
The problem with time
in mixed continuous/discrete time modelling

Kenneth C. Rovers
K.C.Rovers@utwente.nl

Jan Kuper
J.Kuper@utwente.nl

Gerard J.M. Smit
G.J.M.Smit@utwente.nl

Computer Architecture for Embedded Systems group∗

CTIT, Department of EEMCS, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

ABSTRACT
The design of cyber-physical systems requires the use of
mixed continuous time and discrete time models. Current
modelling tools have problems with time transformations
(such as a time delay) or multi-rate systems.

We will present a novel approach that implements signals
as functions of time, directly corresponding to their mathe-
matical representation. This enables an exact implementa-
tion of time transformations and as an additional advantage
enables local control over time. A representation of com-
ponents and signals in both domains is provided, together
with composition operators to allow the specification of sig-
nal flow diagrams.

1. INTRODUCTION
In designing cyber-physical systems, i.e. embedded sys-

tems which include peripherals interfacing with the physical
world, a modelling tool for simulation is essential. Such a
tool must support both the continuous time (CT) and dis-
crete time (DT) domain, because of the tight integration of
the environment and the systems’s computational and phys-
ical facets [7].

Considering time is such an import aspect, it might be
surprising that current modelling tools have a problem with
time. This problem occurs in systems with time delays or
multi-rate systems for example. The problem is that a sin-
gle (global) time step is chosen by the solver for simulation,
at which the whole system under design is evaluated. This
time step must meet the requirements of all components in
the system. Several components, such as integration, may
require a very small time step to achieve enough accuracy,
a resolution not needed for the rest of the system. Further,
CT signals are implemented as a sequence of discrete values
at simulation time steps. A time delay component there-
fore buffers values and interpolates between available values
introducing inaccuracies caused by the modelling tool.

In this paper we propose a novel approach to mixed CT/DT
modelling. By implementing CT signals as functions of time,
time delays or multi-rate systems can be implemented ex-
actly without loosing efficiency. Of course, considering a
signal as a function of time is not new, but implementing
them as such is. We will set the scope in section 2 and anal-
yse the problem in more detail in section 3. Next, we will
identify the many faces of time (section 4) and present our
solution (section 5) followed by some results (section 6).

∗This research is partly funded by Thales Nederland B.V. and
STW projects CMOS Beamforming (07620) and NEST (10346).

2. ABOUT TIME
The scope of this paper involves the modelling of mixed

CT and DT systems. In such systems signals represents
measurable quantities over an independent value, in our case
time. So it concerns time.

We differentiate between continuous time and discrete time.
Continuous time is unbroken or whole, i.e. defined for all
time. Discrete time quantises time to distinct separate mo-
ments in time. Thus there are two kinds of signals:

• Signals in the CT domain are functions of time, i.e.
they represent the value of the signal over all time.

• Signals in the DT domain are a list of values at discrete
moments, also called samples. However, computation-
ally an operation is defined on an individual value (pos-
sibly depending on previous values using state).

A function that takes a signal and transform it to a new
signal is called a signal transformation. In case of DT sig-
nals, the implementation of a signal transformation corre-
sponds to an operation or function on a value. In case of
CT, a signal transformation corresponds to a function on a
function, i.e. it is a so called higher order function.

A signal transformation can be with respect to the inde-
pendent value, i.e. a time-shift corresponds to a delay of the
signal. Other transformations are reflection or scaling.

Signal flow diagrams or block diagrams are popular in
system design tools because of their intuitive use and ease
of understanding [2]. Components in such diagrams denote
signal transformations and arrows denote signals. Compo-
sition of signal transformations is analogous to connection
blocks in a signal flow diagram.

To compose components from different domains, the sig-
nal representation must be changed. To go from the CT
domain to the DT time domain, the signal is sampled at
specific sample times by an analogue-to-digital converter
(ADC). To go from the DT domain to the CT domain, the
sample is hold until the next value by a digital-to-analogue
converter (DAC).

3. PROBLEM ANALYSIS
There are many mixed continuous/discrete time modelling

tools [2]. Probably the most well-known is Simulink. Exist-
ing tools perform a simulation by extracting a set of ordinary
differential equations (ODEs) from the model. This set is (in
the general case) solved numerically. Typical solvers are the
Euler methods or the Runge-Kutta methods. Such solvers
operate iteratively with a fixed or variable step size.

Figure 1: Simulink ex-
ample

Figure 2: Model with
multiple ADCs

Figure 3: Delayed sine Figure 4: Delay error

Thus, simulation for existing tools consists of quantis-
ing time in time steps to iteratively solve the set ODEs.
This means time is a global property of the model. For a
mixed CT/DT model, the DT is represented as piecewise-
continuous for the solver. At each simulation step the com-
plete model is evaluated and a resulting value is calculated.
So, the inputs and outputs of the model components are the
values at a certain time step.

The solver must determine the time instants to solve the
set of equations. This is problematic in case of time trans-
formations or incompatible components.

For the first problem, consider the very simple Simulink
system in figure 1 consisting of a sine wave source, a (vari-
able) time delay and a scope. A 1Hz sine with a 0◦ initial
phase is used. The (maximum) time step size for simula-
tion is 0.04s, so 25 simulation results per period. The step
size is not adjusted by Simulink, because the model contains
no differential equations (only algebraic). The time delay is
0.1s, which is deliberately chosen not to fit the step size.

A plot of the output is shown in figure 3, a shifted sine
wave as expected. The ideal result is a sine wave with an
initial phase of −2 ·π ·0.1, but when compared to the output
of the delayed sine wave of figure 1 the Simulink output
has an error (shown in figure 4). This error is caused by
interpolation. The time delay block buffers values each time
step and retrieves a value for the delayed time. When a value
at the delayed time is not available, the result is interpolated
from the surrounding values. The error is directly related
to the frequency of the signal and the step size. Higher
frequencies need smaller steps or will give larger errors.

One might expect that a solution is to make the time step
a multiple of the delay as the delay block can then retrieve
the exact value. There are at least three problems with this:

a) if the delay is small the step size needs to be small,
resulting in many (fixed) steps and thus inefficiency,

b) if multiple time delays are used, without a common fac-
tor, separate time steps for each time delay are needed
for accurate results,

c) if the delay is variable, the current time step depends
on a unknown delay in the future.

In general the time delay can be variable. Simulink com-
pletely ignores the delays and only uses the solver to deter-
mine the time step to use because of these problems.

A second example of a problematic model is shown in fig-
ure 2. An ADC, implemented as a zero-order-hold (ZOH),
is assumed to have a fixed sample rate (otherwise a sample-
and-hold should be used). The time steps are indeed deter-
mined by the sample rate for both fixed and variable step
sizes in Simulink. For a multi-rate system with more ADCs
the time steps match the sample times of all ADCs with a
variable step. However, a fixed step size results in a very
small time step, matching the common denominator. Al-
ready for more than two ADCs the time step becomes too
small and generates an error in Simulink.

A third problem is that the time step determined by the
solver for numerical approximation of a differential equation
is applied to all equations. This global time step causes the
whole system to be evaluated, while it is very well possi-
ble that most of the system does not need to be evaluated
at this fine-granularity, reducing efficiency; for example, the
DT domain with a sample period much larger than the ap-
proximation step.

4. ALL THE TIME
We have observed that using a global time step set by the

solver results in problems with efficiency or with accuracy.
In fact, we have seen different notions of time:

• the time step when observing signals during simulation

• the period when sampling a CT signal by an ADC,

• the time steps when approximating a differential equa-
tion, of an integral block for example,

• the delay when shifting a signal by a time delay block.

These different notions of time (steps) are in principle unre-
lated, however they are coalesced into a single time step by
the solver. The notions, including the approximation time
step of the solver are actually a local property in the model.
In this paper we propose a solution that enables local control
over the time, i.e. by locally applying time transformations
or time steps the problems described in section 3 can be
resolved while retaining efficiency.

5. FORMALISM
We will show the problems mentioned above are resolved

if a local time reference is used by applying operations on
functions of time instead of values.

5.1 Continuous time
Consider the same system as in figure 1:

∆t

Figure 5: Simple system block diagram

As explained in section 2, signals are functions of time and
components in this model represent signal transformations.
Thus, the mathematical definition of the relevant types is:

T ime = R
SigCT = T ime→ R

ComponentCT = SigCT → SigCT

where A→ B denotes the class of functions from A to B.

The first component is a sine source and as such does not
really “transform” a signal. That is, it transforms a vacuous
input:

source() = t 7→ a · sin(ωt)

where a is the amplitude, ω the frequency and t is time. The
notation t 7→ ..t.. denotes the function which maps t to ..t...

The next component is a time delay. The delay can have
any value and even be variable. Existing modelling tools
have problems with a time delay because also the CT signals
are discretised for simulation. Mathematically, however, a
time delay component is simply defined as:

delayδ(f) = t 7→ f(t− δ) (1)

where f is a signal, i.e. a function of time, and delay adjusts
the time of f with δ. Thus, to find the function value on
time t after a 0.1 time delay, one has to know the function
value at time t− 0.1.

The final component is a scope sink. The scope plots the
signal, hence, as a transformation it may be rather meaning-
less. That is, the input signal is transformed to a vacuous
output, with a plot of the signal as a side-effect:

sink(f) = t 7→ ()

Now suppose a 1Hz sine with amplitude 1 and a 0.1 time
delay. The signal that is plotted is then:

delay0.1(sin(2πt)) = t 7→ sin(2π(t− 0.1))

The time delay is accurately included in the final function,
independent from the time used for simulation. In Simulink
and other existing tools it is exactly at this point that inac-
curacies are introduced.

5.2 Discrete time
We extend the system with an ADC and a signal gain to

include the DT domain:

∆t A/D ∗n

Continuous Time Discrete Time

Figure 6: Mixed CT/DT system block diagram

As mentioned, signals in the DT domain represent val-
ues on discrete moments, but from a computational view a
component operates on a single value:

SigDT = R
ComponentDT = SigDT → SigDT

The ADC component transforms the signal f into a dis-
cretized signal with time interval d. This is achieved by
flooring the time of the CT input to the latest sample time:

adcd(f) = t 7→ f(bt/dc · d) (2)

Applying this result to a time t gives the latest value that
was sampled before t.

The gainn transformation multiplies a signal value by n:

gainn(x) = x ∗ n (3)

However, the output of the ADC gives the latest sample for
time t. The gainn component must therefore be changed

so it operates on the ADC samples independent of time, i.e.
the input signal is applied to time t, but not gainn itself:

ĝainn(f) = t 7→ f(t) ∗ n

The operation ̂ is is called “lifting” from a function on
values to a function on functions, and is automatically per-
formed when a DT component is connected to a CT sig-
nal. The result for plotting is then a piecewise horizontal-
function. This is implemented efficiently by re-using the
results from the latest sample in between sample times.

5.3 Composition
A signal flow diagram is a composition of signal transfor-

mations. We will define operators for sequential, parallel
and feedback composition.

Sequential composition is expressed as:

ϕ . ψ = f 7→ ψ(ϕ(f)) (4)

where ϕ and ψ are transformations, i.e., components, and .
is the operation to compose transformations. That is, ϕ . ψ
is the transformation that takes a signal function f as an
argument and determines its result by first applying ϕ to f
and then ψ to the resulting signal function.

Assume the same source and delay as before, an ADC
sample period of 0.3 and a gain of 2. The diagram in figure 6
can then be expressed as:

source . delay0.1 . adc0.3 . gain2 . sink

= gain2 (adc0.3 (delay0.1 (sin(2πt))))

= t 7→ 2 ∗ sin(b(t− 0.1)/0.3c ∗ 0.3)

Likewise, parallel composition (figure 7) is defined as:

ϕ ‖ ψ = (f, g) 7→ (ϕ(f), ψ(g)) (5)

i.e. multiple inputs are represented as tuples and the com-
position connects ϕ to the first and ψ to the second.

Feedback composition (figure 8) is defined as:

� ϕ = f 7→ g where (g, h) = ϕ(f, h) (6)

i.e. the component ϕ takes two inputs f and h, of which h
is the second output signal of itself.

ϕ
f ϕ(f)

ψ
g ψ(g)

Figure 7: Parallel

ϕ
f g

h

Figure 8: Feedback

5.4 Implementation
A key requirement for implementation is support for higher-

order functions to express signal transformations. This is
supported by functional languages, which have the addi-
tional advantage of directly expressing the mathematics. We
choose for the functional programming language Haskell, be-
cause it also provides a type class feature to conveniently
overload algebraic and composition operators.

The delay, adc and gain components are straightforward
reformulations of equation (1), (2) and (3) as the reader may
check immediately:

delay delta f = \t −> f (t−delta)
adc d f = \t −> f (floor (t/d) ∗ d)
gain n x = x ∗ n

The composition operators ., ‖ and � of equation (4), (5)
and (6) are written in Haskell as >>>, || and loop and are
also in direct correspondence to their mathematical defini-
tion:

phi >>> psi = \f −> psi (phi f)
phi | | psi = \(f , g) −> (phi f , psi g)
loop phi = \f −> let (g, h) = phi (f , h) in g

Note that we require lazy evaluation to allow phi to break
the recursive dependence on h in loop.

The signal flow diagram of figure 6 is then expressed as:

source >>> delay 0.1 >>> adc 0.3 >>> gain 2 >>> sink

6. TIME WILL TELL
To verify our solution and illustrate its usefulness, we have

implemented a phased array system (used in e.g. radar and
radio astronomy) and compared it with an implementation
in Simulink. A phased array receiver consists of an array
of antennas used to electronically steer the reception. The
path length from a transmitter to each antenna element is
different, resulting in a different time delay for each antenna
signal. To validate an adaptive steering algorithm [1] we
have developed, the modelled time delays must be exact.

Our implementation is used to steer the receiver into the
direction of a signal-of-interest, while a second signal is in-
terfering. The second source is rejected and the resulting
signal is exactly as expected (mathematically). The same
system in Simulink has an error in the range of the step
size. The simulation takes about 0.93s for both tools on a
2GHz Core2 Duo with 4GB RAM when interpreted. For the
compiled versions, Haskell is about 10 times faster.

If the antenna elements are moving with respect to the
source, they experience the Doppler effect. For antenna ele-
ments with different speeds, for example on a moving ship,
this effect can not be represented by a simple frequency shift.
Instead time-scaling per channel must be applied. This is
implemented analogous to the time delay.

7. RELATED WORK
An extensive survey of mixed domain modelling tools can

be found in [2]. Simulink is the standard for mixed CT/DT
system modelling. Also widely known is Ptolemy [3], which
supports many more domains with the goal of researching
their interaction. Ptolemy also support higher order compo-
nents, but not higher order signals. SystemC-AMS extends
SystemC for mixed signal modelling [8], adding support for
signal flow models and conservative-law models. Model-
ica [5] specifies a object-oriented, declarative, multi-domain
modelling language of which there are a number of imple-
mentations. Surprising as it may seem, all these tools solve
a set of differential equations using a global time step and
pass values. Although Ptolemy for example has a notion
of super-dense time, this is still a time (plus index) and
value pair. Some tools can locally influence the step size,
Ptolemy components can reject a step size until all agree and
SystemC-AMS modules propagate the time step for consis-
tency, but it remains a global parameter. None of the tools
researched [2, 5, 8, 9] separate the notions of time and allow
local transformations using the higher abstraction of signals
as function of time, as proposed in the present paper.

Functional Reactive Programming (FRP) [4, 6] also uses
functions of time (originally behaviours) in Haskell, but for
different domains. FRP also does not identify and use dif-
ferent notions of time nor apply it to signal flow diagrams.

8. CONCLUSION
The problem with time is tackled by analysing the mean-

ing of signals and time in the CT and DT domains and
realising that CT signals are functions of time and should
be implemented as such. A further contribution is the real-
isation that time is a local property, which can be exploited
because CT signals are functions of time. Therefore, the
value of a time delayed or sampled signal can be determined
exactly without reducing efficiency.

We have developed a mathematical representation and im-
plementation of signals and components in the CT and DT
domain, as well as their composition. The results indicate at
least a comparable performance to Simulink while providing
an exact simulation.

9. IN TIME
Future work will be to extend into the direction of do-

mains such as dataflow. Furthermore, we were not able to
adequately discuss stateful computations and feedback in
this paper.

10. REFERENCES
[1] K. C. H. Blom, M. D. van de Burgwal, K. C. Rovers,

A. B. J. Kokkeler, and G. J. M. Smit. DVB-S signal
tracking techniques for mobile phased arrays. In IEEE
72nd Vehicular Technology Conference (VTC
2010-Fall), page 5, Ottawa, ON, Canada, Sep 2010.

[2] L. P. Carloni, R. Passerone, A. Pinto, and A. L.
Angiovanni-Vincentelli. Languages and Tools for
Hybrid Systems Design. Foundations and Trends in
Electronic Design Automation, 1(1):1–193, 2006.

[3] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Y. Xiong. Taming
heterogeneity - the Ptolemy approach. Proceedings of
the IEEE, 91(1):127–144, Jan 2003.

[4] C. Elliott and P. Hudak. Functional Reactive
Animation. In ICFP ’97, pages 263–273. ACM, 1997.

[5] P. Fritzson and V. Engelson. Modelica - A Unified
Object-Oriented Language for System Modeling and
Simulation. In E. Jul, editor, ECOOP’98 —
Object-Oriented Programming, volume 1445 of Lecture
Notes in Computer Science. 1998.

[6] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson.
Arrows, robots, and functional reactive programming.
In Advanced Functional Programming, Lecture Notes in
Computer Science. 2003.

[7] E. A. Lee. Cyber physical systems: Design challenges.
Technical Report UCB/EECS-2008-8, EECS
Department, University of California, Berkeley.

[8] A. Vachoux, C. Grimm, and K. Einwich. SystemC-AMS
Requirements, Design Objectives and Rationale. In
Proceedings of the conference on Design, Automation
and Test in Europe (DATE ’03). IEEE, 2003.

[9] H. Zheng. Operational semantics of hybrid systems.
PhD thesis, Berkeley, CA, USA, 2007.

