compare the plots from our nominal scenario to the tradi-
tional alternative whereby a control update is requested at a fixed
sampling time or interval of Tmin. For the traditional approach,
Fig. 3b shows the resulting trajectory while Fig. 3d shows the sam-
pling times, or controller activation intervals. Comparatively, it can
be seen that before the obstacle was introduced both approaches
closely track the specified trajectory. When the obstacle was in-
troduced the traditional approach reacted much quicker than the
nominal case but both tracked the modified path of the robot trajec-
tory with an offset, rcj

Λ(j,j)
, while still maintaining the pattern of the

desired trajectory. rc is the corresponding modelled obstacle refer-
ence for joint j and Λ(j, j) is the diagonal component of the matrix
described in Section 2. On the other hand using PBSTC, fewer con-
trol law updates are required compared to the traditional approach,
hence utilizing fewer network resource. After the obstacle has been
cleared from the robot’s path the traditional approach continued
sampling at a constant sampling interval unecessarily wasting net-
work resources.
Experiment 2: Time-Varying Delays to the PBSTC Approach.
In this experiment, we consider the effect of time-varying delays.
We incorporate a disturbance node in the network to simulate de-
lays. The sampling period of the disturbance node is set to a value
of 0.01 seconds, and the disturbance node floods the network with
disturbance packets based on a Bernoulli process with parameter d.
If X[k] > d, a disturbance packet is forced on the network. Fig. 4a



0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time(s)

Jo
in

t A
ng

le
(r

ad
ia

ns
)

Plot of Joint 2 and Reference Trajectories

 

 

Joint 2 Reference
Joint 2 Actual

(a) Joint 2 for PBSTC.

0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time(s)

Jo
in

t A
ng

le
(r

ad
ia

ns
)

Plot of Joint 2 and Reference Trajectories

 

 

Joint 2 Reference
Joint 2 Actual

(b) Joint 2 for Traditional.

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

S
am

p
lin

g
 T

im
e(

s)

Time(s)

Plot of the Sampling Intervals

(c) PBSTC Sampling Intervals.

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

S
am

p
lin

g
 T

im
e(

s)

Time(s)

Plot of the Sampling Intervals

(d) Traditional Sampling Inter-
vals.

Figure 3: PBSTC Approach vs. Traditional Approach in Nominal Case.

0 2 4 6 8 10
−0.2

−0.14

−0.08

−0.02

0.04

0.1

0.16

0.2

Time(s)

E
rr

or
(r

ad
ia

ns
)

Absolute Error Between Desired and Actual Offset

(a) PBSTC With Time Delays.

0 2 4 6 8 10
−0.2

−0.14

−0.08

−0.02

0.04

0.1

0.16

0.2

Time(s)

E
rr

or
(r

ad
ia

ns
)

Absolute Error Between Desired and Actual Offset

(b) PBSTC Nominal Case.

Figure 4: PBSTC Approach with Time-Varying Delays.

and Fig. 4b show the difference between the desired adjustment in
the presence of an obstacle and the actual adjustment of the robot’s
joint 2 for the time-varying delays and nominal cases respectively.
The impact of the time-varying delays can be seen in Fig. 4a, from
the delayed response of the system compared to the nominal case
in Fig. 4b, in adjusting robot’s trajectory in the presence of an ob-
stacle. This is leads to the slightly more accrued error than in the
nominal case.

4. CURRENT WORK
In this paper, we assumed a hybrid supervisory control model

where the composite system is continuous and interfaces with the
event-based controller using an event generator and actuator inter-
faces which essentially represent the VPS and VPH respectively.
Our simulation as well as preliminary results are based on this no-
tion. In reality, in order to realize an actual implementation of the
overall system we need a formal framework to define the correct se-
mantics of our system which results in a mixed event and time trig-
gered system presented. Handling mixed event and time-triggered
systems is a topic of on-going research. The authors in [7] and [6]
presented some approaches on this area of study. We are currently
working on a formal framework for our approach to aid in realizing
an actual implementation.

5. REFERENCES
[1] N. Chopra, P. Berestesky, and M. Spong. Bilateral

teleoperation over unreliable communication networks. IEEE
Trans. on Control Systems Technology, 16(2):304 – 313,
2008.

[2] N. Kottenstette, X. Koutsoukos, J. Hall, P. Antsaklis, and
J. Sztinapovits. Passivity-based design of wireless networked
control systems for robustness to time-varying delays. In
29th IEEE Real-Time Systems Symposium (RTSS 2008),
2008.

[3] W. S. Levine. Control System Applications. CRC Press,
2000.

[4] M. Mazo and P. Tabuada. Input-to-state stability of
self-triggered control systems. In 48th IEEE Conference on
Decision and Control, pages 928 –933, Dec. 2009.

[5] R. Ortega and M. Spong. Adaptive motion control of rigid
robots: A tutorial. In 27th IEEE Conference on Decision and
Control, pages 1575 – 84, 1988.

[6] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis
of mixed time/event-triggered distributed embedded systems.
International Workshop on Hardware/Software Co-Design,
0:187, 2002.

[7] N. Scaife and P. Caspi. Integrating model-based design and
preemptive scheduling in mixed time- and event-triggered
systems. In 16th Euromicro Conference on Real-Time
Systems, pages 119–126, 2004.

[8] J. E. Slotine and W. Li. Applied Nonlinear Control.
Prentice-Hall, Englewood Cliffs, NJ, 1991.

[9] J.-J. Slotine and L. Weiping. Adaptive manipulator control:
A case study. IEEE Trans. on Aut. Control, 33(11):995
–1003, Nov. 1988.

[10] M. Spong, S. Hutchinson, and M. Vidyasagar. Robot
Modeling and Control. John Wiley and Sons Inc., New York,
USA, 2006.


