
A Core Language for Executable Models of Cyber Physical
Systems

(Work In Progress Report)

Walid Taha
Halmstad University,
Halmstad, Sweden.

Rice University
Houston, TX, USA

Walid.Taha@hh.se

Paul Brauner
Rice University

Houston, TX, USA
polux2000@gmail.com

Robert Cartwright
Rice University

Houston, TX, USA
corky.cartwright@gmail.com

Verónica Gaspes
Halmstad University
Halmstad, Sweden

Veronica.Gaspes@hh.se

Aaron Ames
University of Texas A&M
College Station, TX, USA

aames@tamu.edu

Alexandre Chapoutot
ENSTA ParisTech

Paris, France
alexandre.chapoutot@ensta-

paristech.fr

ABSTRACT
Recently we showed that an expressive class of mathemat-
ical equations can be automatically translated into simula-
tion codes. Focusing on the expressivity of equations on
continuous functions, this work considered only minimal in-
teraction with discrete behaviors and only a static number
of statically connected components. However, the interac-
tion between continuous and hybrid components in many
cyber physical domains is highly coupled, and such systems
are often highly dynamic in both respects. This paper gives
an overview of a proposed core language for capturing ex-
ecutable hybrid models of highly dynamic cyber physical
systems.

Keywords
Modeling, Simulation, Cyber-Physical Systems.

1. INTRODUCTION
Systems that evolve over a dense notion of time interact
in complex ways that can confound both intuition and an-
alytical methods [7, 2]. This problem is acute for non-
linear differential systems, which include virtually all three-
dimensional mechanical systems, and for which solutions
rarely have closed form descriptions [5]. As a result, suc-
cessful analysis and design of novel cyber physical systems
invariably includes an extensive experimental component
that relies either on physical prototypes or on simulation.
Today, both types of experimentation can be prohibitively
costly and slow. Physical experiments incur material costs
and pose challenges in control and reproducibility, measure-

ment and instrumentation, and safety. Simulation has the
potential to reduce these problems and to significantly ac-
celerate innovation. But current methods either raise ques-
tions about fidelity or are extremely labor intensive. Using
mainstream tools means depending on proprietary, black-
box codes that come with a fixed set of component models
and that offer only limited support for building custom mod-
els. Writing simulation codes by hand requires both effort
and specialized expertise in mapping the high-level analyt-
ical models to executable codes, software implementation
(including debugging and testing), and dealing with issues
of floating point numerical precision. These difficulties can
be debilitating for designers of cyber physical systems, es-
pecially novel and creative designs.

To reduce the cost of building simulations, we recently de-
veloped and presented an automated, scalable mapping from
an expressive class of mathematical equations to code, show-
ing that this natural mathematical formalism can be viewed
as an executable language for modeling mechanical systems
[17]. While the examples used to illustrate the method fo-
cused on the mechanics, the formalism, called Acumen, can
be used for other physical domains such as electrical, hy-
draulic, or heat transfer systems.

Originally, Acumen was developed as an extension of event-
driven formalisms [13, 12, 8] that have a similar flavor to syn-
chronous languages [6]. Acumen added systems of equations
on functions on dense time for the purpose of describing the
”physical environment” surrounding the ”purely cyber con-
trollers” that were already describable in synchronous for-
malisms. Although this approach seems intuitive at first, it
makes an unnecessary association between physical and con-
tinuous and cyber and discrete. In reality, physical environ-
ments often exhibit both continuous and discrete behaviors.
For example, the two legs of a walking robot continually and
discretely change modality and role with each step forward.
Dually, the use of a purely discrete model for controllers
or embedded systems is overly restrictive. In early stages
of design one may use purely continuous controller models



for simplicity. In later stages of design, it may be important
to capture physical aspects of a digital implementation, such
as dense-time behavior, delays, energy consumption, or heat
emissions. Thus, the expressivity needed to model both the
physical and cyber components calls for tight integration
between continuous and discrete behaviors.

This paper describes the key features of a new, more uni-
form design for Acumen. The proposed design allows fine-
grained coupling between continuous and discrete behaviors
in a unified notion of a hybrid object. Such objects have
time-varying state, carry hybrid laws that specify their be-
havior, can be dynamically created and terminated, and can
include and dynamically coordinate ”child” objects.

In the rest of the paper, we review closely related work (Sec-
tion II), summarize the proposed design (Section III), and
describe how it is simulated (Section IV).

2. RELATED WORK
Acumen [16, 17, 1] is a modeling language being developed
with the goal of bridging the gap between several impor-
tant efforts in modeling and simulation, hybrid systems ver-
ification, and synchronous languages. In what follows we
describe how the proposed design relates to other efforts.

The purely discrete event-driven predecessors [13, 12, 8] of
Acumen have their roots in Functional Reactive Program-
ming (FRP) [11], which itself supports both continuous and
discrete behaviors in a purely functional setting. In formu-
lating the predecessors of Acumen, we narrowed the func-
tional framework to purely discrete systems to focus on the
real-time properties of embedded controllers.

Modelica’s support for equation-based (or relational) mod-
eling [4] provided the initial inspiration for Acumen’s equa-
tions on functions of dense time. Going beyond Modelica
and other equation-based languages, the full Acumen lan-
guage supports partial derivatives that can be used to specify
systems using Euler-Lagrange equations, which still can be
symbolically eliminated by translation to time derivatives.

Like CHARON [3], Acumen is a hybrid systems simulation
language inspired by hybrid automata [7, 2] and hybrid log-
ics [10]. Acumen differs from CHARON in being untyped,
deterministic, and built on a single, dynamic notion of ob-
ject. We present a more detailed comparison after Core
Acumen has been introduced (Section III).

Dynamic differential logic [10] encouraged us to explore a
more ”imperative” style of describing an object’s state, and
which is reflected in design presented in this paper. A key
difference between hybrid logics and languages aimed at sim-
ulation (such as FRP, Modelica, and Acumen) is the treat-
ment of non-determinism. Non-determinism is advantageous
in formalisms used for automated reasoning, because it can
be used to weaken assumptions and thus strengthen the es-
tablished properties. But non-determinism is highly prob-
lematic for simulation formalisms, because it may require
exploring a vast number of options for bounded domains,
and is simply not possible for unbounded domains.

Allowing discrete computations to be repeated arbitrarily

until there are no more additional changes is a standard way
for computing a fixed point. Synchronous languages [6] such
as Lustre or Esterel use a similar strategy for converging on
the result of a synchronous system. In the proposed design
we compute the fixed point for the state of the whole model
being simulated. By the Bekic theorem, this produces the
same result as computing the fixed point for all components
of the system independently [14].

3. CORE ACUMEN
Acumen’s semantics is defined by a series of translations
from a large source language into progressively smaller sub-
sets of the language. The purpose of the core language is to
serve as the minimal subset needed to express all the features
of the full source language. In this section, the proposed de-
sign for Acumen’s core language is illustrated by a series of
small examples.

Acumen is implemented as free software and is available
along with a hands-on tutorial from the Acumen website[1].
All examples can be simulated and visualized using the on-
line distribution, version 10.12.13. The implementation and
the tutorial include more examples than we provide in this
description of the core language. The tutorial also presents
the grammar (BNF), explains class parameters, how to de-
fine local notions of time, how to use the graphical user
interface, and describes other features of the language that
natural extend the subset presented here.

3.1 Objects and Hybrid Laws
Acumen objects are introduced by defining a class for each
kind of object, and then by creating instances of these classes
at a particular point in model/simulation time. As an ex-
ample, consider a device consisting of a battery and discrete
controller that decides whether the battery should charge
or drive a load. When charging, the voltage on the battery
increases at a constant rate until it reaches its full capacity.
Then, the battery stops charging and starts driving the load
until the voltage is too low. When that happens, the battery
switches back to charging. In Core Acumen, the device is
modeled as follows:

class Contraption ()

private v = 0; v’ = 0; mode = 0 end

switch mode

case 0 // Charge (until high)

if (v < 0.8) v’ [=] 1/2

else mode = 1 end

case 1 // Drive (until low)

if (v > 0.2) v’ [=] -v

else mode = 0 end

end

end

All variables (such as v, v’, and mode in the first class) are
implicitly functions of time [11]. Variables introduced in the
private section of the class are the state of any object of
this class. The value assigned to each variable is the initial
value it has at the instant the object is created. A prime
(’) following a variable name denotes its derivative with re-
spect to time. Thus, given an initial value for the variable
v, if v’ is defined, then the value of v will be automatically
determined for future values as well. The switch statement
allows different sets of rules to govern the behavior of the



system under different conditions. The case that applies
is determined by the value of the variable mode. When the
value of mode is 0, then the first if statement is active.
When the value is 1, then the second if statement is ac-
tive. The two if statements follow a parallel pattern: their
true branch contains a continuous assignment, and the false
branch contains a discrete assignment. The main difference
between discrete and continuous assignments is that discrete
assignments block the progress of logical time, in the sense
that simulation cannot advance beyond a particular point
in time until all discrete assignments have been performed.
Continuous assignments, in contrast, happen continuously,
and pose no particular constraints on how the simulator ad-
vances time.

3.2 Class Main and the simulator parameter
In any Acumen model there must be a declaration for a
class called Main. This class always represents the entire
world being modeled.

Even though the goal of Acumen is to automate building
simulation codes, there are fundamental computability lim-
itations that dictate that not all implementation details can
be hidden from the user. For example, there is no single,
universal method for solving a system of equations, be it
linear, non-linear, time-varying, or differential. Yet bridges
and airplanes need to be built, and they will be, whether or
not we help engineers write their simulation codes. Thus, a
pragmatic decision is made in Acumen to allow the user to
include in models additional details needed to perform the
simulation. To support this, each Main object is required
to have a parameter (by convention called the simulator

) that allows the user to express how the model should be
simulated. Continuing the above example, we can write:

class Main (simulator)

private mode = "Init" end

switch mode

case "Init"

simulator.timeStep = 0.001;

simulator.endTime = 5.0;

create Contraption ();

mode = "Persist"

case "Persist"

end

end

The default parameters for simulation start time, end time,
and step size are 0, 10, and 0.005, respectively. The rest of
the definition for this class uses a variable called mode to
distinguish between two different states, one for initializing
(or creating) the model and the other for letting the model
run.

3.3 Object Life Cycle, Migration, and Regu-
lation

When a create command is encountered at a certain point
in model/simulation time, an object is introduced to the
model. Similarly, objects can be terminated. Initially, any
new object is considered the child of the object that cre-
ated it. To allow objects to regulate the behavior of their
children, Acumen allows iteration over children. It is also
possible to move objects dynamically from one parent object

to another, thereby changing the set of ”external laws” that
apply to this object.

To illustrate these concepts, we will consider an artificial
example that allows us to showcase all of these facilities
concisely. In this example, we introduce a class for ”fancy
balls”. The basic functionality of these balls is to bounce.
In addition, they have a limited life span that is specified by
the parent at the time they are created. Additionally, each
fancy ball ensures that each child has a lifespan that is at
least two seconds longer than that of its parent. The Main

class will specify a world where two such objects are created
at time 0, and then, at time 2, the second ball is moved from
the top level world object to be a child object of the first
ball. The model capturing this behavior is as follows:

class FancyBall (t, x,x’,x’’)

private t’=0; end

x’’ [=] -9.8;

if x<=0 x’ = -0.6*x’; x = -x end;

t’ [=] -1;

if t<=0 terminate self end;

for c = self.children

c.t [=] 2

end

end

class Main (simulator)

private

mode ="Init"; n = 0; t=0; t’=1;

a = create FancyBall (5,10,5,0);

b = create FancyBall (3,10,7,0);

end

t’ [=] 1;

n [=] sum 1 for i in self.children

if true;

switch mode

case "Init"

if t>2

move b a;

mode = "Persist" end

case "Persist"

end

end

The code includes an additional private variable n which
keeps track of the number of children in the top level world,
and illustrates one iteration construct in Acumen (summa-
tion). By default, simulating this model in Acumen pro-
duces the following plot. The plot shows the objects and
their variables presented in the order that they are created,
and for the duration that they exist, and with vertical scales
normalized by the value range:



	
  

The first band plots the number of children at the top level.
As expected, the number of top-level children drops at time
2, because the second ball has been moved to be a child of
the first ball. The nineth band is the variable t of the second
object stops decreasing linearly and keeps a fixed value (2)
as dictated by fancy ball’s rule for its children. The number
of top-level children does not change when the first object
dies because the default behavior is that the grand parent
inherits any grandchild that survives a terminated parent.

This example also displays Zeno behavior, where an infinite
number of discrete transitions occur in a finite amount of
time (see [9] for more on formally detecting Zeno behavior
and [15] for the semantics of this behavior). The finite time
interval for the simulation is evidence of the existence of
Zeno behavior in this example, and points to the strong need
to consider simulation semantics that account for multiple
discrete computations at a single time instance.

3.4 Comparison with CHARON
To illustrate the points made about the relation with CHARON
in Related Work (Section II), we consider a simple model of
thermostat coming from CHARON’s user manual. The tem-
perature x of a room is controlled to keep it in the target
range of 68-82 degrees Fahrenheit. The temperature can
evolve continuously over time. The heater is activated if the
value of x is less than 70 and the evolution of x follows the
equation x’ = -x + 100. If the value of x is greater than
80 the heater is off and the temperature follows the rule x’

= -x.

A CHARON program is made of a set of agents that are
executed concurrently. Agents may be aggregated to form a
more complex agent. Each agent is made of a set of modes
each representing a state of hybrid automaton system in
which only one mode can be activated at a time. A mode
may also be made of sub-modes. A set of local or shared
variables may be associated with agents or with modes.
These variables are the main communication technique in
CHARON. Each variable is declared with a type (e.g. int

or real), a kind (e.g. analog or discrete) to express if
it is a continuous-time or a discrete-time variable, and ac-
cess restriction. A special operator d is used to represent
derivatives (see mode onOff). CHARON explicitly declares
guarded transitions between modes. An action may be asso-
ciated in case of the transition is taken. Finally, an invariant

property may be associated with each mode. If the invariant
is false, then the automata must transition to another mode.
If it does not, it is considered blocked. The implementation
of the example described above is as follows:

agent thermostat(){

mode top = thermostatTop()

}

mode thermostatTop(){

private analog real x;

mode on =

onOff(-10000000000.0, 82.0, 100.0);

mode off =

onOff(68.0, 10000000000.0, 0.0);

trans toSubMode from default

to on when true do {x= 73}

trans fromOnToOff from on

to off when x > 80.0 do {}

trans fromOffToOn from off

to on when x < 70.0 do {}

}

mode onOff(real a, real b, real c){

readWrite analog real x;

inv invOnOff {x > a and x < b}

diff dOnOff {d(x) == -x + c}

}

Deterministic CHARON programs can be expressed in Acu-
men as follows. Agents are mapped to classes. Local vari-
ables are mapped to local variables, and additional variables
are introduced as needed for derivatives by looking at the
rest of the agent definition. Modes are mapped to strings
that can be assigned to a mode variable for that class. A
switch statement is then used to capture the rules for that
mode. To deal with invariants, an extra mode called Blocked
is introduced, and the invariants are test at the end of the
case for each switch value (mode).

class Thermostat(mode)

private x = 0; x’ = 0 end

switch mode

case "Top" x = 73; mode = "On"

case "On" x’ [=] -x + 100;

// Transition from on to off

if x > 80 mode = "Off" end;

// Invariant invOnOff

if not (x>-10000000000.0 && x < 82.0)

mode = "Blocked" end;

case "Off" x’ [=] -x;

// Transition from off to on

if x < 70 mode = "On" end;

// Invariant invOnOff

if not (x>68.0 && x < 10000000000.0)

mode = "Blocked" end;

case "Blocked"

end

end

Thus, Core Acumen is a smaller language that can still nat-
urally express deterministic CHARON programs. As a hier-
archical agent language, CHARON supports tree-structured
models of the world. However, it is not clear that CHARON
supports a notion of agent mobility similar to the one sup-
ported by core Acumen.



4. SIMULATION SEMANTICS
Acumen models are simulated by a fine interleaving of a
sequences that can consist of multiple discrete computations
followed by a single computation updating the values that
should evolve continuously. Conceptually, we can think of
any instances in time as follows:

	
  

In the discrete phase of each sequence, all actions that re-
quire discrete change are performed. In the continuous phase,
any range of numerical methods and tools for approximating
continuous behavior can be used. Thus, simulating what is
happening at any single instance in time consists of zero or
more discrete steps followed by a single continuous step. The
discrete steps capture sudden changes in state such as the
impact of two objects, and consist of evaluating all active
discrete assignments in the program until the whole system
is stabilized. A system is stabilized when no more discrete
steps are required. The following example illustrates how
discrete assignments are handled:

class Main (simulator)

private x = 0; y = 1; z = 1; end

if x<5 x = x+1 end;

end

The entire model is repeatedly evaluated until the condition
in this statement is false. Simulation time (or logical time)
is not advanced during these iterations. Acumen considers
such changes to all be happening in the same instant. Using
this type of global fixed point semantics allows Acumen to
realize, among other things, what is sometimes called the
”synchrony hypothesis”, whereby the author of the model
assume that certain discrete or digital events can happen
”fast enough” so that we can view them in the rest of the
model as happening instantaneously. In the example above,
because the initial value of x is zero, the iteration will end
when x has the value 5.

Once all discrete actions have taken place, the system moves
on to performing all adjustments to the continuous state of
the system. The continuous step performs all updates in
parallel, meaning that all updates are based on the state that
results after the sequence of discrete steps, rather than some
later state that resulted from other continuous updates.

5. REFERENCES
[1] Acumen website. http://www.acumen-language.org,

March 2011.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A.
Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine. The algorithmic analysis of hybrid
systems. Theor. Comput. Sci., 138, February 1995.

[3] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee.
Modular specification of hybrid systems in charon. In
Proceedings of the Third International Workshop on
Hybrid Systems: Computation and Control, HSCC ’00,
2000.

[4] D. Broman. Meta-Languages and Semantics for
Equation-Based Modeling and Simulation. PhD thesis,
Department of Computer and Information Science,
Linköping University, 2010.

[5] W. M. Haddad and V. Chellaboina. Nonlinear
Dynamical Systems and Control: A Lyapunov-Based
Approach. Princeton University Press, 2008.

[6] N. Halbwachs. Synchronous Programming of Reactive
Systems. Kluwer Academic Publishers, 1993.

[7] T. A. Henzinger. The theory of hybrid automata. In
Proceedings of the 11th Annual IEEE Symposium on
Logic in Computer Science, LICS ’96, 1996.

[8] R. Kaiabachev, W. Taha, and A. Zhu. E-frp with
priorities. In Proceedings of the 7th ACM & IEEE
international conference on Embedded software,
EMSOFT ’07, 2007.

[9] A. Lamperski and A. D. Ames. On the existence of
zeno behavior in hybrid systems with non-isolated
zeno equilibria. In 47th IEEE Conference on Decision
and Control, 2008.

[10] A. Platzer and J.-D. Quesel. European train control
system: A case study in formal verification. In
Proceedings of the 11th International Conference on
Formal Engineering Methods: Formal Methods and
Software Engineering, ICFEM ’09, 2009.

[11] Z. Wan and P. Hudak. Functional reactive
programming from first principles. SIGPLAN Not., 35,
May 2000.

[12] Z. Wan, W. Taha, and P. Hudak. Real-time frp.
SIGPLAN Not., 36, October 2001.

[13] Z. Wan, W. Taha, and P. Hudak. Event-driven frp. In
Proceedings of the 4th International Symposium on
Practical Aspects of Declarative Languages, PADL ’02,
2002.

[14] G. Winskel. The Formal Semantics of Programming
Languages. The MIT Press, Cambridge,
Massachusetts, 1993.

[15] H. Zheng, E. A. Lee, and A. D. Ames. Beyond zeno:
Get on with it! In J. P. Hespanha and A. Tiwari,
editors, HSCC, volume 3927 of Lecture Notes in
Computer Science. Springer, 2006.

[16] A. Y. Zhu, J. Inoue, M. L. Peralta, W. Taha, M. K.
O’Malley, and D. Powell. Implementing haptic
feedback environments from high-level descriptions. In
Proceedings of the 2009 International Conference on
Embedded Software and Systems, 2009.

[17] Y. Zhu, E. Westbrook, J. Inoue, A. Chapoutot,
C. Salama, M. Peralta, T. Martin, W. Taha,
M. O’Malley, R. Cartwright, A. Ames, and
R. Bhattacharya. Mathematical equations as
executable models of mechanical systems. In
Proceedings of the 1st ACM/IEEE International
Conference on Cyber-Physical Systems, ICCPS ’10.


