
Architecture, Mechanisms and Scheduling Analysis Tool
for Multicore Time- and Space-Partitioned Systems

João Craveiro and José Rufino
Universidade de Lisboa, FCUL, LaSIGE

Lisbon, Portugal
Email: jcraveiro@lasige.di.fc.ul.pt, ruf@di.fc.ul.pt

Frank Singhoff
LISyC/University of Brest/UEB

Brest, France
Email: singhoff@univ-brest.fr

Abstract—Time- and space-partitioned systems (TSP) are
a current trend in aerospace. They are employed to integrate
a heterogeneous set of functions (different criticalities, real-
time requirements, and origins) in a shared computing
platform, fulfilling individual partitions’ and global real-time
properties. Applications are separated into logical partitions,
scheduled according to predefined partition scheduling tables
(PSTs). In this paper we expose our current work on
exploiting multiprocessor/multicore processor platforms to
add capacity, flexibility and safety to the current state of the
art in TSP systems. We propose architectural evolutions, as
well as the development of a schedule analysis and generation
tool based on Cheddar. The tool will incorporate and extend
real-time scheduling theory results, and be able to analyse
the feasibility of PSTs and aid the generation of PSTs from
the individual timing requirements of each function.

Keywords-adaptive systems; aerospace industry; logic par-
titioning; processor scheduling; real time systems

I. INTRODUCTION

The computing infrastructures supporting onboard
aerospace systems, given the criticality of the mission
being pursued, have strict dependability and real-time
requisites. They also require flexible resource reallocation,
and reduced size, weight and power consumption (SWaP).
To cater to resource allocation and SWaP requirements,
there has been a trend in the aerospace industry towards
integrating the multiple hosted functions in the same
computing platform. As these functions may have different
degrees of criticality and predictability, and originate from
multiple providers or development teams, safety issues
might arise, which are mitigated by employing time and
space partitioning (TSP). In TSP, onboard applications are
functionally separated into logical containers — partitions.
Partitioning allows containing faults in the domain in
which they occur, and enables independent software ver-
ification and validation (easing the overall certification
process). The issues of this paper are more tightly bound
to the aspect of temporal partitioning, which ensures
applications executing in one partition will not disrupt the
use of any shared resource (most notably the processor)
by applications in other partitions. This is essential to

This work was partially developed within the scope of the Euro-
pean Space Agency Innovation Triangle Initiative program, through
ESTEC Contract 21217/07/NL/CB, Project AIR-II (ARINC 653 in
Space RTOS — Industrial Initiative, http://air.di.fc.ul.pt). This work
was partially supported by FCT (through the Multiannual Fund-
ing and CMU-Portugal Programs, and the Individual Doctoral Grant
SFRH/BD/60193/2009).

ensure the fulfilment of real-time guarantees and enable
independent temporal analysis of the applications [1].

TSP concepts have been deployed in the civil aviation
world, through the Integrated Modular Avionics (IMA) [2]
and ARINC 653 [3] specifications. The interest from space
industry partners in applying TSP concepts [4] originated
the international consortium, sponsored by the European
Space Agency (ESA), within which we took part in the
development of the AIR (ARINC 653 In Space RTOS)
architecture [5] — Section II.

In this paper we expose our current research regarding
adding capacity, flexibility and safety to the current state of
the art in TSP systems through the exploitation of platform
equipped with either multiple processors or multicore
processors. After a brief motivation based on the current
state of the art (Section III), we propose extensions to the
TSP principles using the AIR architecture as a reference —
Section IV. Such added potential emphasizes the need for
a scheduling tool to aid both application developers and
system integrators, which we aim to cater to by extending
Cheddar [6] — Section V.

II. AIR ARCHITECTURE FOR TSP SYSTEMS IN SPACE

AIR [5] is designed to fulfil the requirements for robust
TSP, and foresees the use of different partition operating
systems (POS), either real-time or generic non-real-time
ones. The modular design of the AIR architecture is shown
in Figure 1. The AIR Partition Management Kernel (PMK)
ensures robust temporal and spatial partitioning.

Temporal partitioning is achieved through a two-level
hierarchical scheduling scheme shown in Figure 2. In the
first level, partitions are scheduled cyclically over a Major
Time Frame (MTF), according to a partition scheduling ta-
ble (PST). In each partition, processes compete according

Figure 1. AIR architecture for TSP systems



Figure 2. AIR two-level hierarchical scheduling, with support for mode-
based schedules

to the native process scheduler of each POS. AIR supports
mode-based partition schedules, among which the system
can switch throughout its execution for (self-)adaptation to
mission changes [7]. The Application Executive (APEX)
provides a standard interface between applications and the
underlying core software layer [3], [5].

III. MOTIVATION AND RELATED WORK

Currently, neither commercial/proprietary TSP solutions
nor academic research on TSP systems and architectures
take profit from multicore platform to parallelly schedule
multiple partitions [9].

Real-time scheduling theory literature on hierarchical
scheduling with multiprocessor or multicore is scarce and
recent, especially when compared with, on the one hand,
multiprocessor real-time scheduling theory [8] and, on
the other hand, the existent literature on uniprocessor
hierarchical scheduling [9]. Researchers have proposed
theoretical resource models for abstraction and composi-
tion of the supply–demand relationship between two levels
of scheduling: the multiprocessor periodic resource (MPR)
model [10], the multi supply function (MSF) and the
Multi-(α,∆) abstraction [11], the parallel supply func-
tion (PSF) [12], and the Bounded-Delay Multipartition
(BDM) [13]. All of these require improvements to reach
a state of full applicability to real industry-grade TSP
scenarios.

Mollison et al. [14] illustrate the importance of support-
ing mixed-criticality workloads on multicore platforms in
the context of avionics, but the encapsulation principles
and hierarchical scheduling scheme are different from
those used in TSP.

ARINC 653 [3] mentions possibility of multiple proces-
sors, but assumes a notion of “processor” which includes
software components. This notion would imply replicating
the core software layer — namely the PMK, in the specific
case of the AIR architecture. The replicated instances
would be independently integrated and configured, and the
partitions associated with each one would be bound to a
strong affinity to a processor core right from integration
time. This approach limits the extent to which we can

Figure 3. Interpartition parallelism example timeline

explore the (self-)adaptability mechanisms present in the
AIR architecture, such as using redundancy and mode-
based schedules to overcome a hardware failure [7], [15],
or reconfiguring and/or updating the system in execution
time [16].

IV. MULTICORE-AWARE AIR ARCHITECTURE FOR TSP
SYSTEMS

To add both the desired capacity and flexibility, we
propose an architectural evolution consisting of one single
instance of the AIR PMK, enhanced to take advantage
of an underlying multiprocessor or multicore processor
architecture. The association between partitions and cores
is this more volatile than in an ARINC 653-like approach,
as it can be expressed in configuration parameters designed
to change dynamically (e. g., through mode-based partition
schedules).

The AIR PMK may take advantage of a multiprocessor
or multicore platform in several ways, either in alternative
or cumulatively: (i) interpartition parallelism; (ii) intra-
partition parallelism; (iii) enhanced spatial segregation;
(iv) fault tolerance. We will now analyse the interpartition
and intrapartition parallelism aspects in detail, as well as
how they can be combined. Enhanced spatial segregation
and fault tolerance mechanisms are out of the scope of this
paper [15]. Furthermore, for now, we are not analysing
multicore-specific issues in detail, such as the temporal
effects of shared caches and bus contention. Therefore,
both the multicore and the multiprocessor scenarios are
addressed under the same abstraction.

A. Interpartition parallelism

Interpartition parallelism is achieved by extending the
first level of the hierarchical scheduling scheme (Figure 2).
At every given moment, more than one partition can
be simultaneously active (scheduling and dispatching its
processes), as long as those partitions do so on different
processor cores. Figure 3 illustrates such a scenario. At
every instant, there are always multiple cores in use by
a different partition. Due to its timing characteristics,
partition P1 permanently takes over core 1.

Using, at first, an approach based on the partitioned
multiprocessor real-time scheduling paradigm [17], we
are looking into applying and extending previous research
regarding feasibility tests [18]–[20], heuristics [13], [21],
task sorting criteria, and the choice of these three parame-
ters [22]. We also intend to weigh advantages and results
with approaches based on the global multiprocessor real-
time scheduling paradigm [17].



Figure 4. Example timeline with a combination of both inter- and
intrapartition parallelism

B. Intrapartition parallelism

Another point of view under which we defend we can
take profit from multicore platforms is allowing some
partitions to simultaneously use more than one processor
core during their active time windows. As such, a partition
may parallelly execute multiple processes.

Since a partition will seldom take full advantage of
intrapartition parallelism, the reasonable approach is to
combine both interpartition and intrapartitition parallelism.
By doing so, partitions which does not use all the proces-
sor cores made available open room for the execution of
processes from other partitions (interpartition parallelism).
Figure 4 illustrates this with an example timeline. Partition
P2 is the only partition to use more than one processor
core. This way, it is able to run two processes simulta-
neously, as can be seen in the callout in Figure 4. Since
P2 does not use all the 3 cores, it also accommodates the
parallel execution of the processes pertaining to partition
P1, which takes over core 3.

V. SCHEDULE ANALYSIS AND GENERATION TOOL FOR
TSP SYSTEM INTEGRATORS

The multiple applications that may compose such a
TSP system can be developed, verified and validated
independently. This eases certification efforts, since only
modified modules need to be reevaluated. However, the
developers of each component have to verify it taking into
account that it will be integrated with other components of
which they have no specific knowledge. At most, the de-
velopment of one partition is only guaranteed to be aided
by a set of guidelines for its applicability to the target
TSP system (e.g. maximum percentage of time allowed to
own computing resources). Developers of one application
should be able to analyse its feasibility provided those
guidelines and the timing requirements (period, worst-case
execution time (WCET), deadline, etc.) of its tasks [23].

Further in the development process, the applications are
integrated into the system. The way such an integration
is performed with AIR is illustrated in Figure 5. A tag
filter applied to the input from the partition application
developers ensures there are no name collisions (e.g.,
between functions in different partitions). The system
integrator is further responsible for guaranteeing a correct

Figure 5. Integration of an AIR-based TSP system, with the introduction
of TSP-specific scheduling analysis features/tools

Figure 6. Cheddar scheduling tool

partition scheduling, so that partitions and the system as
a whole meet their timing requisites. Thus, in the system
integration phase, scheduling analysis capabilities shall be
introduced in relation with the generation of a system-wide
configuration [3], [23]. We will focus more on the role of
schedulability analysis in system integration (in detriment
of application development) for its added complexity.

A. Cheddar: state of the art

The necessary tool to accomplish these goals can be de-
veloped from scratch, or by extending an existing tool. We
are looking into the possibility of extending Cheddar [6]
to this purpose. Cheddar provides a set of scheduling algo-
rithms and policies on which it is capable of performing
feasibility tests and/or scheduling simulations for either
uniprocessor or multiprocessor environments.

In its latest versions, Cheddar already supports TSP
schedulability analysis to some extent [6]. Figure 6 shows
a Cheddar instance running a schedulability analysis on
a simple TSP system. The example consists of two par-
titions, P0 and P1, with one and two tasks, respectively.
However, Cheddar presents some limitation in its current



support for TSP schedulability analysis. A PST is defined
as an array of durations. For instance, the PST for the
example shown in Figure 6 is defined as:

partition_duration(0):=2;
partition_duration(1):=4;

Besides presenting less usability, the current implementa-
tion limits the PST to having only one time window per
partition per MTF.

Cheddar’s current support to TSP scheduling analysis
allows, although not explicitly, the simulation of both
multicore TSP systems involving both interpartition (Sec-
tion IV-A) and intrapartition (Section IV-B) parallelism.
However, besides inheriting the aforementioned limita-
tions to PST definition, it restricts itself to approaches
based on the partitioned multiprocessor real-time schedul-
ing paradigm, and requires the assignment of partitions
and/or tasks to processor cores to be performed before-
hand. Cheddar’s “Partition” functionality, for assigning
tasks among multiple processor cores, is not supported
within the scope of a TSP scheduler.

Cheddar is designed to be extensible, which reinforces
the notion that it is a powerful starting point for a TSP-
specific schedule analysis and generation tool. This should
also take into consideration the advances in modelling,
verifying and implementing ARINC 653 systems with the
Architecture Analysis and Design Language (AADL) [24].

B. Requirements for TSP scheduling analysis tool

As seen, PSTs are defined in Cheddar directly among
the source code of the simulated partition scheduler. For a
flexible and usable TSP scheduling analysis tool, it would
be ideal to support both (i) defining all scheduling compo-
nents (partitions, partition scheduling, and processes) and
respective parameters (partition cycle and duration process
period and WCET, etc.) through the graphical user inter-
face, and (ii) importing all the aforementioned information
from files; this is the case, in Cheddar, for other supported
scheduling analysis scenarios. For the TSP case, support
for importing from a file should accommodate the XML
schema of ARINC 653 configuration files [3].

C. Additional requirements for PST generation tool

The tool we propose should be able to aid the system
integrators in constructing the PST (or PSTs) for the sys-
tem. For a first approach, the tool should derive PSTs from
the partitions’ timing requirements (cycle and duration),
receiving them as an input assumed to be correctly derived
from the respective processes. The semantics of the timing
requirement parameters is that, to meet the deadlines of its
processes, a partition needs duration units of processing
time in each cycle-units interval.

Elaborating on this approach, the tool shall also be-
come able to perform the previous step: obtaining each
partition’s timing requirements (cycle and duration) from
the respective processes’ characteristics.

Both these aspects should accommodate support for
multicore-enabled TSP systems, observing inter- and/or
intrapartition parallelism. Towards this goal, Cheddar’s

“Partition” feature, to assign tasks to processors, provides
a solid starting point; the “Partition” feature can be ex-
tended to accommodate particularities of TSP systems, and
updated to use a more recent and tighter results [13], [19],
[20], [22].

VI. CONCLUSION

In this paper we exposed our current work on taking
advantage of multicore platforms for added capacity, flex-
ibility and safety in time- and space-partitioned (TSP)
systems. The presented work encompasses architectural
support to multicore in TSP systems; we use the AIR
architecture for TSP systems in aerospace applications
as a reference, but the functionality and mechanisms we
propose apply to TSP systems in general [5]. From the
real-time scheduling point of view, the crucial components
of our proposal are the notions of interpartition parallelism
and intrapartition parallelism [17]. A great deal of our
current concerns goes to the provision of adequate tools
to support the development and integration of TSP systems
— both those going by the current state of the art
and those which will implement the multicore facets we
propose, namely inter- and intrapartition parallelism. We
envision extending the Cheddar tool [6] to provide real-
time scheduling analysis and partition scheduling table
(PST) generation facilities for TSP systems integrators
and application developers. Cheddar is a mature real-time
scheduling analysis tool with limited support for TSP
systems, and designed to be extended as the main building
block of a full-featured schedule analysis and generation
tool for TSP system development and integration.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous re-
viewers and the attendees of the ECRTS 2011 conference
for insightful comments and discussions which allowed
improving this paper, in particular Enrico Bini, Tommaso
Cucinotta, Moritz Neukirchner, and Mikael Åsberg.

REFERENCES

[1] J. Rushby, “Partitioning in avionics architectures: Require-
ments, mechanisms and assurance,” SRI Int’l., California,
USA, NASA Contractor Report CR-1999-209347, 1999.

[2] AEEC, “Design guidance for Integrated Modular Avionics,”
Aeronautical Radio, Inc., ARINC Report 651-1, Nov. 1997.

[3] ——, “Avionics application software standard interface,
part 1 - required services,” Aeronautical Radio, Inc.,
ARINC Specification 653P1-2, Mar. 2006.

[4] J. Windsor and K. Hjortnaes, “Time and space partitioning
in spacecraft avionics,” in Proceedings of the 3rd IEEE
International Conference on Space Mission Challenges for
Information Technology, Pasadena, CA, USA, Jul. 2009,
pp. 13–20.

[5] J. Rufino, J. Craveiro, and P. Verissimo, “Architecting
robustness and timeliness in a new generation of aerospace
systems,” in Architecting Dependable Systems VII, ser. Lec-
ture Notes in Computer Science, A. Casimiro, R. de Lemos,
and C. Gacek, Eds. Springer, 2010, vol. 6420, pp. 146–
170.



[6] F. Singhoff, A. Plantec, P. Dissaux, and J. Legrand, “Inves-
tigating the usability of real-time scheduling theory with
the Cheddar project,” Real-Time Systems, vol. 43, no. 3,
pp. 259–295, Nov. 2009.

[7] J. Craveiro and J. Rufino, “Adaptability support in time-
and space-partitioned aerospace systems,” in Proceedings
of the Second International Conference on Adaptive and
Self-adaptive Systems and Applications (ADAPTIVE 2010),
Lisbon, Portugal, Nov. 2010.

[8] R. Davis and A. Burns, “A survey of hard real-time
scheduling for multiprocessor systems,” ACM Computing
Surveys, 2010, accepted for publication.

[9] J. Craveiro, J. Rufino, and P. Verissimo, “Time- and space-
partitioned systems: History, theory and practice,” AIR-II
Technical Report RT-11-03, 2011, survey, in submission.

[10] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling
framework for virtual clustering of multiprocessors,” in
Proceedings of the 20th Euromicro Conference on Real-
Time systems (ECRTS ’08), Prague, Czech Republic, Jul.
2008, pp. 181 –190.

[11] E. Bini, G. Buttazzo, and M. Bertogna, “The multi supply
function abstraction for multiprocessors,” in Proceedings of
the 2009 15th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications
(RTCSA ’09), Beijing, China, Aug. 2009, pp. 294–302.

[12] E. Bini, M. Bertogna, and S. Baruah, “Virtual multiproces-
sor platforms: Specification and use,” in Proceedings of the
2009 30th IEEE Real-Time Systems Symposium (RTSS ’09),
Washington, D.C., USA, Nov./Dec. 2009, pp. 437–446.

[13] G. Lipari and E. Bini, “A framework for hierarchical
scheduling on multiprocessors: From application require-
ments to run-time allocation,” in Proceedings of the 2010
31st IEEE Real-Time Systems Symposium (RTSS ’10), San
Diego, CA, USA, Nov./Dec. 2010, pp. 249–258.

[14] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K.
Baruah, and J. A. Scoredos, “Mixed-criticality real-time
scheduling for multicore systems,” in Proceedings of the
2010 10th IEEE International Conference on Computer and
Information Technology (CIT ’10), Bradford, UK, Jun./Jul.
2010, pp. 1864–1871.

[15] J. Craveiro, J. Rosa, and J. Rufino, “Self-adaptive schedul-
ing of real-time applications in multicore time- and space-
partitioned systems,” AIR-II Technical Report RT-11-06,
2011, in submission.

[16] J. Rosa, J. Craveiro, and J. Rufino, “Safe online reconfigu-
ration of time- and space-partitioned systems,” in Proceed-
ings of the 9th IEEE International Conference on Industrial
Informatics (INDIN 2011), Caparica, Lisbon, Portugal, Jul.
2011.

[17] J. Craveiro and J. Rufino, “Applying multiprocessor real-
time scheduling theory to achieve parallelism in time- and
space-partitioned systems,” AIR-II Technical Report RT-11-
01, 2011, in submission.

[18] C. L. Liu and J. W. Layland, “Scheduling algorithms
for multiprogramming in a hard-real-time environment,” J.
ACM, vol. 20, pp. 46–61, January 1973.

[19] S. Lauzac, R. Melhem, and D. Mossé, “An improved rate-
monotonic admission control and its applications,” IEEE
Transactions on Computers, vol. 52, no. 3, pp. 337–350,
Mar. 2003.

[20] E. Bini, G. Buttazzo, and G. Buttazzo, “Rate monotonic
analysis: the hyperbolic bound,” IEEE Transactions on
Computers, vol. 52, no. 7, pp. 933–942, Jul. 2003.

[21] S. K. Dhall and C. L. Liu, “On a real-time scheduling
problem,” Operations Research, vol. 26, no. 1, pp. 127–
140, Jan./Feb. 1978.

[22] I. Lupu, P. Courbin, L. George, and J. Goossens, “Multi-
criteria evaluation of partitioning schemes for real-time
systems,” in Proceedings of the 15th IEEE International
Conference on Emerging Technologies and Factory Au-
tomation (ETFA 2010), Bilbao, Spain, Sep. 2010.

[23] J. Craveiro and J. Rufino, “Schedulability analysis in par-
titioned systems for aerospace avionics,” in Proceedings
of the 15th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA 2010), Bilbao,
Spain, Sep. 2010.

[24] J. Delange, L. Pautet, A. Plantec, M. Kerboeuf, F. Singhoff,
and F. Kordon, “Validate, simulate, and implement
ARINC653 systems using the AADL,” Ada Lett., vol. 29,
pp. 31–44, November 2009, also published in Proceedings
of the ACM SIGAda annual international conference on
Ada and related technologies (SIGAda ’09).


