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Abstract—EKG is a multiprocessor scheduling algorithm
which is optimal for the schedule of real-time periodic tasks
with implicit deadlines. It adheres to the deadline partitioning
fair (DP-Fair) approach. However, it was shown in recent studies
that the systematic execution of some tasks inherent in such
approaches, significantly reduce the usability of this algorithm.
Hence, we propose a swapping algorithm with the aim of reducing
the number of preemptions and migrations incurred by EKG.
This algorithm should enhance the practicality of EKG while
keeping its optimality.

I. INTRODUCTION

Over the last two decades, numerous optimal multiprocessor
scheduling algorithms for periodic tasks have been proposed
[1]–[7]. Each new result attempts to outperform previous
algorithms in terms of preemptions, migrations, number of
scheduling points or time complexity. Indeed, many studies
state that the run-time overheads caused by these various
factors, dramatically impact the usability of optimal algorithms
in real applications [8]–[10].

Recently, Levin et al. developed a deadline partitioning
fair (DP-Fair) theory explaining how the optimality could be
reached on multiprocessor platforms by ensuring the fairness
for all tasks at the deadlines of jobs released in the system [4].
In this approach, the time is divided in time slices. All tasks
are assigned a local execution time in each time slice, which
is determined so as to ensure that all deadlines will be met.

In 2006, Andersson et al. developed the algorithm EKG
which categorizes tasks as migratory or non-migratory [5].
Migratory tasks are scheduled according to the DP-Fair ap-
proach, while non-migratory tasks are scheduled under an EDF
scheduling policy. The EKG algorithm seems very promising
in terms of reducing preemptions and migrations. However, re-
cent studies showed that the systematic schedule of migratory
tasks in each time slice significantly increases the number of
preemptions and migrations and hence has a negative impact
on the schedulability of task systems on real computational
platforms [10].

We propose a technique to address the preemption and
migration overheads in EKG. We present a swapping algorithm
which increases (or decreases) the time reserved for migratory
tasks in each time slice, thereby, suppressing migratory tasks
(and associated run-time overheads) from time slices where
their execution is not required to keep a correct schedule.

1Supported by the Belgian National Science Foundation (F.N.R.S.) under
a F.R.I.A. grant.

II. MODEL

We consider the scheduling of n periodic tasks with implicit
deadlines on m identical processors. Each task τi in the set
τ is characterized by a period Ti and a worst case execution
time Ci. That is, the arrivals of two successive jobs of τi are
separated by Ti time units and each job must be executed for
Ci time units before the next arrival. We denote the utilization
of τi as Ui

def= Ci
Ti

. It measures the proportion of time that τi
must execute on average to met its deadline.

Since we are working with implicit deadline tasks, each task
has one active job at any time t. We can therefore write without
ambiguity that the deadline di(t) of the task τi at time t is the
deadline of the current active job of τi at time t. Similarly, we
denote the remaining execution time of the current active job
of τi at time t as ri(t).

In the remainder of this paper, we will assume that, at any
instant t, the set τ is ordered according to the deadlines of the
tasks at time t. That is, for any two tasks τx and τy , if x < y
then dx(t) ≤ dy(t).

III. OVERVIEW OF THE EKG ALGORITHM

EKG, first proposed by Andersson and Tovar in [5], is
the short-hand notation for EDF with task splitting and k
processors in a Group. As indicated by its name, it divides
the computational platform into clusters through the definition
of a parameter k. In each cluster, we have k ≤ m processors.
A bin-packing algorithm is used to partition the tasks among
the clusters so that the total utilization on each cluster is not
greater than k. Also, in order to minimize the number of
preemptions and migrations, every task τi with a utilization
Ui greater than k

k+1 receives its own processor.
It was proved in [5] that EKG ensures a utilization bound

of ( k
k+1 ·m) when k < m, and is optimal for the schedule of

periodic tasks with implicit deadlines when k = m.
In the remainder of this paper, we will assume that there

is only one cluster in the system. However, if there should be
multiple clusters, the same reasoning could be applied on each
individual cluster without any variation.

After the partitioning of τ onto the clusters, EKG works
in two different phases. First, it assigns the tasks in each
cluster among the processors. Then, it schedules the tasks in
accordance with this assignment.

The assignment follows a first fit heuristic. That is, tasks
are assigned to a processor as long as the capacity cj on this
processor is not exhausted. Let ui,j denote the proportion of
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Fig. 1. (a) Assignment, (b) schedule before and (c) after swap under EKG.

τi’s utilization assigned on processor πj . We define Sj as the
set of tasks entirely assigned on πj . That is,

Sj
def= {τi ∈ τ | ui,j = Ui} .

If we assume that τi is the next task to assign, and πp is
the first processor with some remaining capacity (i.e., cp > 0
and cj = 0 for all j < p), if cp ≥ Ui then Sp = Sp ∪ {τi}.
Otherwise, τi becomes a migratory task, denoted Mp, which is
split into two subtasks M ′p with a utilization factor UM ′p = cp,
and M ′′p with a utilization UM ′′p = Ui− cp (see Fig. 1). M ′p is
assigned to πp and M ′′p is assigned to πp+1. For instance, in
Fig. 1, Sp−1 = {τb, τc, τd} and τe is split in M ′p−1 and M ′′p−1.

When the scheduler determines the execution time allocated
to each task, the tasks in Sj are treated as a single task. Hence,
we name Sj the supertask of processor πj and the tasks in
Sj are called component tasks of Sj . The utilization of Sj is
denoted USj

def=
∑
τi∈Sj Ui.

After the assignment, EKG schedules the migratory tasks
and supertasks using a DP-Fair technique [4]. The time
is divided in time slices bounded by two successive task
deadlines. At any time t, let TSk denote the kth time slice
after time t (Note that, TSk refers to different time slices
as the time progresses. However, for the sake of readability,
we write TSk instead of TSk(t)). The length of TSk is
Lk

def= dk(t)− dk−1(t), where dk(t) is τk’s deadline. In each
time slice of length Lk, every supertask Sj and migratory task
M ′j or M ′′j , executes for `kSj = USj × Lk, `kM ′

j
= UM ′

j
× Lk

and `kM ′′
j

= UM ′′
j
×Lk time units respectively (see Fig. 1(b)).

We say that `kSj is the local execution time of supertask Sj in
time slice TSk (and similarly for M ′j and M ′′j ).

Whenever, a supertask Sj is scheduled on processor πj , the
EDF algorithm is used to decide which of its component tasks
will actually be executed on πj . EKG can therefore be seen
as a two-levels scheduling algorithm. On one hand, it uses a
DP-Fair approach to schedule the supertasks and, on the other
hand, it uses EDF to decide which component tasks to execute
on the processor.

IV. SWAPPING EXECUTION TIME

As shown on Fig. 1(b), in every time slice, we have up
to two preemptions on each processor πj , caused by the two
migratory tasks M ′′j−1 and M ′j , and one migration between

processors πj and πj+1 per migratory task Mj . On the other
hand, since EDF is used to schedule the component tasks
of any supertask Sj , the tasks included in Sj do not cause
any preemption between two successive job arrivals (which
correspond to the time slices boundaries). Hence, most of the
preemptions and all migrations are caused by migratory tasks.
It would therefore be valuable to remove the execution of these
tasks in as many time slices as possible to reduce the run-
time overheads. This is the goal of our swapping algorithm.
Fig. 1(c) shows how the schedule might change after swapping
and that preemptions and migrations may be reduced. Note
that we will perform a swap only if it does not impact the
correctness of the schedule previously built by EKG. Hence,
our algorithm does not affect the optimality of EKG.

The swapping algorithm is applied at each time t corre-
sponding to a task deadline (i.e., at the beginning of each
time slice). We consider the current time slice TS1 as the
time interval extending from t to d1(t) (recall that the tasks
are ordered in an increasing deadline order).

The algorithm follows four different rules:
Rule 1: Maximize the execution of the migratory task

M ′′j−1 on processor πj in the current time slice TS1.
Rule 2: Minimize the execution of the migratory task M ′j

on processor πj in the current time slice TS1.
Rule 3: Avoid any intra-job parallelism.
Rule 4: Ensure that every task will be able to complete its

execution before its deadline.
The main idea of Rule 1 is to complete the execution of

M ′′j−1 as early as possible. On the other hand, Rule 2 tries to
delay as much as possible the execution of M ′j . The goal is
that M ′′j−1 appears only in the earlier time slices after each of
its new job arrival, and that M ′j appears only in the later time
slices just prior to each job’s deadline. Ideally, execution can
be eliminated altogether in some time slices (see Fig. 1(c)),
thereby eliminating the associated preemptions and migrations.
Furthermore, reducing M ′j’s execution in the current time slice
increases the interval in which M ′′j−1 can execute in TS1

giving the opportunity to M ′′j−1 to complete earlier.
Assuming that a task set τ is schedulable under EKG,

Rules 3 and 4 ensure that the schedule remains correct after
executing the swapping algorithm (i.e., we do not perform a
swap if it could impact the validity of τ ’s schedule).

A. Principles Ensuring Correctness

Before we formally describe our swapping algorithm in the
next section, we first present some principles we must follow
in order to ensure that we never violate Rule 4.

Principle 1: For any migratory task Mj , we cannot swap
execution time between TS1 and any time slice subsequent
to the deadline of the current active job of the migratory task
(i.e., a time slice TSk such that dk(t) > dMj

(t)). Indeed, the
time reserved for Mj after dMj (t) is dedicated to the execution
of “future” jobs of Mj that are not yet active in TS1.

Principle 2: If we increase (respectively decrease) the local
execution time `1i of a task τi by ∆i time units in the current
time slice TS1, we have to decrease (respectively increase)



the local execution time `ki by the same quantity ∆i in a time
slice TSk such that k > 1 and TSk is before di(t) (according
to Principle 1). That is, the time reserved for the execution of
a task must remain constant for the whole schedule.

Principles 1 and 2 give us a straight forward approach
for enforcing all migratory tasks’ adherence to Rule 4. The
approach for supertasks requires more thought. Indeed, each
component task τi of a supertask Sj has its own deadline
di(t) and its own remaining execution time ri(t). Hence, we
must ensure that Sj has enough time reserved on πj to fulfill
the execution of all component tasks before their respective
deadlines. Moreover, if di(t) is the deadline of the current job
of a component task τi of Sj , then a part of the time reserved
for Sj in time slices subsequent to di(t) is dedicated to the
execution of “future” jobs of τi. These jobs are not yet active
within the interval [t, di(t)). Hence, we must be sure that we
keep enough time after di(t) to execute these future jobs.

Let F kj be the tasks in Sj with a deadline before dk(t) (i.e.,
F kj = {τi ∈ Sj | di(t) < dk(t)}). The time reserved in TSk

for any task τi in F kj , is dedicated to future jobs of τi. Hence,
the local execution time `kSj allocated to supertask Sj within
time slice TSk can be separated into two parts —namely, the
time reserved for the future jobs (i.e., jobs of tasks in F kj ),
denoted fkSj , and the time allocated to active jobs at time t
(i.e., jobs of tasks in Sj −F kj ), denoted akSj . That is, we have
`kSj = akSj +fkSj . Since, by definition, future jobs have not yet
arrived at time t, we cannot swap execution time with these
jobs. Therefore, the value of fkSj can never change. When
using a DP-Fair approach such as EKG, fkSj is equal to the
utilizations of the tasks in F kj multiplied by the length of the

time slice (i.e., fkSj
def= Lk ×∑τi∈Fkj

Ui) [4], [5]. Therefore,
we get the following two principles:

Principle 3: In any time slice TSk, we cannot decrease the
execution time of a supertask Sj by more than akSj = `kSj−fkSj .

Principle 4: Assuming that dq(t) is a job deadline, then, to
respect Rule 4, we must ensure that the remaining execution
of the currently active jobs never exceeds the time reserved
for those jobs. Specifically, for each q ≤ n,

q∑
k=1

akSj ≥
∑
τi∈Sj

di(t)≤dq(t)

ri(t).

Note that after a swap between TS1 and TSk, Principle 4
requires the local execution time `1Sj of Sj in TS1 to be large
enough to ensure , for each TSk, that there is enough time
allocated during TS1 to TSk to meet the demand. That is,

`1Sj ≥ ā1
Sj = max

1≤q<k

( ∑
τi∈Sj

di(t)≤dq(t)

ri(t)−
q∑
v=2

avSj

)
B. Swapping Algorithm Description

Initially, EKG is used to assign the tasks among the
processors and compute the local execution time of every
migratory task and supertask in the n time slices bounded

by the n current task deadlines at time t. Then, at time
t = 0 and at any time t corresponding to a job deadline (i.e.,
a time slice boundary), our swapping algorithm is executed
as shown in Algorithm 12. This algorithm browses the time
slices TS2 to TSn and updates the local execution times by
performing swaps (if possible) with the current time slice
TS1 in accordance to Rules 1 through 4. We compute the
swapped quantities starting with processor πm and ending with
processor π1. On each processor πj , we first perform the swap
for the migratory tasks M ′j and M ′′j−1 (ignoring parallelism in
TS1 for the moment) (lines 2 to 5 in Algorithm 1). However,
because Rule 3 is ignored during the first pass, some intra-
job parallelism could arise. Therefore, we correct the values
of the local execution times on each processor to remove the
parallelism and respect Rule 3 (lines 7 to 9). Finally, we update
the local execution time of the supertask Sj (line 10).

Algorithm 1: Swapping algorithm.

for k := 2 to n do1
for j := m to 1 do2

Swap between `1
M′
j

and `k
M′
j

using Lemma 1;
3

Swap between `1
M′′
j−1

and `k
M′′
j−1

using Lemma 2;
4

end5
for j := 1 to m do6

if There is parallelism between `1
M′
j−1

and `1
M′′
j−1

then
7

Correct values using Eq. 1;8
end9
Update a1

Sj
and akSj using Eq. 2 ;10

end11
end12

We will now derive the maximum time that can be swapped
between TS1 and TSk for migratory tasks on processor πj .
According to Rules 1 and 2, we will increase the local
execution time `1M ′′

j−1
of M ′′j−1 by ∆k

M ′′
j−1

in TS1 and

decrease `1M ′
j

by ∆k
M ′
j
. Moreover, as stated in Principle 1, in

order to respect Rule 4, we must correspondingly decrease
`kM ′′

j−1
by ∆k

M ′′
j−1

and increase `kM ′
j

by ∆k
M ′
j

in TSk.

Lemma 1: The maximum execution time of the migratory
task M ′j that can be swapped from time slice TS1 to time slice
TSk is

∆
k
M′
j

= min

{
`
1
M′
j
,

(
`
k
M′′
j−1

+ a
k
Sj

)
,

(
L
k − `k

M′
j
− `k

M′′
j

)}
if dMj

(t) ≥ dk(t). Otherwise, ∆k
M ′
j

= 0.

Proof: We cannot swap more from TS1 than what is
allocated to M ′j . Hence, ∆k

M ′
j
≤ `1M ′

j
. Similarly, increasing

M ′j’s allocation in TSk will decrease the time allocated to
M ′′j−1 and Sj . Therefore, we cannot swap more into TSk

than what is allocated to M ′′j−1 and Sj . That is, ∆k
M ′
j
≤

`kM ′′
j−1

+ akSj (see Fig. 2 (a)). Furthermore, from Rule 3, we

2Notice that at such an instant t, at least one new job arrives. Therefore,
according to the deadlines of these jobs, one new time slice is created by
newly released job. Hence, the local execution time for all tasks must be
initialized in these new time slices.
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Fig. 2. Task swapping according to Algorithm 1.

forbid any intra-job parallelism. Therefore, because `kM ′′
j

has
already been computed and will remain fixed, we must have
∆k
M ′
j
≤ Lk − `kM ′

j
− `kM ′′

j
.

Finally, we stated in Principle 1 that we cannot swap any
time from Mj between TS1 and a time slice subsequent to
dMj

(t). That is, ∆k
M ′
j

= 0 for such time slices.

Lemma 2: The maximum execution time of the migratory
task M ′′j−1 that can be swapped from time slices TSk to time
slice TS1 is

∆
k
M′′
j−1

= min

{
`
k
M′′
j−1

,

(
L

1 − `1
M′′
j−1
− `1

M′
j
− ā1

Sj

)}
if dMj−1(t) ≥ dk(t). Otherwise, ∆k

M ′′
j−1

= 0.

Proof: We cannot swap more from TSk than what is
allocated to M ′′j−1. Therefore, ∆k

M ′′
j−1
≤ `kM ′′

j−1
. Similarly, we

cannot swap more from TS1 than what is available. Since
M ′′j−1 , M ′j and Sj must execute `1M ′′

j−1
, `1M ′

j
and ā1

Sj
time

units, that leaves ∆k
M ′′
j−1
≤
(
L1 − `1M ′′

j−1
− `1M ′

j
, − ā1

Sj

)
.

Finally, we stated in Principle 1 that we cannot swap any
time from Mj−1 between TS1 and a time slice subsequent to
dMj−1(t). That is, ∆k

M ′′
j−1

= 0 for such time slices.

In case of intra-job parallelism between M ′j−1 and M ′′j−1,
we can correct the values of the local execution times by
adjusting the ∆k

M ′′
j−1

and ∆k
M ′
j

quantities (see Fig. 2 (c)). In

this situation, we decrease ∆k
M ′′
j−1

so that task M ′j−1 starts to
execute at the exact moment when M ′′j−1 finishes on processor
πj (i.e., Mj−1 executes for exactly L1 times units during
TS1). This frees up some time which can be spent either
executing Sj or M ′j . By Rule 2, our preference would be
to avoid increasing M ′j . However, Principle 3 states that we
cannot decrease the execution of Sj in TSk for more than akSj
time units. Therefore, if akSj is too small then we may need
to increase M ′j in TS1. This gives the following adjustments
to ∆k

M ′′
j−1

and ∆k
M ′
j
. ∆k

M′′
j−1
← ∆k

M′′
j−1
−
(
`1
M′
j−1

+ `1
M′′
j−1
− L1

)
∆k
M′
j

← ∆k
M′
j

−max

{
0 , `1

M′
j−1

+ `1
M′′
j−1
− L1 − akSj

} (1)

Once we have computed the new values of the local exe-
cution times of task M ′′j−1 and M ′j on processor πj , we must

update a1
Sj

and akSj so that the total execution time remains
constant in each time slice. We therefore get{

a1
Sj
← a1

Sj
+ ∆M ′

j
−∆M ′′

j−1

akSj ← akSj −∆M ′
j

+ ∆M ′′
j−1

(2)

V. CONCLUSION AND FUTURE WORKS

In this paper we have presented a swapping algorithm which
modifies the local execution time that the EKG algorithm
allocates to the tasks in each time slice. Hence, we can reduce
the run-time overheads incurred by this algorithm and improve
its practicality for real applications.

Many improvements can be considered for this first swap-
ping algorithm. We believe that, by slightly, modifying the
algorithm, we could greatly reduce the number of time slices in
the schedule. That is, we can drastically improve the number of
preemptions, migrations and scheduling points. Moreover, the
presented algorithm always use the same heuristic in each time
slice to modify execution times allocated to tasks. We would
like to investigate the impact of varying the used heuristics
as the schedule progresses. Finally, we plan to extend our
swapping algorithm for sporadic tasks (using the sporadic
version of EKG).
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