
Exploiting Intra-Task Slack Time of Load Operations
for DVFS in Hard Real-Time Multi-core Systems

Eduardo Quiñones1, Jaume Abella1, Francisco J. Cazorla1,2, Mateo Valero1,3
1Barcelona Supercomp. Center (BSC) 2Spanish National Research Council (IIIA-CSIC) 3Univ. Politecnica de Catalunya (UPC)

{eduardo.quinones, jaume.abella, francisco.cazorla, mateo.valero}@bsc.es

Abstract—Power demand grows much faster than bat-
tery capacity in embedded systems. Dynamic voltage and
frequency scaling (DVFS) has been shown to be extremely
efficient to save energy due to the exponential dependence
of power on voltage. However, voltage/frequency cannot
be blindly scaled in hard real-time systems because DVFS
techniques impact on the execution time, and so potentially
on the worst-case execution time (WCET) of tasks.

This paper presents a new DVFS technique for hard
real-time systems that measures dynamically the intra-task
slack existing between the actual execution time of a task
and its WCET estimation, and exploits it to perform DVFS
guaranteeing that the WCET is not affected. Concretely, our
approach exploits the slack available due to contention in
the use of shared resources in a multi-core system.

I. INTRODUCTION

Power, energy and temperature are key limiters in
embedded microprocessor design. The most effective tech-
niques to reduce energy consumption are those based
on scaling the supply voltage (Vcc). Those techniques
are typically referred to as DVFS techniques. However,
decreasing Vcc has a direct impact on circuit delay, and
hence, on the execution time, so Vcc cannot be scaled
blindly, especially in hard real-time embedded systems
where correct execution lies on the computation of a
Worst-Case Execution Time (WCET) estimation. There-
fore, besides reducing the energy consumption of the
system, DVFS techniques for hard real-time systems must
consider the impact that Vcc scaling has on the execution
time (ET) and WCET estimation of tasks.

There are two main sources of slack that can be
exploited to apply DVFS: inter-task and intra-task slack.
Inter-task slack is the slack available between two or more
tasks in the scheduling so that all of them can execute by
their respective deadlines. The static inter-task slack, i.e
the difference between the estimated WCET for a task
and its deadline, has been exploited by several DVFS
techniques [2], [12], [18], [19]. Similarly, dynamic inter-
task slack, i.e the difference between the actual ET of the
task and the estimated WCET, has also been exploited [4],
[7], [20]. In general, techniques exploiting inter-task slack
assume some freedom in the task scheduling, e.g. the the
release time of tasks can be advanced, which may be
unfeasible if they are synchronized with external events
such as data sensed at fixed intervals.

Instead, techniques exploiting intra-task slack do not
make any assumption on the scheduling and simply apply
DVFS in such a way that the ET of the task is increased as
much as possible to minimize energy consumption without
exceeding the WCET of the task. So far intra-task slack
has been exploited based on execution path detection [5],

[15] or assuming that tasks can be split into subtasks, thus
making intra-task slack become inter-subtask slack [3].

Multicore (CMP) processors have been considered for
real-time environments due to their good performance-
per-watt ratio and because CMPs allow co-hosting several
task on the same chip, reducing hardware requirements.
Inter-task interferences due to resource sharing have been
addressed by means of techniques that bound the maxi-
mum delay a task can suffer accessing shared resources
due to inter-task interferences [9], [11]. This bound is
considered on the computation of the WCET for each task.
Hence, the WCET estimations computed for a task in a
CMP include some provisioning to account for the worst
possible inter-task conflicts when accessing a hardware
shared resource. However, tasks do not experience this
worst case interference when they run as a part of a
workload in the CMP.

In the context of this real-time capable CMP processor,
this paper proposes going one step further in energy sav-
ings in hard real-time systems by automatically detecting
at run-time and by means of hardware mechanisms, the
intra-task slack available between the ET of a task and its
WCET estimation due to provisioning done to deal with
conflicts accessing hardware shared resources in CMPs.
By dynamically detecting the discrepancy between the
real and the worst-case contention assumed in the WCET
estimation, we can apply DVFS in the task being run.
Note that such an approach is orthogonal to all previous
approaches since it can be combined with all of them
either at the task or subtask level.

To illustrate our approach, this paper exploits the intra-
task slack generated due to inter-task interferences of
load operations accessing the shared bus and a memory
controller in a CMP processor. Other techniques attacking
other sources of inter-task interferences are left for future
work. Our approach monitors the latency of the requests of
those shared resources to track how much slack is regained
with respect to its worst-case behavior, and uses such slack
to perform DVFS without impacting the WCET.

II. BACKGROUND

In this section we present the impact of DVFS tech-
niques on power dissipation, as well as the multi-core
architecture considered in this paper.

Impact of DVFS Techniques on Power Reduction:
DVFS techniques rely on the fact that dynamic power
dissipation (Pdyn) decreases nearly-cubically with Vcc,
Pdyn = pt · CL · V 2

cc · f , where pt stands for switching
probability, CL for load capacitance and f for operat-
ing frequency. In general, frequency scales near-linearly

with Vcc [14]. Thus, when computing Pdyn we obtain
that decreasing Vcc produces near-cubic power savings
(and quadratic energy savings). Similarly, leakage power
(Pleak) decreases linearly with Vcc.

CMP Architecture. We consider an analyzable CMP
in-order four-core processor in which each core has a
private data and instruction L1 cache connected to a
partitioned L2 cache through a shared bus [9], [11]. The L2
cache is loaded from a JEDEC-compliant DDR2 SDRAM
memory system.

By design, this architecture guarantees that the max-
imum delay a request to a shared resource can suffer
due to any other task is bounded by a pre-computed
Upper Bound Delay (UBD). The UBD for any particular
resource (e.g., bus and memory) is computed as follows,
UBD = (Nocores − 1) · tbusy , where Nocores is the
number of cores and tbusy the amount of time that the
resource is busy due to another core using it. Such bound
relies on the assumption that shared resources are accessed
in a round-robin fashion by the different cores and that the
number of tasks does not exceed the number of cores [9],
[11]. When computing a WCET estimation for a given
task in the CMP, the UBD is considered as an additional
delay on every access to any shared resource. By doing
so, WCET estimations are safe and tight. Moreover, in
order to avoid cache interferences cache is partitioned
(bankization) assigning to each core a private subset of
the total number of banks that no other core can use [10].

III. INTRA-TASK DVFS TECHNIQUE FOR HARD
REAL-TIME MULTI-CORE SYSTEMS

Next we present our DVFS technique to exploit the
intra-task slack of a hard real-time tasks running in a
CMP. We present the approach focusing on the slack time
provided by loads accessing the shared bus and memory
controller, although the approach could be used for other
types of events whose worst-case behavior is known and
used when estimating the WCET.

A. Rationale Behind our Approach

Applying intra-task DVFS techniques to hard real-time
tasks requires being aware of the impact that the reduction
of the voltage/frequency has on the ET so that the WCET
is not exceeded. To do so, our technique detects those
events that behaved better than their worst case and
quantifies how much slack has been regained.

By constructon of [9], [11] the WCET estimation for
a task considers the maximum delay that inter-task in-
terferences may introduce when accessing to hardware
shared resources in a CMP. Authors proposes a CMP
in which the maximum delay a request to the bus or
the memory controller can suffer due to inter-task inter-
ferences is bounded by UBDbus and UBDMC cycles
respectively (see Section II) [9], [11]. Such values are
used when computing a WCET estimation for accesses to
those resources so that the resultant WCET estimation is
independent of the workload in which hard real-time tasks
run, as the worst possible delay is considered in every bus
or memory controller request.

However, not all accesses to the bus or the memory
controller experience such worst-case delay. In particular,
load operations, experience a delay due to inter-task
interferences between 0 and UBD cycles. Our technique
identifies the slack between the actual delay suffered
due to inter-task interferences when accessing the bus
or the memory controller and their UBD, allowing us
quantifying how far the ET is from the WCET. By doing
so, we can guarantee that, despite the lower execution
speed due to Vcc/frequency reduction, the task finishes
its execution before its WCET if we manage to limit the
slowdown to consume only the accumulated slack.

B. Mechanism to Regain Slack

In order to identify and quantify the slack regained due
to load operations that behave better that their worst case,
we propose using a counter, named CurrentSlack, per
shared resource and on-going event, and a counter named
TotalSlack, global for each core.

The CurrentSlack counter quantifies the slack re-
gained by the load operation currently processed in the
corresponding shared resource. In the multi-core processor
considered in this paper, we require eight CurrentSlack
counters: four-cores and two shared resources, the bus and
the memory controller.

The TotalSlack counter quantifies the total slack re-
gained by the task running in a given core and it is used to
decide when to scale frequency and Vcc of this core. The
counter is incremented with CurrentSlack every time a
bus or memory controller access is performed, i.e. once
the load operation has accessed the corresponding shared
resource and its actual latency is known.

Since frequency changes dynamically, we cannot count
cycles. Instead, we use a time unit being the greatest
common divisor of any feasible cycle time so that we
can measure time accurately independently of the cur-
rent operating frequency. We refer to such time unit as
MinTime. On every access to the bus and the memory
controller, CurrentSlack can be incremented by upto
UBDbus · CycleT ime

MinTime and UBDMC · CycleT ime
MinTime time

units respectively, if the accessing task suffers no in-
teraction. CycleT ime stands for the cycle time under
the current frenquency expressed in the same time unit
as MinTime. In other words, on an access to a given
resources CurrentSlack is initialized to UBD. Whenever
a request arrives to the shared resource CurrentSlack is
decreased by the amount of time spent until the request
is served (by CycleT ime

MinTime every cycle). Hence, whenever
the request is served CurrentSlack value matches the
amount of time regained by such request.

We assume a linear degradation of performance and
hence slack. That is, if we change processor to a frequency
that is (12) of the nominal frequency, every cycle in the
new frequency we loose one cycle of slack in the nominal
frequency. This linear relation is a safe bound as in reality
this is the maximum performance degradation a task can
suffer when the frequency is reduced.

1. If (TotalSlack > OvhDecOneStep + MinPeriod+
+OvhIncOneStep · (NumStepsBelowMax + 1)+
+CheckPeriod · (NumStepsBelowMax + 1)) then

2. Decrease frequency by one step
3. Else if (TotalSlack 6

OvhIncOneStep · NumStepsBelowMax+
+CheckPeriod · NumStepsBelowMax) then

4. Increase frequency by one step
5. Else
6. Keep current frequency
7. Endif

Figure 1. Algorithm to perform our intra-task DVFS approach

C. Using Regained Slack for DVFS

We propose an aggressive DVFS policy that decreases
frequency/Vcc as soon as we have enough slack, run
some significant amount of time at low frequency and
raise frequency again if the amount of slack available
matches the overhead required to raise frequency back to
the original frequency.

The detailed algorithm is depicted in Figure 1.
OvhDecOneStep (OvhIncOneStep) stands for the
amount of time required to decrease (increase) frequency
by one step, MinPeriod is a threshold indicating how
long we can spend in a given frequency level to obtain
significant energy savings [8] (determined empirically),
NumStepsBelowMax indicates how many frequency
steps there are between the current frequency and the
nominal one at which this task was intended to execute,
and CheckPeriod is the amount of time elapsed between
two consecutive checks of the algorithm inputs (it can be
0 if they are checked continuously).

As shown, frequency is decreased only when there is
enough time to decrease the frequency, obtain significant
energy savings and return to the maximum frequency in
time to prevent any timing violation (line 1). Similarly,
once we detect that the frequency increase cannot be
delayed without putting the WCET at risk, frequency is
increased (line 3). Otherwise, the core remains at the
current operating frequency (line 5).

Note that all values in the algorithm but TotalSlack
and NumStepsBelowMax are constants and hence, can
be hardwired. Given that the number of frequency steps
is limited in general (typically below 10), multiplications
are very simple. Overall, the hardware required to track
the slack regained and to decide whether to increase/de-
crease frequency is very small. Moreover, if our approach
is extended to regain slack from other sources, only
TotalSlack will be affected and the algorithm will remain
exactly the same without requiring further logic to control
frequency/Vcc.

IV. EXPERIMENTAL SETUP

We use the CMP processor presented in Section II.
Further details can be found in [9]–[11]. Independent per-
core voltage domains are used [2], [18], [19]. Each core
can operate at different frequency/voltage levels [6] as
shown in Table IV. Idle stands for the data retention state
reached when a task finishes. Voltage/frequency can be
changed every 10K cycles [8].

Table I
FREQUENCY, VOLTAGE AND POWER LEVELS

Frequency (MHz) Voltage (V) Power (mW)
1064 1.95 1800
532 1.47 770
266 1.21 340
133 1.00 160
idle 0.85 44

We used an in-house cycle-accurate, execution-driven
simulator compatible with Tricore ISA and derived from
CarCore [16]. Our simulator models a CMP architec-
ture composed of 4-cores with the characteristics de-
scribed above. We model the DRAM memory system with
DRAMsim [17], which we integrated inside our simulation
framework. Moreover, we also integrated the RapiTime
comercial tool [1] inside our simulation framework in
order to estimate the WCET of hard real-time tasks.

For our experiments, we use EEMBC Autobench [13],
a well-known benchmark suite that reflects the current
real world demands of embedded systems. We define
four different application workloads, each composed of
four different benchmarks, which aim to balance system
load. To do so, we sort the benchmarks from highest
to lowest energy savings (a proxy of their shared re-
sources requirements) achieved by our DVFS technique
when run in isolation in the CMP. Then, we create the
workloads by grouping the 16 benchmarks as follows:
1-8-9-16 (cacheb01, iirflt01, bitmnp01, tblook1), 2-7-10-
15 (aifirf01, canrdr01, idctrn01, puwmod01), 3-6-11-14
(aifftr01, ttsprk01, matrix01, basefp01) and 4-5-12-13 (ai-
ifft01, pntrch01, rspeed01, a2time01).

V. EVALUATION

This section evaluates our approach in terms of energy
savings and execution time impact, considering two differ-
ent scenarios: (1) when the target task runs without inter-
task interferences from the other tasks (labeled as DVFS no
interferences). This represents an upper bound for energy
savings, since none of the assumed conflicts in the WCET
estimation happen in reality; and (2) a realistic scenario
where the task runs simultaneously with three other tasks
(labeled as DVFS full workload) competing for the shared
resources, as described in Section IV. In this latter case,
all tasks start simultaneously and, if any of the other tasks
competing for the shared resources finishes early, it is re-
run again to keep always those three tasks competing.

Side effects of running the tasks in a real scheduling
have not been considered. In such an environment each
task will observe changes in shared resource demand
coming from other tasks since all of them will apply DVFS
simultaneously and independently. So far we consider an
scenario where the period matches the WCET and the task
release time is fixed, so the only source of slack that our
approach can exploit is the intra-task slack due to shared
resource usage.

Energy Savings: Figure 2 depicts the energy savings
achieved by our approach for each task on the two
scenarios explained above and using as a baseline the
energy consumption of tasks when running in isolation

Figure 2. Relative energy savings of our intra-task DVFS approach.

Figure 3. Relative ET of our intra-task DVFS approach w.r.t. the WCET.

without applying any DVFS technique.
We observe that energy savings are very high in the

DVFS no interferences scenario. In particular, energy
savings are in the range 18% - 40%, with average savings
of 24%. Note that those energy savings are very large,
especially if we consider that our approach exploits only
the slack available for load operations.

In the DVFS full workload scenario energy savings are
lower, but still significant. They range between 2% and
28%, with average energy savings of 6.5%.

Execution Time (ET) Impact: In all cases the ET of
each task never violates its WCET estimation in CMP.
Figure 3 shows the ET with respect to the WCET estima-
tion when our DVFS technique is applied. (1) The average
ET is 92% of the WCET for the DVFS full workload
scenario. If DVFS is not applied, then the ET is 79%.
(2) Similarly, average ET is 82% of the WCET for the
DVFS no interferences scenario. If DVFS is not applied,
then the ET is 65%.

The difference between the actual ET and the WCET for
those two scenarios (8% and 18% respectively) is due to
other events not exploited in this paper (store operations,
etc.), which will be studied in our future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we describe a DVFS approach for hard
real-time systems that exploits the multicore-generated
intra-task slack automatically at runtime by means of hard-
ware mechanisms, by identifying and quantifying those
events that behave better than their worst-case latency,
thus guaranteeing that no hard real-time task exceeds its
WCET estimation in a CMP. Our evaluation shows that by
simply exploiting the intra-task slack provided by inter-
task interferences of load operations when accessing to
the shared bus and memory controller in a multi-core
processor, average energy savings per task between 6%
and 24% are achieved.

Our approach neither requires to perform any static
analysis of the task at design time, nor has dependencies
on the actual schedule. Hence, our approach can be applied
regardless of the scheduling technique used. Moreover, our
approach can be combined with current DVFS techniques
for hard real-time systems without further changes.

Future work includes a complete evaluation of our
technique when a real task scheduling is performed instead
of studying each task in isolation in a fully controlled
environment. Similarly, we will extend our technique to
also deal with store instructions accessing the bus and to
other hardware shared resources.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Education and Science under grant TIN2007-
60625 and by the MERASA FP7 STREP European Project
under grant 216415. Eduardo Quiñones and Jaume Abella
have also been partially funded by the Spanish Ministry of
Science and Innovation under the grant Juan de la Cierva
JCI2009-05455 and by the Generalitat de Catalunya un-
der grant Beatriu Pinós 2009 BP-B 00260 respectively.
Authors would also like to thank Marco Paolieri for their
helpful comments.

REFERENCES

[1] RapiTime: WCET analysis. www.rapitasystems.com.
[2] T.A. AlEnawy and H. Aydin. Energy-aware task allocation for rate

monotonic scheduling. In RTAS ’05, 2005.
[3] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and F. Mueller.

Virtual simple architecture (VISA): exceeding the complexity limit
in safe real-time systems. In ISCA ’03, pages 350–361, 2003.

[4] A. Andrei, M.T. Schmitz, P. Eles, Z. Peng, and B.M. Al Hashimi.
Quasi-static voltage scaling for energy minimization with time
constraints. In DATE, 2005.

[5] S.V. Gheorghita, T. Basten, and H. Corporaal. Intra-task scenario-
aware voltage scheduling. In CASES, 2005.

[6] Intel Corporation. Intel PXA270 Processor, Data sheet.
[7] T. Ishihara and H. Yasuura. Voltage scheduling problem for

dynamically variable voltage processors. In ISLPED, 1998.
[8] A. Iyer and D. Marculescu. Power efficiency of voltage scaling in

multiple clock, multiple voltage cores. In ICCAD ’02, 2002.
[9] M. Paolieri, E. Quinones, F.J. Cazorla, G. Bernat, and M. Valero.

Hardware support for WCET analysis of hard real-time multicore
systems. In ISCA ’09, 2009.

[10] M. Paolieri, E. Quinones, F.J. Cazorla, Robert I. Davis, and
M. Valero. Ia3: An interference aware allocation algorithm for
multicore hard real-time systems. In RTAS, 2011.

[11] M. Paolieri, E. Quinones, F.J. Cazorla, and M. Valero. An ana-
lyzable memory controller for hard real-time CMPs. In Embedded
System Letter, 2009.

[12] P. Pillai and K.G. Shin. Real-time dynamic voltage scaling for
low-power embedded operating systems. In SOSP ’01, 2001.

[13] J. Poovey. Characterization of the EEMBC Benchmark Suite. North
Carolina State University, 2007.

[14] T. Sakurai and A.R. Newton. Alpha-power law MOSFET model
and its applications to CMOS inverter delay and other formulas.
IEEE Journal of Solid-State Circuits (JSSC), 25(2), 1990.

[15] D. Shin and J. Kim. Optimizing intra-task voltage scheduling using
data flow analysis. In ASP-DAC, 2005.

[16] S. Uhrig, S. Maier, and T. Ungerer. Toward a processor core for
real-time capable autonomic systems. In ISSPIT ’05, 2005.

[17] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and
B. Jacob. Dramsim: a memory system simulator. SIGARCH
Comput. Archit. News, 2005.

[18] C. Xian, Y.-H. Lu, and Z. Li. Energy-aware scheduling for real-
time multiprocessor systems with uncertain task execution time. In
DAC ’07, 2007.

[19] D. Zhu, R. Melhem, and B. Childers. Scheduling with dy-
namic voltage/speed adjustment using slack reclamation in multi-
processor real-time systems. In RTSS ’01, 2001.

[20] Y. Zhu and F. Mueller. Feedback edf scheduling exploiting dynamic
voltage scaling. In RTAS, 2004.

