
A Logic-based Modeling and Verification of CPS

Neda Saeedloei
Department of Computer Science

University of Texas at Dallas
Richardson, TX 75080

neda.saeedloei@student.utdallas.edu

Gopal Gupta
Department of Computer Science

University of Texas at Dallas
Richardson, TX 75080

gupta@utdallas.edu

ABSTRACT
Cyber-physical systems (CPS) consist of perpetually and
concurrently executing physical and computational compo-
nents. The presence of physical components require the com-
putational components to deal with continuous quantities.
A formalism that can model discrete and continuous quan-
tities together with concurrent, perpetual execution is lack-
ing. In this paper we report on the development of a formal-
ism based on logic programming extended with co-induction,
constraints over reals, and coroutining that allows CPS to be
elegantly modeled. This logic programming realization can
be used for verifying interesting properties as well as gener-
ating implementations of CPS. We illustrate this formalism
by applying it to elegant modeling of the reactor temperature
control system. Interesting properties of the system can be
verified merely by posing appropriate queries to this model.
Precise parametric analysis can also be performed.

1. INTRODUCTION
Cyper-physical systems (CPS) combine computational and

physical elements in tight coordination. In addition to dis-
crete computation, the presence of physical elements require
CPS to handle continuous quantities (e.g., time, distance,
acceleration, temperature, etc.). Cyber-physical systems
are becoming ubiquitous. Almost every device today has
(concurrent, communicating) controllers that read inputs
through sensors, do some processing and then perform ac-
tions through actuators in a coordinated manner. Examples
include controller systems in cars (Anti-lock Brake System,
Cruise Controllers, Collision Avoidance, etc., that commu-
nicate through a network with each other), automated man-
ufacturing, smart homes, robots, etc. Unlike embedded sys-
tems, CPS are not stand-alone systems. Rather, they are a
network of interacting and concurrently executing elements
that have physical inputs and outputs. In addition, CPS are
assumed to run forever [5, 8]. Due to fundamentally discrete
nature of computation, researchers have had difficulty deal-
ing with continuous quantities in computations (typical ap-
proaches discretize continuous quantities, e.g., time). Like-
wise, modeling of perpetual computations is not straight-
forward (only recently, techniques such as co-inductive logic
programming [17, 4] have been introduced to operationally
realize rational, infinite computations). Concurrency is rea-
sonably well understood, but when combined with continu-
ous quantities and with perpetual computations, CPS be-
come extremely hard to model faithfully. In this paper
we develop techniques for faithfully and elegantly model-
ing CPS and verifying their properties. We consider com-

municating hybrid automata as the underlying model, and
illustrate their use in specifying and verifying highly com-
plex CPS. Our approach is based on using logic program-
ming (LP) for modeling computations, constraint logic pro-
gramming (CLP(R)) for modeling continuous physical quan-
tities, co-induction for modeling perpetual execution and
coroutining for modeling concurrency in CPS. CPS are thus
represented as coroutined co-inductive constraint logic pro-
grams which are subsequently used to elegantly verify cyber-
physical properties of the system relating to safety, liveness
and utility. These logic programs can also be used for auto-
matically generating implementation code for the CPS.

To illustrate our techniques, we consider the reactor tem-
perature control system [19], and show how it can be natu-
rally and elegantly modeled (and its properties verified) as
a network of communicating hybrid automata implemented
as coroutined co-inductive CLP(R) programs. Note that our
framework for modeling and verifying CPS, provides diag-
nostic information that can be used in design of the system.
For instance, if our system fails to satisfy the safety require-
ment, it will generate a time trace of events that leads to
violation of safety property. Another interesting feature of
our framework is its ability to perform precise parametric
analysis. Parametric analysis is used to determine neces-
sary and sufficient constraints on parameters under which
correctness requirements are met. Using our method we
were able to compute exact bounds on parameters of the re-
actor temperature control system thereby improving on the
results of Henzinger and Ho [6], who only compute them
approximately.

Our contribution includes developing practical and faith-
ful realization of CPS as co-inductive coroutined constraint
logic programs over reals. What is noteworthy in our real-
ization of CPS is that, in contrast to other approaches, we
do not discretize the physical quantities involved. Rather
these physical quantities are assumed to range over continu-
ous real values, with relationship between them modeled as
constraints over reals. We assume that the reader is familiar
with hybrid automata [11, 1] constraint logic programming
over reals [7] and co-inductive logic programming [4].

2. MODELING CPS WITH COROUTINED
CO-INDUCTIVE CLP(R)

CPS have the following four characteristics [5, 8]: (i) they
perform discrete computations, (ii) they deal with continu-
ous quantities, (iii) they are concurrent, and (iv) they run
forever. We assume that CPS are communicating hybrid
automata that control physical systems. A hybrid automa-



ton is a finite-state automaton, extended with a set of real-
valued variables. The control locations (states) of the au-
tomaton are labeled with evolution laws, which are specified
as differential equations. The values of the variables change
continuously with time according to the associated law at
each location. If the value of a variable x does not change
in a location, then the evolution law is represented by ẋ = 0
and can be eliminated. Each location is also labeled with
an invariant condition that must hold when the control re-
sides at the location. The transitions of the automaton are
labeled with guarded sets of assignments. A transition is
enabled when the associated guard is true and its execution
modifies the values of the variables according to the assign-
ments. There is a labeling function that assigns a label (or
synchronization letter) to each transition. There is also an
initial condition that describes the set of possible values for
the system when it starts in the initial location.

The reactor temperature control system is a traditional
example of a cyber-physical system. The system consists of
a reactor core and two control rods that control the temper-
ature of the reactor core. The goal is to keep the tempera-
ture between temperatures θm and θM . If the temperature
reaches θM , then it should be decreased by introducing one
of the control rods into the reactor core. Figure 1 shows
the hybrid system of this example. Variable θ measures the
temperature, variables r1 and r2 measure the time that has
elapsed since rod1 and rod2 were removed from the reactor
core, respectively. Variables c1 and c2 are used by the con-
troller so that the time of transitions can be remembered.
Initially θ is θm degrees and both control rods are outside
of the reactor core. In this case, θ rises according to the
differential equation θ̇ = θ

10
− 50, location no rod. θ de-

creases according to the differential equations θ̇ = θ
10
− 56

(location rod1) and θ̇ = θ
10
− 60 (location rod2) depend-

ing on the control rod used. A control rod may be used
again, if W ≥ 0 units of time have elapsed since it was last
removed. If θ cannot decrease because no control rod is
available, then a shutdown of the reactor is necessary. A
shutdown of the system should be prevented. As we men-
tioned earlier, communicating hybrid automata constitute
the foundations of CPS. In the past we have developed a
system for converting communicating timed automata (and
communicating pushdown timed automata (PTA)) to co-
inductive CLP(R) programs [15]. The system models a
timed automaton/pushdown timed automaton as a set of
transition rules (one rule per transition in the automaton),
where each rule is extended with clock constraints and stack
actions (in case of PTA). This system is extended to han-
dle hybrid automata. In our formalism, hybrid automata are
modeled as logic programs [9, 18], physical quantities are rep-
resented as continuous quantities (i.e., not discretized) and
the constraints imposed on them by transitions are faith-
fully modeled with constraint logic programming over reals
[7]. By considering co-inductive logic programming [4], we
are able to model the non-terminating aspect of hybrid au-
tomata, and finally concurrency between hybrid automata
will be handled by allowing coroutining (realized via delay
declarations of Prolog [18] in our subsequent implementa-
tion) within logic programming computations.

Constraint logic programming (CLP) is a powerful exten-
sion of LP that allows one to reason about continuous quan-
tities (such as real time) via constraint-solving over reals. It
permits an elegant blending of computations over both dis-

crete and continuous quantities. Real-time features along
with other physical dynamics of real-time systems/CPS can
be expressed as constraints over reals so that the entire sys-
tem can be modeled and verified in CLP(R) [15, 14].

Co-induction is a powerful technique for reasoning about
unfounded sets, unbounded structures, and interactive com-
putations. Elegant co-inductive extensions of logic program-
ming have been proposed. Co-inductive LP (Co-LP) gives
an operational semantics to greatest fix point based com-
putations. An important application of co-inductive LP is
in directly representing and verifying properties of Kripke
structures and ω-automata (automata that accept infinite
strings). The perpetual execution of CPS can be elegantly
expressed via Co-LP.

The coroutining facility of logic programming (in particu-
lar Prolog) is realized via built-in predicates such as freeze,
when, etc. Coroutining deals with having Prolog goals sched-
uled for execution as soon as some conditions are fulfilled. In
Prolog the most commonly used condition is the instantia-
tion (binding) of a variable. Scheduling a goal to be executed
immediately after a variable is bound can be used to model
the transitions taken on synchronization letters.

Our logic programming realization of CPS is illustrated
by its application to the reactor temperature control system
in the next section.

3. MODELING THE REACTOR TEMPER-
ATURE CONTROL SYSTEM

For modeling the reactor temperature control system, we
set θm = 510, and θM = 550. We solve the differential equa-
tions in each location and determine how long the system
remains in this location and how the variables (temperature,
and clocks) change during this time. Solving the differential

equation for location no rod results in: θ(t) = 10e(t/10)+500.
We can determine at which time point the transitions add1
or add2 are taken place by computing the time the reac-
tor reaches the critical temperature θM ; this is performed
by solving the equation θ(t) = θM . Similarly, solving the
differential equations for locations rod1 and rod2 results in:
θ(t) = −10e(t/10) + 560 and θ(t) = −50e(t/10) + 600 respec-
tively. By solving the equation θ(t) = θm, we can determine
at which time point the transitions remove1 or remove2 are
taken place. The set of transition rules of the three hybrid
automata of this example, extended with clock operations,
set of constraints corresponding to the guards and invari-
ant conditions and evolution laws, are expressed via predi-
cates c/11, r1/7 and r2/7, which are not presented here but
shown in [13]. Once each hybrid automaton in the system is
realized as a set of transition rules via logic programming,
the coroutined, co-inductive predicate contr/7, realizes the
controller automaton, calling the c/11 predicate repeatedly;
while sending appropriate synchronization letters to rod1
and rod2. Coroutined, co-inductive predicates rod1/6 and
rod2/6 similarly call r1/7 and r2/7 respectively, on receiv-
ing synchronization letters from the controller. These pred-
icates are also shown in [13]. Finally the main/3 predicate
represents the concurrent execution of all the components of
the reactor temperature control system.

main(S, T, W) :-
{T - Tr1 = W, T - Tr2 = W},
freeze(S, (rod1(S, s0, s0, Tr1, Tr2, W);

rod2(S, s0, s0, Tr1, Tr2, W))),
contr(S, s0, T, 510, Tc1, Tc2, 1).



Figure 1: The reactor core, and control rod automata

The first argument of main/3 is the list of synchronization
letters along with their time-stamps, which is generated by
the controller and sent to two rods (nondeterministically).
The second argument is the initial wall clock time, and W is
the parameter of the system explained earlier. The condition
that both rods are available initially, is specified using the
set of constraints {T−Tr1 = W,T−Tr2 = W} in which Tr1
and Tr2 represent the clocks for rod1 and rod2 respectively.

Once the entire system is modeled as a co-inductive corou-
tined CLP(R) program, it can be used for finding the value
of parameter W that guarantees the safety of the system.
Calling the main predicate, with W as an unknown param-
eter, we obtain W ≤ 38.0666, which is a necessary and
sufficient condition on the parameter W that prevents the
reactor from shutdown. The verification requires 0.010 sec-
onds on an Intel dual core 3.16 GHz processor with 4.00 GB
of RAM. Our logic programming realization of system can
also be used to verify interesting properties of the system
by posing queries. Here we exploit the natural ability of
logic/constraint programming systems to explore the entire
state space of a program, merely by backtracking. Given a
property Q to be verified, we specify its negation as a logic
program. Let’s call this predicate notQ. If the property Q

holds, the query notQ will fail w.r.t. the logic program that
models the system. If the query notQ succeeds, the answer
provides a counter example to why the property Q does not
hold. To prove the safety property, we define the unsafe/3

predicate which looks for an accepting timed trace that con-
tains a shutdown event. Calling the predicate unsafe/3 for
any values of T > 0 and W ≤ 38.0666 fails, which indicates
the safety of the system.

unsafe(S, T, W) :-
main(S, T, W), member((shutdown, Ts), S).

Henzinger and Ho have also analyzed the reactor temper-
ature control system with their symbolic model checker,
HYTECH [6]. HYTECH analyzes a class of hybrid sys-
tems expressed via linear hybrid automata in which physi-
cal quantities exhibit constant derivatives. Since the hybrid
automaton for the controller involves non-constant deriva-
tives, their work employs two methods for converting it to
linear hybrid automaton. In the first method which is called
the rate translation, the derivative of the temperature is ap-
proximated in three locations of the controller hybrid au-
tomaton by rate intervals of [−5,−1], [−9,−5] and [1, 5] for
locations rod1, rod2 and no rod, respectively. The analy-
sis of this converted hybrid automaton by HYTECH con-

cludes W < 20.44 as a necessary and sufficient condition on
the parameter W that prevents the reactor from shutdown.
Using our system, we found out that this requirement on
parameter W is indeed a sufficient condition, however, it
is not a necessary condition, since for any value of W in
which W ≤ 38.0666 the system is still safe. Their second
method for converting a nonlinear hybrid automaton to a
linear hybrid automaton is called clock translation and it
has two steps. In the first step, the nonlinear variable of
controller automaton is replaced by clock; as a result θ is
replaced by tθ. In the second step, the resulting automaton
is over approximated by a linear automaton with the in-
variants 10tθ ≤ 161, 10tθ ≤ 89, and true for locations rod1,
rod2 and no rod, respectively. The original differential equa-
tions are also replaced by ṫθ = 1 in all the locations of the
hybrid automaton. The analysis of this converted hybrid
automaton by HYTECH concludes W < 37.8 as a weaker
condition on parameter W . This result is closer to the re-
sult generated by our system. However, in our approach,
these parameters are computed with exact precision, as our
framework for modeling hybrid automata directly handles
the physical quantities constrained by nonconstant deriva-
tives, as long as the guards associated with transitions are
of the form x ∼ a, where ∼∈ {=, <,>,≤,≥} and a is a
constant. In other words, we are not using any translation
and approximation method for converting non-linear vari-
ables to linear variables; therefore, our system computes the
parameter bounds exactly, and is free of possible impreci-
sion that might be introduced if approximation methods are
used. Note that one needs to use an appropriate solver in
order to solve the set of constraints corresponding to the
invariants, evolution laws, and guards on the transitions.

4. CONCLUSION AND RELATED WORK
This paper presents a general framework for modeling and

verifying cyber-physical/hybrid systems. CPS are normally
composed of set of processes that execute concurrently. The
processes interact with each other through sending and re-
ceiving signals and run forever. Communicating hybrid au-
tomata [11, 12] constitute the foundations of CPS. In our
framework, hybrid automata are modeled as logic programs
[9], physical quantities are faithfully represented as contin-
uous quantities (i.e., not discretized) and the constraints
imposed on them by CPS physical interactions are mod-
eled with constraint logic programming over reals. By con-
sidering co-inductive logic programming we are able to nat-



urally model the non-terminating aspect of CPS. Finally,
concurrency is handled by allowing coroutining within logic
programming computations. As a result, CPS are modeled
as coroutined, co-inductive CLP(R) programs which can be
used for verifying interesting properties of the system such as
safety, utility, and liveness. Our approach can also be used
to perform precise parametric analysis of CPS and generat-
ing their implementations.

The reactor temperature control system has been recently
adopted by researchers [10] as a benchmark problem in mod-
eling and verifying CPS. Henzinger and Ho have analyzed
this system with HYTECH; a symbolic model checker for
linear hybrid automata [6]. Two methods are employed in
their work for converting the nonlinear hybrid automata to
linear hybrid automata: rate translation and clock transla-
tion. The parametric analysis of the reactor temperature
control system by HYTECH, after rate translation, results
in a very conservative constraint on W . Alur et al. have
presented a general framework for the formal specification
and algorithmic analysis of hybrid systems [12]. This work
is also restricted to linear hybrid systems where all variables
follow piecewise-linear trajectories. A variant of the reactor
temperature control system is analyzed using the KRONOS
tool, another symbolic model checker for timed and hybrid
automata. In this variant of the system, temperature rises
and decreases at fixed rates, which is not faithful to the orig-
inal problem. Back and Cerschi have modeled and verified
a variant of the reactor temperature control system using
continuous action systems [2]. In the variant of the sys-
tem they have considered, temperature rises and decreases
at fixed rates also. The process of verifying safety property
in their model is very lengthy and complex. They start by
generating the state chart of the temperature control sys-
tem to get a first approximation of the invariant for proving
the safety property. Then, they keep adding information to
the system’s states in order to figure out an invariant strong
enough to ensure safety.

We showed how the co-inductive CLP(R)-based realiza-
tion of hybrid automata along with coroutining can be used
to elegantly and faithfully model the reactor temperature
control system as well as verify its safety property. Our
approach can handle non-constant derivatives directly, i.e.,
they do not need to be approximated (as long as a solver,
such as the CLP(R) solver, is available that can handle
them). Using our model, we are able to determine the ex-
act bound on the parameter W that guarantees the safety
of the system. Our modeling of the system based on hy-
brid automata and coroutined co-inductive CLP(R) is sim-
pler, more elegant, and more precise than other approaches.
In addition, unlike other realizations of CPS that discretize
physical quantities, we treat them as continuous quantities,
and do not discretize them.

Timed concurrent constraint (TCC) programming [16] comes
close to our work. Timed concurrent constraints have also
been considered for verification [3]. TCC does not consider
perpetual computations and works only with least fixpoints
of programs. Our work can be regarded as a practical real-
ization of TCC as well as its extension with co-induction to
handle perpetual computations.

To conclude, a combination of constraints over reals, co-
induction, and coroutining provides an expressive, and easy-
to-use formalism for modeling and analyzing complex real-
time systems and CPS modeled as communicating hybrid

and timed automata. In fact, our framework is a general
framework that can be applied to complex systems to han-
dle any continuous quantity such as time, temperature, dis-
tance, pressure, etc. The logic programming based approach
is simpler and more elegant than other approaches that have
been proposed for this purpose. It is also more precise.

5. REFERENCES
[1] R. Alur and D. L. Dill. A theory of timed automata.

TCS, 126(2):183–235, 1994.

[2] R.-J. B. Cristina and C. Cerschi. Modeling and
verifying a temperature control system using
continuous action systems. In Proc. of the 5th Int.
Workshop on FMICS, 2000.

[3] M. Falaschi and A. Villanueva. Automatic verification
of timed concurrent constraint programs. TPLP,
6(3):265–300, 2006.

[4] Gopal Gupta et al. Coinductive logic programming
and its applications. In ICLP, pages 27–44, 2007.

[5] R. Gupta. Programming models and methods for
spatiotemporal actions and reasoning in cyber-physical
systems. In NSF Workshop on CPS, 2006.

[6] T. A. Henzinger and P. hsin Ho. Hytech: The cornell
hybrid technology tool. In Hybrid Systems II, LNCS
999, pages 265–293. Springer, 1995.

[7] J. Jaffar and M. J. Maher. Constraint logic
programming: A survey. J. Log. Program.,
19/20:503–581, 1994.

[8] E. A. Lee. Cyber-physical systems: Design challenges.
In ISORC, May 2008.

[9] J. W. Lloyd. Foundations of logic programming / J.W.
Lloyd. Springer-Verlag, Berlin, New York, 2nd,
extended ed. edition, 1987.

[10] R. A. Thacker et al. Automatic abstraction for
verification of cyber-physical systems. In ICCPS,
pages 12–21, 2010.

[11] R. Alur et al. Hybrid automata: An algorithmic
approach to the specification and verification of hybrid
systems. In Hybrid Systems, pages 209–229, 1992.

[12] R. Alur et al. The algorithmic analysis of hybrid
systems. TCS, 138:3–34, 1995.

[13] N. Saeedloei and G. Gupta. A logic based model for
the reactor temperature control system.
http://www.utdallas.edu/ nxs048000/reactor.pdf.

[14] N. Saeedloei and G. Gupta. Timed definite clause
omega-grammars. In ICLP (Technical
Communications), pages 212–221, 2010.

[15] N. Saeedloei and G. Gupta. Verifying complex
continuous real-time systems with coinductive
CLP(R). In LATA, pages 536–548, 2010.

[16] V. A. Saraswat, R. Jagadeesan, and V. Gupta.
Foundations of timed concurrent constraint
programming. In LICS, pages 71–80, 1994.

[17] L. Simon, A. Bansal, A. Mallya, and G. Gupta.
Co-logic programming: Extending logic programming
with coinduction. In ICALP, pages 472–483, 2007.

[18] L. Sterling and E. Shapiro. The art of Prolog (2nd
ed.): advanced programming techniques. MIT Press,
Cambridge, MA, USA, 1994.

[19] X. Nicollin et al. An approach to the description and
analysis of hybrid systems. In Hybrid Systems, pages
149–178, 1992.


