
High Confidence Embedded Software Design: A Quadrotor
Helicopter Case Study

Zhenkai Zhang Joseph Porter Nicholas Kottenstette
Xenofon Koutsoukos Janos Sztipanovits

Institute for Software Integrated Systems (ISIS)
Department of Electrical Engineering and Computer Science

Vanderbilt University
Nashville, TN, USA

zhenkai.zhang@vanderbilt.edu

ABSTRACT
Traditional design methodology is not suitable for high-con-
fidence embedded software due to the lack of a formal se-
mantic model for software analysis, automatic code gen-
eration, and often designed embedded software is hard to
reuse. In order to automatically generate high-confidence
and reusable embedded software, we propose a TLM-centric,
platform-based, time-triggered and component-oriented me-
thod. We use this new method to generate the control soft-
ware for a quadrotor helicopter.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; D.2.2 [Software Engi-
neering]: Design Tools and Techniques

General Terms
Design

Keywords
Computer aided software engineering, Real-time systems,
Embedded software, Digital control, Graphical models

1. INTRODUCTION
In many cyber-physical systems (CPS), how to automat-

ically analyze and generate high-confidence embedded soft-
ware becomes a key issue. High-confidence embedded soft-
ware is needed in hard real-time systems, e.g. safety-critical
systems. Moreover, designers also want to reuse success-
ful software to save money and energy spent in develop-
ing these systems, and most importantly, to save time-to-
market. However, there are some drawbacks that impede
the automatic analysis, generation and reuse of embedded

software: (1) Generating high-confidence embedded software
requires a formal model (or models) containing the neces-
sary semantics to enable software analysis; (2) Embedded
software needs to be integrated with the underlying hard-
ware, and the integration makes embedded software hard to
develop, analyze, and reuse; (3) Timing requirements and
software performance vary among different systems, so port-
ing the software to another system might violate timing re-
quirements; (4) When trying to port monolithic embedded
software to a distributed system, it is hard to guarantee
some correctness properties will remain (e.g. determinism
and deadlock freedom).

In order to have a model containing all the semantics for
automatic generation, deal with this tight coupling to the
underlying hardware, make the timing of the embedded soft-
ware easy to be analyzed and controlled, and provide a solu-
tion for distributed systems, many new design methods have
been proposed. Among the model-based design methods,
the Transaction-Level Modeling (TLM) is systematic and
suitable for automatic code generation [4][2]. For dealing
with tight coupling to the underlying hardware, platform-
based design provides an abstraction layer that hides the
details of several possible low-level refinements [3]. Time-
triggered architecture is a particular platform abstraction
which is used to analyze timing behavior of embedded soft-
ware [5]. Actor-oriented design provides a method that
specifies formal models of computation for execution of dis-
tributed components [7].

Although many different issues can be addressed by us-
ing these different methods, there is little work considering
all these design concerns for a specific application. In or-
der to automatically generate high-confidence and reusable
embedded software, we propose a TLM-centric, platform-
based, time-triggered and component-oriented method, and
we use this new method to generate the control software for
a quadrotor helicopter.

2. OVERVIEW
In our method, we start with a specification model (SM)

of the control system using Simulink. After validation of
this SM by simulation, we import the model into an auto-
mated embedded software development environment. The
environment uses a suite of domain-specific modeling lan-
guages (DSMLs) called the Embedded Systems Modeling
Language (ESMoL) to integrate analysis and code genera-



Figure 1: Design flow supported by the ESMoL lan-
guage and modeling tools.

tion tools. In the ESMoL environment, we establish a TLM
based on the imported SM. The TLM captures the hard-
ware platform of the system, the mapping of tasks to the
processors and messages to the communication ports, and
the scheduling information of the tasks. Based on this TLM,
we perform embedded software synthesis which consists of
code generation and binary generation. We evaluate the bi-
nary code on the target platform to check performance with
requirements.

ESMoL is a suite of DSMLs which function together as
a system level design language (SLDL), providing a single
multi-aspect design environment. Modeling, analysis, simu-
lation, and code generation are all related to a single design
model. The design language is specific to distributed em-
bedded control systems, and is described in [9]. We follow
the design flow shown in Fig. 1.

Step 1 is to specify the control system’s functionality in
the Simulink environment. After validation of this control
system design, the model can be imported automatically
into the ESMoL environment. The Simulink model will be-
come a synchronous dataflow (SDF) model, and each sub-
system in the Simulink model becomes an actor in the SDF
model [8]. ESMoL model references to imported Simulink
blocks become the functional specifications for instances of
software components in a logical SDF model. C code frag-
ments may also be used to specify component functionality.
Component ports (shown in Fig. 2) represent instances of
data message types. These types are defined as structures
with individual data fields to which Simulink data ports can
be mapped. These relations describe the marshaling, demar-

shaling, and transfer of data between software components
[9].

Step 2 is to specify the logical software architecture which
captures data dependencies between software component in-
stances independent of their distribution over different pro-
cessors.

Step 3 is to define hardware platforms hierarchically as
hardware units with ports for interconnections. Primitive
components include processing nodes and communication
buses. Behavioral semantics for these network models come
from the underlying time-triggered architecture. The time-
triggered platform provides services such as deterministic ex-
ecution of replicated components and timed message-passing.
Model attributes for hardware also capture timing resolu-
tion, overhead parameters for data transfers, and task con-
text switching times [9].

Step 4 is to set up a deployment model by mapping soft-
ware components to processing nodes, and data messages to
communication ports. The deployment model captures the
assignment of component instances as periodic tasks run-
ning on a particular processor. In ESMoL a task executes
on a processing node at a single periodic rate. All compo-
nents within the task execute synchronously. Message ports
on component instances are assigned to hardware interface
ports in the model to define the media through which mes-
sages are transferred [9].

Step 5 is to establish a timing model by attaching tim-
ing parameter blocks to components and messages. For the
time-triggered case the configuration parameters include ex-
ecution period and worst-case execution time. The execu-
tion model also indicates which components and messages
will be scheduled independently, and which will be grouped
into a single task or message object [9].

The TLM scheduling information is added in steps 6–9.
Step 6 translates an ESMoL model into the simpler ES-
MoL Abstract model using the Stage 1 model transforma-
tion described in [9]. Step 7 is to use the equivalent model
in ESMoL Abstract to generate a scheduling problem spec-
ification according to a template. In step 8 a tool called
SchedTool solves the generated scheduling problem. Step 9
is to import the results back into the ESMoL model and
write them to the appropriate objects. For more details,
please refer to [9]. Step 10 is to generate the corresponding
C code, which will be described in next section.

3. MODELING AND CODE GENERATION
We use the above approach to design and implement the

embedded software for a quadrotor helicopter. Quadrotor
helicopters are agile aircraft which are lifted and propelled
by four rotors. Because their attitude dynamics change so
quickly, it is difficult if not impossible for a human to suc-
cessfully fly and maneuver such vehicles [6]. Thus, these
aircraft need an automated control system to help them fly.
The controller, software and hardware design domains are
highly specialized and conceptually incompatible. For ex-
ample, control theory deals with a continuous system, soft-
ware design is for a discrete environment, and computing
hardware must deal with both. This makes effectively and
efficiently implementing such a high-confidence embedded
control system significantly difficult.

3.1 Simulink Control System Model
The control design for the quadrotor helicopter is intro-



Figure 2: The logical software architecture for
quadrotor’s control system.

duced in [6], which uses passive attitude control. Specifi-
cally, two linear proportional derivative (PD) controllers are
used, an inner loop and an outer loop. The outer loop con-
troller is a “fast” PD inertial controller and the inner loop is
a “fast” PD attitude controller.

The on-board sensors include a GPS and an IMU. In
the Simulink model we do not capture the behavior and
interfaces of the particular sensor chips, so their receiving
message types are modeled not specifically but universally.
The controller takes x, y, and z coordinates instead of lon-
gitude, latitude and height as position, so a specific subsys-
tem Sensor Convert is added to make the conversion. The
Outer Loop subsystem is for inertial position control and In-
ner Loop is for attitude control. Reference Handler is used
to receive and handle destinations, and Plant Dynamics is
used to simulate the behavior (not realized as a software
component).

3.2 Logical Software Architecture
Fig. 2 shows logical data dependencies between software

component instances. There are 7 components needed: Sen-
sor Convert, Reference Handler, Inner Loop and Outer Loop
are all specified as Simulink subsystems; UBlox Parser is for
parsing the GPS data, IMU Parser is for parsing the IMU
sensor data and HL2LL is for coding the command data that
can be sent to the actuators.

To establish functional determinism and deadlock free-
dom, we analyze the imported Simulink blocks in the logical
architecture model as a SDF model. SDF guarantees that
each actor (corresponding to a subsystem in the Simulink
model) can fire at any time only if its input tokens (corre-
sponding to messages) are available on its incoming arcs. In
order to extend the execution semantics to include timing
determinism while maintaining the benefits of synchronous
execution implied by SDF, we employ a time-triggered model
of computation (MoC). On a single processor we use a sim-
ple static task schedule without preemption. This allows us
to implement a very simple scheduler which we can easily
verify to ensure that deadlines are not missed due to task
interference. In the case of a serious fault the scheduler
could still miss a deadline, but failover to another controller
is the only available recovery option. We have not yet im-
plemented fault detection and recovery. The time-triggered
MoC preserves function determinism and deadlock freedom

Figure 3: The hardware platform model of AscTec
Hummingbird AutoPilot.

Figure 4: The deployment model of control system’s
software components.

of the SDF during distributed execution, as the actors all
fire only at the scheduled times.

3.3 Hardware Platform Model
The quadrotor helicopter that we use is named AscTec

Hummingbird AutoPilot from Ascending Technologies Com-
pany [1]. The quadrotor’s hardware architecture is based on
Philips LPC2146. Fig. 3 illustrates the hardware platform
model. The processor LPC2146 is based on an ARM7TDMI-
S CPU with two UARTs, SPI, SSP, and other peripherals.
The peripherals are modeled in the diagram as objects con-
necting the input and output ports on the processor to the
object representing the plant dynamics. A GPS device is
connected through UART1, and a Zigbee module used to
receive reference is connected via UART0. The IMU and ac-
tuators are connected through SSP. Each device can be con-
figured by setting the Configuration attribute of the model
object representing the device channel.

3.4 Deployment Model
In our case study, the model assigns each software com-

ponent to its own task. In Fig. 4 the dashed connection
from a component to a node reference represents an assign-
ment of that component to run as a task on the node. The
port connections represent the hardware channel through
which that particular message will travel. Local data de-
pendencies are not specified here, as they are represented
in the logical software architecture. IChan (Input Channel)
and OChan (Output Channel) objects on the node can also
be connected to message objects on a component. These
connections represent the flow of data from the physical en-
vironment through sensors (IChan objects) or the flow of
data back to the environment through actuators (OChan
objects).



3.5 Timing Model
Each component is assigned a TTExecInfo (Time-Trig-

gered Execution Information) object that takes execution
period (ExecPeriod) and worst case execution time (WCET)
(WCDuration) as its parameters, and so is each external
data transfer. For the processor-local data messages, trans-
fer time is neglected, as reads and writes occur in locally
shared memory. The quadrotor helicopter platform provides
a fundamental sampling rate of 1kHz. The ExecPeriod at-
tribute for all components is set as shown in Table 1. The
fundamental rate required for the controller is 100Hz. Sen-
sor and actuator data rates drive the other components. For
example, since the time between two valid GPS samples is
100ms, the ExecPeriod for Blox Parser is also 100ms, be-
cause it processes the GPS data. The worst case latency
from sensors to actuators must be smaller than 10ms. Local
message transfers may be specified as time-triggered, but
in practice they take place in shared memory and are not
scheduled. In ESMoL only distributed messages may be
scheduled.

3.6 Code Generation
In order to generate the C code based on the TLM in ES-

MoL, two interpreters are used, which are in Stage 1 and
Stage 2 respectively. The Stage 1 interpreter transforms the
TLM to an equivalent model in an intermediate language
called ESMoL Abstract. The model in this intermediate
language is flattened and the relationships implied by struc-
tures in ESMoL are represented by explicit relation objects
in ESMoL Abstract [9].

Stage 2 provides several interpreters, each of which uses
the UDM model navigation API to generate either code
or analysis models from the ESMoL Abstract model. The
deployment model objects are used to generate platform-
specific task wrapping and communication code. Shared
memory is used to implement the message passing through
the ports.

The code generator uses the Google CTemplate engine
called from C++ code to perform the generation tasks. We
establish a template library containing initialization codes of
different devices. This makes the control system code able
to be used on different platforms with a variety of different
sensors and actuators. Using the idea of separately gener-
ating functional and platform specific code is to realize the
platform-based design concept.

Real-Time Workshop (RTW) generates functional ANSI
C code for the subsystems specified as Simulink blocks.

Due to the lack of an operating system, we use interrupt-
based multi-tasking. The timer interrupt service routine
invokes the tasks according to the specified schedule.

4. EVALUATION
We empirically evaluate the execution time for each com-

ponent using an external indicator. Timing requirements
of the components are met. Each of them takes less than
10µs during normal operation. We also use a3 tool from
the AbsInt Angewandte Informatik company to analyze the
WCET and stack usage for each component (shown in Tab.
1). From the table, we can see the total time of analyzed
results is 649.7µs, which is less than 10ms that is the worst
case latency from sensors to actuators, so the timing require-
ments can be met.

Table 1: Analyzed WCET & stack usage and sam-
pling rate for each component

Component WCET Stack Sampling
Name (µs) Usage (B) Rate (Hz)

Outer Loop 299 176 100
Inner Loop 163 96 100

Sensor Convert 70 52 100
Reference Handler 0.45 4 100

UBlox Parser 68.5 44 10
IMU Parser 19 40 333

HL2LL 29.75 36 333

The memory system consists of 256KB on-chip flash mem-
ory (ROM) and 32KB SRAM (RAM). The corresponding
binary code is about 110KB, so it fits in the system’s ROM
space. All the data variables for the communication are pre-
allocated, and from the table we can see the maximum stack
usage of a component is 176B. Empirically, we can evaluate
that the RAM space is enough for data during normal op-
eration.

5. FUTURE WORK
Our future work includes: (1) extending the control ap-

proach (and software implementation) for group coordina-
tion of multiple quadrotor helicopters; (2) modifying ESMoL
to support time-triggered wireless network modeling; (3) an-
alyzing the effect of fixed point implementation.

6. REFERENCES
[1] AscTec Hummingbird with AutoPilot User’s Manual.

[2] L. Cai and D. Gajski. Transaction level modeling: An
overview. In Proc. of the Intl. Conf. on HW/SW
Codesign and System Synthesis (CODES-ISSS), pages
19–24, Oct 2003.

[3] L. P. Carloni, F. D. Bernardinis, C. Pinello, A. L.
Sangiovanni-Vincentelli, and M. Sgroi. Platform-based
design for embedded systems. In R. Zurawski, editor,
The Embedded Systems Handbook. CRC Press, 2005.

[4] D. Gajski, S. Abdi, A. Gertslauer, and G. Schirner.
Embedded System Design: Modeling, Synthesis and
Verification. Springer, 2009.

[5] T. A. Henzinger, B. Horowitz, and C. M. Kirsch.
Giotto: A time-triggered language for embedded
programming. Proc. of the IEEE, 91:84–99, Jan 2003.

[6] N. Kottenstette and J. Porter. Digital passive attitude
and altitude control schemes for quadrotor aircraft. In
ICCA ’09: 7th IEEE Intl. Conf. on Control and
Automation, ChristChurch, New Zealand, 2009.

[7] E. A. Lee. Embedded software. Advances in Computers,
56, 2002.

[8] E. A. Lee and D. G. Messerschmitt. Synchronous data
flow. Proc. of the IEEE, 75(9):1235–1245, 1987.

[9] J. Porter and G. H. et al. The ESMoL Language and
Tools for High-Confidence Distributed Control Systems
Design. Part 1: Language, Framework, and Analysis.
Technical Report ISIS-10-109, ISIS, Vanderbilt Univ.,
2010.


