
Partitioned Scheduling of Parallel Real-time Tasks on Multiprocessor Systems

Frédéric Fauberteau† Serge Midonnet† Manar Qamhieh∗†
†Université Paris-Est

LIGM, UMR CNRS 8049
{frederic.fauberteau,serge.midonnet}@univ-paris-est.fr

∗ECE
qamhieh@ece.fr

Abstract

In this paper, we focus on the scheduling of periodic
fork-join real-time tasks on multiprocessor systems.
Parallel real-time tasks in the fork-join model have
strict parallel segments without laxity. We propose
a partitioned scheduling algorithm which increases
the laxity of the parallel segments and therefore the
schedulability of tasksets of this model. A similar
algorithm has been proposed in the literature but it
produces job migrations. Our algorithm eliminates the
use of job migrations in order to create a portable al-
gorithm that can be implemented on a standard Linux
kernel. Results of extensive simulations are provided
in order to analyze the schedulability of the proposed
algorithm, and to provide comparisons with the other
algorithm proposed in the literature.

1. Introduction

Physical constraints of the manufacturing process,
such as chip size and heating, are driving a tendency
for chip manufacturers to build multi-processors and
multi-core processors to further increase computational
performance . Because of this, parallel programming
has received increased attention, despite being in use
for many years.

The concept of parallel programming is to write a
code that can be executed simultaneously on different
processors. These programs are typically harder to
write than sequential ones, since it is necessary to
keep the parallel partitions independent in order to
execute them correctly on different processors at the
same time. This condition might be affected by reasons
like a shortage in processors, which requires the use
of partitioning. In real-time systems and as we found
in literature [1], [2], a parallel task can be:

• rigid if the number of processors is assigned
externally to the scheduler and can’t be changed
during execution,

• moldable if the number of processors is assigned
by the scheduler and can’t be changed during
execution,

• malleable if the number of processors can be
changed by the scheduler during execution.

For a practical implementation, there are several
libraries, APIs and models in existence created specif-
ically for parallel programming, including POSIX
threads and OpenMP, however they were not designed
specifically for real-time systems.

In this paper we will work on periodic real-time
tasks of fork-join structure, which is the same structure
OpenMP is based on, and can be seen as a rigid type of
real-time parallelism, since the number of processors
is fixed by the task model. And we will propose
a partitioned scheduling algorithm for this model of
tasks, based on a prior work in the same field, without
the use of job migration in order to be implemented
on as standard Linux kernel.

The remainder of this paper is organized as follows:
in Section 2, we present our task model. Section 3
describes a related work on the same model. Section 4
explains the proposed algorithm followed by the anal-
ysis in section 5. and we finish with the perspective
and the conclusion in sections 6 and 7.

2. Fork-Join Model

As shown in Figure 1, the fork-join model defines a
task as a collection of several segments, both sequential
and parallel. This task always starts by a sequential
segment, which then forks into several parallel inde-
pendent threads (parallel segment) that finally join in
another sequential segment. It is important to note that
all parallel segments in a task share the same number



of processors, and it should be mentioned that the tasks
of this model have implicit deadlines (the deadline of
a task equals its period).

Here is an example of the fork-join model: τi =
((C1

i , P
2
i , C

3
i , ..., P

si−1
i , Csii ),mi, Ti) where:

• si is the total number of segments (sequential and
parallel) and it is an odd number according to
definition of the model,

• mi is the number of parallel threads on which
parallel segments will be executed. mi > 1 for
parallel segments, and equal to 1 for sequential
segments.

• Csi is the Worst-Case Execution Time (WCET) of
a sequential segment, where s is an odd number
and 1 ≤ s ≤ si,

• P si is the WCET of a parallel segment, where s
is an even number and 1 ≤ s ≤ si,

• Ti is the period of the task.
7 8 9 10 11 12 13

S1 S3P11 P12 P21

P’22

14 15 16 171 4

P13

3

S2 P23P’’22

Deadline Di

Ci
1

Pi
2,1

Ci
3 Ci

5 Ci
kPi

2,2

Pi
2,n

Pi
4,1

Pi
4,2

Pi
4,n

Figure 1. Fork-Join structure model.

What we notice about this model is the fact that by
default all parallel segments have to finish their exe-
cution before the following sequential segment starts.
Therefore these segments have strict laxity and their
execution times are equal to their deadlines.

Figure 2 shows a fork-join task, which can also be
represented according to the previous definition:
(1, 2, 2, 3, 1), 3, 17).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1 P11 P12 P13 S2 P21

P23

P22 S3

S1 P11

P13’

P12 P13” S2 P21 P22

P23’

P23” S3

S1 P11

P12

P13

S2 P21

P22

P23

S3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1 P11 P12 P13 S2 P21

P23

P22 S3

S1 P11

P13’

P12 P13” S2 P21 P22

P23’

P23” S3

S1 P11

P12

P13

S2 P21

P22

P23

S3

Figure 2. Example of fork-join task.

3. Related work

Due to the strict laxity of the parallel segments in
the fork-join task model, Lakshmanan et al. in [3]
proposed an algorithm to increase the laxity of the
parallel segments by reducing the parallelism in the
fork-join model whenever possible. Their algorithm
stretches the main thread to its deadline, as shown in

Figure 3. It aims to execute as many parallel segments
as possible in the master string thread (the thread
that contains the sequential segments, also considered
as the entry and end point of the program). This
master string will be stretched to its deadline so as
to be executed on an exclusive processor with 100%
processor utilization. What remains of the parallel
segments will be distributed on the available processors
using a partitioning algorithm called FBB-FFD (stands
for Fisher Baruah Baker - First Fit Decreasing) [4].

This algorithm enhances the schedulability of par-
allel tasks of fork-join structure, by increasing the
deadline of the parallel segments and getting rid of
their strict execution time, as shown in Figure 2 and
3, parallel segment P1,3′ has a deadline of 4 time
units instead of 2, which was exactly the worst case
execution time of that parallel segment. It then has to
migrate to the master string so as to fill the master
thread. This laxity in the deadline will increase the
chances of the parallel segments to be scheduled using
FBB-FFD, as will be clarified later in the analysis.

The number of job migrations in this algorithm
could be 0, if the algorithm succeeded in scheduling all
the parallel segments into the master string, creating a
sequential task that will be executed on one processor.
The other possibility for the number of job migrations
is the number of parallel segments in the task, as shown
in Figure 3 , both P1,3 and P2,3 are used to fill the slack
time in the master string, and they both will migrate.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1 P11 P12 P13 S2 P21

P23

P22 S3

S1 P11

P13’

P12 P13” S2 P21 P22

P23’

P23” S3

S1 P11

P12

P13

S2 P21

P22

P23

S3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1 P11 P12 P13 S2 P21

P23

P22 S3

S1 P11

P13’

P12 P13” S2 P21 P22

P23’

P23” S3

S1 P11

P12

P13

S2 P21

P22

P23

S3

Figure 3. Task Stretch Transformation.

Task Stretch Transformation (TST) has a constraint
when it comes to practical implementation, that is in
order to achieve a fully stretched master string, job
migration is inevitable. As shown in the Figure 3,
segments P1,3 and P2,3 have to start execution on
a certain processor. They will then migrate to the
master string’s processor in order to fill it. According
to the paper, this can be easily implemented on a
specific Linux system called Linux/RK [5] (stands for
Linux Resource Kernel), which is a real-time extension
to the Linux kernel to support the abstractions of a
resource kernel. But our idea is to implement this
algorithm directly on a standard Linux enhanced with
the PREEMPT_RT kernel patch.



4. Segment Stretch Transformation

In order to eliminate the use of job migration, some
modifications have to be done on the original pseudo-
code, which we called Segment Stretch Transformation
(SST). The basic idea of TST stayed the same, by
trying to avoid the fork-join model by stretching the
master string, but now it will be filled only with
complete parallel segments with no migration. The fol-
lowing example will better explain the modifications.

We have a task τ1 = ((1, 2, 2, 3, 1), 3, 17) as shown
in Figure 2, which is a typical fork-join task. In Figure
2 we show the result of applying TST on τ1. We notice
that segment P1,3 and P2,3 have to be executed on
2 processors. But in SST and as shown in Figure 4,
the master string is only filled by complete parallel
segments. Even though the master string is not fully
stretched (there still 1 unit of time not used before the
deadline), the parallel segment P2,3 will not be used.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1 P11 P12 P13 S2 P21

P23

P22 S3

S1 P11

P13’

P12 P13” S2 P21 P22

P23’

P23” S3

S1 P11

P12

P13

S2 P21

P22

P23

S3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S1 P11 P12 P13 S2 P21

P23

P22 S3

S1 P11

P13’

P12 P13” S2 P21 P22

P23’

P23” S3

S1 P11

P12

P13

S2 P21

P22

P23

S3

Figure 4. Segment Stretch Transformation.

In TST, the master string has to be filled with all
of the parallel segments with equal partitions, which
will increase the laxity of all the segments equally. But
at the same time, it will increase the number of job
migrations as well. In SST however, the master string
will be initially filled with the pre-calculated number
of parallel strings, then we check if we can add other
single parallel strings to the master string (like P1,3 in
Figure 4). The remaining parallel segments of the task
with the master string will be scheduled using the FBB-
FFD partitioning algorithm. The laxity of the master
string will increase since we did not fill it completely
with parallel segments.

This transformation has changed the model type
from being rigid into moldable, since the number of
processors is assigned by the scheduler after creating
the master string. And from a practical implementation
point of view, the SST can be fully implemented on a
standard Linux RT kernel with no special extensions or
patches added, and by only using an ordinary function
like sched_set_affinity(), each segment of the parallel
task can be assigned to a specific processor according
to the scheduling results of any partitioning algorithm
(e.g. FBB-FFD).

5. Analysis

In order to provide a practical analysis for these
algorithms, we are going to use rtmsim (stands for
Real-Time Multiprocessor SIMulator). It is a free
simulation software developed at Université Paris-
Est Marne-la-Vallée, France. This simulation software
helps analysing the performance of real-time schedul-
ing algorithms by choosing a pre-coded approach to
run in an extensive simulation.

Based on a simulation protocol of multiprocessor
systems proposed by Davis et al. [6], which uses UU-
niFast as task-generation algorithm [7], we randomly
generated 10,000 tasksets per processor’s utilization
varying from 0.025 to 0.975, each taskset of 16 parallel
tasks, which makes it a total of 390,000 tasksets. FBB-
FFD is used as scheduling algorithm.

We started the analysis by creating a dataset of par-
allel tasks of the fork-join model, and by using FBB-
FFD directly to schedule this dataset, we observed
the results shown in Figure 5(a) (the curve with the
triangular points). But FBB-FFD failed to schedule the
dataset beyond the processors’ utilization of 0.1. This
can be explained by knowing that FBB-FFD is using
the following condition. For each task τi to be placed
on processor k, the following condition has to be true:

di −
∑

τj∈τ(πk)

RBF ∗(τj , di) ≥ ei

where τi is the task to be scheduled on processor k,
πk is the set of tasks already placed on processor k
and RBF ∗(τj , di) = ej +

ej
Pj

∗ di
According to the previous condition, if the task to be

scheduled has both an execution time and a deadline of
the same value, then the condition will definitely fail
if the processor has already other tasks to be executed
on. And since parallel segments in the fork-join model
always have execution times equal to their deadlines
(Figure 2), then each parallel segment will need to be
executed exclusively on a single processor.

But by looking at the characteristics of the parallel
segments, we notice that they have offsets, which
means that they will not all be scheduled at the same
time. By using a suitable type of partitioning algorithm
that can handle offsets we might be able to enhance
the results of the simulation. FDD-RTA (First Fit
Decreasing-Response Time Analysis) could be a good
choice.

A second analysis was performed to compare TST
and SST algorithms, by using the same model of
extensive simulation described previously. The result
of the simulation is shown in Figure 5(a), where TST
is the curve with the round points, and SST is the



(a) Curves of comparison.

Ui TST SST Ui TST SST
0.250 9991 9996 0.450 2477 2460
0.275 9967 9970 0.475 1380 1366
0.300 9887 9895 0.500 739 731
0.325 9614 9623 0.525 316 313
0.350 8889 8898 0.550 144 144
0.375 7596 7592 0.575 44 46
0.400 5872 5872 0.600 33 32
0.425 4110 4102 0.625 14 12

(b) Values of comparison.

Figure 5. Simulation results.

curve with square points. As we can see, there is
no noticeable difference. There is a slight difference
between these 2 algorithms as represented in Fig-
ure 5(b). The table shows the number of tasksets each
algorithm succeeded to schedule for each utilization of
the processor. The interesting result that we observe is
the incomparability of these 2 algorithms.

6. Perspective

Sequential tasks in real-time systems are widely
studied and analysed by a lot of algorithms designed
specifically for this task model, therefore the transfor-
mation algorithms of parallel tasks like TST and SST
are proposed. However, after applying the transforma-
tion and the creation of the master string, what remain
of the parallel segments are considered as independent
sequential tasks, without any consideration for their
offset or their dependency on other segments, and
they are scheduled by FBB-FFD scheduling algorithm
which is not the most adaptive algorithm for parallel
tasks of fork-join structure model.

In the future, we will focus on the parallel segments
that are not included in the master string after applying
the transformation algorithm, and we aim to provide
a response time analysis for those segments in order
to propose a specific scheduling algorithm deals with
the specific constraints of this model of tasks (offset,
dependency, ...). This can be done either by analysing

the parallel segments as subtasks with fixed priority
[8], or by creating slave strings from those parallel
segments. Each one will be considered as a single
task with an offset (which is the WCET of the first
sequential segment) and suspension periods according
to the number of the parallel segments in the slave
string, and then apply a response time analysis on those
tasks.

7. Conclusion

In this paper, we presented an algorithm that trans-
forms parallel tasks of fork-join structure in order to
increase the laxity of the parallel segments, and to
eliminate the use of job migration, which makes it pos-
sible to implement on the standard Linux kernel. The
analysis of this algorithm is performed by using exten-
sive simulations in order to compare its performance
with the original taskset model and TST algorithm. Our
next step and as described in perspective section, will
be to propose a scheduling algorithm for the segments
of the parallel task under the fork-join structure after
applying the transformation algorithm SST.

References
[1] J. Goossens and V. Berten, “Gang ftp scheduling of

periodic and parallel rigid real-time tasks,” in Proc. of
RTNS, 2010, pp. 189–196.

[2] S. Kato and Y. Ishikawa, “Gang edf scheduling of
parallel task systems,” in Proc. of RTSS, 2009, pp. 459–
468.

[3] K. Lakshmanan, S. Kato, and R. (Raj) Rajkumar,
“Scheduling parallel real-time tasks on multi-core pro-
cessors,” in Proc. of RTSS, 2010, pp. 259–268.

[4] N. Fisher, S. Baruah, and T. P. Baker, “The parti-
tioned scheduling of sporadic tasks according to static-
priorities,” in Proc. of ECRTS, 2006, pp. 118–127.

[5] S. Oikawa and R. Rajkumar, “Portable rk: A portable
resource kernel for guaranteed and enforced timing be-
havior,” in Proc. of RTAS, 1999, p. 111.

[6] R. I. Davis and A. Burns, “Improved priority assign-
ment for global fixed priority pre-emptive scheduling in
multiprocessor real-time systems,” Real-Time Systems,
vol. 47, no. 1, pp. 1–40, 2010.

[7] E. Bini and G. C. Buttazzo, “Biasing effects in schedu-
lability measures,” in Proceedings of the 16th Euromicro
Conference on Real-time Systems (ECRTS). IEEE
Computer Society, 2004, pp. 196–203.

[8] M. G. Harbour, M. H. Klein, and J. P. Lehoczky, “Fixed
priority scheduling periodic tasks with varying execution
priority,” in Proceedings of the 12th IEEE RTSS, 1991,
pp. 116–128.


	Introduction
	Fork-Join Model
	Related work
	Segment Stretch Transformation
	Analysis
	Perspective
	Conclusion
	References

