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Abstract—In this paper we discuss the problem of tracing
event chains (distributed transactions) while extracting
an end-to-end timing model from an existing industrial
component model, the Rubus Component Model (RCM).
RCM supports component-based development of distributed
embedded and real-time systems. The purpose of extracting
an end-to-end timing model is to perform the holistic
response-time analysis of component-based distributed real-
time applications modeled with RCM. We present a solution
for RCM by introducing special purpose generic components
to it. We believe that the solution is also suitable for
other component models that use a pipe-and-filter style for
component interconnection.

Keywords-holistic response-time analysis; distributed real-
time systems; timing model; model-based development.

I. INTRODUCTION

One of the most important requirements during the
development of distributed real-time systems is to provide
an evidence that each action in the developed system
will meet its deadline. Tindell and Clark [1] developed
the Holistic Response-Time Analysis (HRTA) to meet this
requirement. HRTA is a well established schedulability
analysis technique to calculate upper bounds on the re-
sponse times of event chains (distributed transactions) in
a distributed real-time system. In order to perform HRTA,
all timing related information of the distributed real-time
system under analysis should be available.

The Model- and Component-Based Development [2],
[3] is often considered a suitable choice for the develop-
ment of embedded and real-time systems for many rea-
sons such as: handling complexity of embedded software;
lowering development cost; reducing time-to-market and
time-to-test; allowing reusability; enabling modeling and
analysis at higher level of abstraction, etc. In order to
perform HRTA of component-based distributed real-time
systems, the component model for the development of
such systems should support the extraction of required
timing information into an end-to-end timing model.

In this paper, we discuss the extraction of an end-to-
end timing model from the industrial component model,
the Rubus Component Model (RCM), that is used to de-
velop resource-constrained distributed real-time systems.
We discuss the problem of tracing event chains (distributed
transactions) while extracting an end-to-end timing model
from the modeled application. We also propose a solution
to this problem by introducing special purpose components
to RCM. We believe that the solution is also suitable for
other component models for distributed real-time systems
that use a pipe-and-filter style for component interconnec-
tion, e.g., ProCom Component Model [4].

The rest of the paper is organized as follows. In
Section II, we discuss the holistic response-time analysis.
Section III presents the Rubus concept. In Section IV, we

discuss the research problem. In Section V, we present a
solution to the problem. Section VI summarizes the paper.

II. HOLISTIC RESPONSE-TIME ANALYSIS

In order to provide an evidence that each action in the
system will meet its deadline, a priori analysis techniques,
also known as schedulability analysis techniques, have
been developed by the research community. Response
Time Analysis (RTA) is a method to calculate upper
bounds on response times of tasks or messages in a real-
time system or a network respectively. In [5], it is claimed
that amongst the more traditional, analytical, schedulabil-
ity analysis techniques, RTA of tasks with offsets stands
out as the prime candidate because of its better precision
and ability to analyze quite complex system behaviors.
In this Section, we discuss RTA of tasks in a node
(processor), RTA of messages in a network and finally,
HRTA.

A. RTA of Tasks in a Node
Liu and Layland [6] provided theoretical foundation

for analysis of fixed-priority scheduled systems. Joseph
and Pandya published the first RTA [7] for the simple
task model presented by Liu and Layland which assumes
independent periodic tasks. Subsequently, it has been
applied and extended in a number of ways by the research
community such as, lifting independent task assumption,
analysis of communication networks, analyzing distributed
systems, modeling of operating systems overheads, reduc-
ing pessimism from traditional RTA, making RTA faster
and tighter, etc. Tindell [8] developed the schedulability
analysis for tasks with offsets and it was further extended
by Palencia and Gonzalez Harbour [9]. RTA [10], [11] has
become a powerful, mature and well established schedula-
bility analysis technique. In crux, RTA is used to perform
a schedulability test which means it checks whether or
not tasks in the system will satisfy their deadlines. RTA
applies to systems where tasks are scheduled with respect
to their priorities and which is the predominant scheduling
technique used in real-time operating systems today [5].

B. RTA of Messages in a Network
There are many protocols such as, CAN (Controller

Area Network), TDMA (Time Division Multiple Access),
TTCAN (Time-Triggered CAN), FlexRay, etc., that are
used for real-time communication in distributed real-time
systems. In this paper, we will focus only on the CAN
protocol. Tindell et al. [12] developed the schedulabil-
ity analysis of CAN by adapting the theory of fixed-
priority preemptive scheduling for uniprocessor systems.
This analysis has served as a basis for many research
projects. Moreover, it is implemented in the analysis tools
that are used in the automotive industry [13]. Later on, this
analysis was revisited and revised by Davis et al. [14].



C. HRTA
HRTA combines the analysis of nodes (uniprocessors)

and the network. In other words, it computes the response
times of event chains (distributed transactions) that are
distributed over several nodes in a distributed real-time
system. In this paper, we consider the timing model that
corresponds to the holistic schedulability analysis for dis-
tributed hard real-time systems that employ CAN protocol
for network communication [1]. An example distributed
transaction in a distributed real-time system is shown in
Figure 1. In this example, the holistic response time is
equal to the elapsed time between the arrival of an event
(corresponding to the brake pedal input) and the response
time of the Task4 (corresponding to the production of a
signal for brake actuation).
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Figure 1. Holistic response-time in a distributed real-time system

III. BACKGROUND–THE RUBUS CONCEPT

The Rubus concept is based around the Rubus Com-
ponent Model [15] and its development environment
Rubus-ICE (Integrated Component development Environ-
ment) [16], which includes modeling tools, code gen-
erators, analysis tools and run-time infrastructure. The
overall goal of Rubus is to be aggressively resource
efficient and to provide means for developing predictable
and analyzable control functions in resource constrained
embedded systems.

A. The Rubus Component Model
RCM expresses the infrastructure for software func-

tions, i.e., the interaction between the software functions
in terms of data and control flow separately. One impor-
tant principle is to separate functional code and infras-
tructure implementing the execution model, i.e., explicit
synchronization or data access should all be visible at the
modeling level. In RCM, the basic component is called
Software Circuit (SWC). By separating functional code
and the infrastructure RCM facilitates analysis and reuse
of components in different contexts (an SWC has no
knowledge how it connects to other components). The
component model has the possibility to encapsulate SWCs
into software assemblies enabling the designer to construct
the system at different levels of abstraction.

B. The Rubus Code Generator and Run-Time System
From the resulting architecture of connected SWCs,

functions are mapped to run-time entities; tasks. Each
external event trigger defines a task and SWCs connected
through the chain of triggered SWCs (triggering chain)
are allocated to the corresponding task. All clock triggered
“chains” are allocated to an automatically generated static
schedule that fulfills the precedence order and temporal
requirements. Within trigger-chains, inter-SWC communi-
cation is aggressively optimized to use the most efficient
means of communication possible for each communication
link. Allocation of SWCs to tasks and construction of
schedule can be submitted to different optimization cri-
terion to minimize e.g. response times for different types
of tasks, or memory usage. The run-time system executes

all tasks on a shared stack, thus eliminating the need for
static allocation of stack memory to each individual task.
C. The Rubus Analysis Framework

The model also allows expressing real-time require-
ments and properties on the architectural level. For ex-
ample, it is possible to declare real-time requirements
from a generated event and an arbitrary output trigger
along the trigger chain. For this purpose, the designer has
to express real-time properties of SWCs, such as worst-
case execution times and stack usage. The scheduler will
take these real-time constraints into consideration when
producing a schedule. For event-triggered tasks, response-
time calculations are performed and compared to the
requirements.

IV. RESEARCH PROBLEM

In order to perform the holistic response-time analysis,
the end-to-end timing model should be extracted from the
distributed real-time system under analysis. The end-to-
end timing model should contain timing related informa-
tion of all transactions and messages in the system. At
node level, the timing information includes total number
of transactions and the number of tasks in each transac-
tion. Moreover, for every task the Worst-Case Execution
Time, offset, maximum release jitter, priority, deadline
and period (periodic activation) or inter-arrival time (event
activation) between successive events triggering a chain
should also be available. At network level, the timing
information includes bus speed, total number of messages,
message transmission time, size of payload in each mes-
sage, message period (periodic message) or inter-arrival
time (event message) or both (mixed-type message), mes-
sage jitter, priority of each message, transmission time of
each message.

When there are event chains in the system, the timing
model should not only contain timing related information
but also the tracing information of the event chains. An
event chain consists of a number of tasks that are in
a sequence and have one common triggering ancestor
(e.g., clock, internal and external events, etc.). By tracing
information we mean proper sequencing and linking in-
formation among all tasks inside the chain. The extraction
of tracing information of event chains in a distributed
real-time system is more complex compared to a single
node real-time system. The component model for the
development of real-time systems should provide means to
trace event chains and extract related timing information
for the purpose of timing analysis. We discuss the issues
concerning tracing of event chains in component-based
real-time systems in a single node (uniprocessor) as well
as in a distributed system.

A. Event Chains in Single-Node Real-Time Systems
Consider an example of an event chain in a single node

modeled with RCM as shown in Figure 2. The event
chain consists of three Software Circuits, i.e., SWC A,
SWC B and SWC C. There is a single activation event
(external event trigger) for the chain that triggers SWC A.
When event chains are modeled in a single node in RCM,
there are direct triggering connections between every two
neighboring SWCs in a chain. For example, SWC B
directly triggers the SWC C. Each external event trigger
defines a task and SWCs connected through the chain
of triggered SWCs (triggering chain) are allocated to
the corresponding task. All clock triggered “chains” are
allocated to an automatically generated static schedule that
fulfills the precedence order and temporal requirements.



RCM is fully capable of modeling and analyzing event
chains in single node real-time systems. Hence, there is
no problem of tracing event chains (periodic or event).
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Figure 2. Example of an event chain in a single node

B. Event Chains in Distributed Real-Time Systems
Consider an example of a distributed real-time system

modeled with RCM as shown in Figure 3. There are two
nodes in the system with three SWCs in node A and four
SWCs in node B. SWCs communicate with each other
by using both inter-node and intra-node communication.
The inter-node communication takes place via a real-time
network to which the nodes are connected.

One event chain (distributed transaction) that is acti-
vated by a clock consists of four Software Circuits, i.e.,
SWC1, SWC2, SWC4 and SWC5 and is identified with
a solid-line arrow in Figure 3. In this transaction, a clock
triggers SWC1 which in turn triggers SWC2. SWC2 then
sends a signal to the network. This signal is transmitted
over the network in a message (frame) and is received by
the SWC4 at the receiver node. This SWC processes it
and sends it to SWC5.

The elapsed time between the arrival of a triggering
event at the input of the task corresponding to SWC1
and the response of the task corresponding to SWC5 is
referred to as the holistic response time of the distributed
transaction and is also identified in Figure 3. The second
event chain that is activated by an external event consists
of three Software Circuits, i.e., SWC3, SWC6 and SWC7.
It is identified by a broken-line arrow in Figure 3.
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Figure 3. Example of event chains in distributed transactions

There may not be direct triggering connections between
any two neighboring SWCs in the chain which is dis-
tributed over several nodes, e.g., SWC2 and SWC4 in
Figure 3. In this case, SWC2 communicates with SWC4
by sending signals via the network. Here, the problem is
that when a trigger signal is produced by SWC2, it may
not be sent straightaway as a message on the network.
A message may combine several signals and hence, there
may be some waiting time for the signal to be sent on
the network. The message may be sent periodically or
sporadically or by any other rule defined by the underlying
network protocol.

When such event chains (distributed transactions) are
modeled with a component model, it is not straightforward
to trace the event chains to extract the timing model. For
example, if a message is received at node B then the
following information should be available to correctly link
the received message in a chain: the ID of the sender
node; the ID of the task that generated this message; the
ID of the destination node; the ID(s) of the task(s) that
should receive this message, etc.
Discussion

The existing modeling components in RCM do not
provide enough support to trace the event chains (dis-
tributed over several nodes) and extract corresponding
timing information. Therefore, there is a need to introduce
special modeling objects in the component model to
provide the tracing information of event chains to extract
timing information for the timing model. Moreover, there
is a need to model exit and entry points in the component
model. An exit point is where a message (data) leaves the
model and is transmitted according to the protocol-specific
rules of the network. Similarly, an entry point is where a
message enters the model from the network.

Although, we discussed this problem for RCM, we
believe that this problem may occur during the develop-
ment of any other component model for distributed real-
time systems that uses a pipe-and-filter communication
mechanism for component interconnection. The problem
may also exist in any type of “inter-model signaling”,
where a signal leaves one model (e.g. a node, or a core,
or a process) and appears again in some other model. The
requirement for the end-to-end analysis is that the “extra-
model medium” can give bounded delays for the signal.

V. PROPOSED SOLUTION

A. Addition of Special Components to RCM
In order to extract the timing model from the distributed

real-time applications modeled with RCM, we added
special purpose Software Circuits in RCM, i.e., Output
Software Circuit (OSWC) and Input Software Circuit
(ISWC) [17]. For each message that a node sends to the
network there will be one OSWC. Similarly, there will
be one ISWC for each message that a node receives from
the network. OSWC and ISWC also represent the exit and
entry points for the component model respectively.

Moreover, we also introduced a new object in RCM, i.e.,
the Network Specification (NS) that represents the model
of communication in a physical network. NS contains
Signal Mapping which includes the following information:
How are signals mapped to messages? How many signals a
message contains? How are signals encoded in a message
at the sender node? How are signals decoded from a mes-
sage at the receiving node? etc. The model representation
of OSWC, ISWC and NS is shown in Figure 4.

The tracing information of all event chains in the mod-
eled system is provided in the Network Specification. In
each distributed transaction, the pointers (references) to the
input trigger port of OSWC and the output trigger port of
ISWC are specified in NS as shown in Figure 4. The grey
boxes outside the model, identified as CAN SEND and
CAN RECEIVE, are specific for each network protocol.
The network protocol considered in this example is CAN.

B. Example: Model of a Node
An example of a node in a distributed real-time system

modeled with OSWC and ISWC is shown in Figure 5.
The frames that leave the model (sent to CAN SEND)
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Figure 4. Model representation of OSWC, ISWC and NS

are denoted by S (Send) e.g., S1, S2 and S3. Simi-
larly, all the frames that enter the model (received from
CAN RECEIVE) are denoted by R (Receive) e.g., R1 and
R2. All the signals sent in frame S1 are provided at the
data in-ports of OSWC1. These signals are mapped and
encoded into S1 by OSWC1 according to the protocol-
specific information available in NS. Once the frame is
ready, it leaves the model as it is sent to the grey box
CAN SEND. In this example, this grey box represents a
CAN controller in the node which is responsible for the
physical transmission of this frame on the CAN network.

When a frame arrives at the receiving node, it is
transferred by the physical network drivers to a grey
box (CAN RECEIVE in this example) that produces an
interrupt. The frame enters the model and is transferred to
the destination ISWC (the tracing information is provided
in NS). ISWC extracts the signals from the frame, decodes
the data from the frame and encodes it to the RCM data-
type. The data is placed on the data out-port of ISWC
which is connected to the data in-port of the destination
SWC and the corresponding trigger out-port is triggered
(the tracing information is provided in NS).

Model Representation of OSWC and ISWC in one of the Nodes in 

a Distributed Real-Time Application
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Figure 5. Example node in a distributed real-time system modeled with
OSWC and ISWC components

VI. SUMMARY

In this paper, we discussed the problem of tracing event
chains while extracting an end-to-end timing model from
component-based distributed real-time systems developed
with an existing industrial component model, the Rubus
Component Model (RCM). The reason for tracing event
chains is to extract complete timing information of dis-
tributed transactions (in the modeled application) into an
end-to-end timing model. The purpose of extracting an
end-to-end timing model is to perform holistic response-
time analysis which is an important requirement during
the development of distributed real-time systems.

We presented a solution for RCM, which we believe is
also suitable for other component-models for the devel-
opment of distributed real-time systems that use a pipe-
and-filter style for component interconnection. Moreover,
the approach can be used for any type of “inter-model
signaling”, where a signal leaves one model (e.g. a node,
or a core, or a process) and appears again in some other
model. The requirement for end-to-end analysis is that the
“extra-model medium” can give bounded delays for the
signal.

Currently, we are implementing the analysis framework
for holistic response-time analysis in RCM. In future, we
plan to validate the solution methodology by making an
industrial case study.
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[5] M. Nolin, J. Mäki-Turja, and K. Hänninen, “Achieving Industrial
Strength Timing Predictions of Embedded System Behavior,” in
ESA, 2008, pp. 173–178.

[6] C. Liu and J. Layland, “Scheduling algorithms for multi-
programming in a hard-real-time environment,” ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[7] M. Joseph and P. Pandya, “Finding Response Times in a Real-
Time System,” The Computer Journal (British Computer Society),
vol. 29, no. 5, pp. 390–395, October 1986.

[8] K. W. Tindell, “Using offset information to analyse static priority
preemptively scheduled task sets,” Dept. of Computer Science,
University of York, Tech. Rep. YCS 182, 1992.

[9] J. Palencia and M. G. Harbour, “Schedulability Analysis for Tasks
with Static and Dynamic Offsets,” Real-Time Systems Symposium,
IEEE International, p. 26, 1998.

[10] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings, “Fixed
priority pre-emptive scheduling:an historic perspective,” Real-Time
Systems, vol. 8, no. 2/3, pp. 173–198, 1995.

[11] L. Sha, T. Abdelzaher, K.-E. A. rzén, A. Cervin, T. P. Baker,
A. Burns, G. Buttazzo, M. Caccamo, J. P. Lehoczky, and A. K.
Mok, “Real Time Scheduling Theory: A Historical Perspective,”
Real-Time Systems, vol. 28, no. 2/3, pp. 101–155, 2004.

[12] K. Tindell, H. Hansson, and A. Wellings, “Analysing real-time
communications: controller area network (CAN),” in Real-Time
Systems Symposium (RTSS) 1994, pp. 259 –263.

[13] “Volcano Network Architect (VNA). Mentor Graphics,”
http://www.mentor.com/products/vnd/communication-
management/vna/.

[14] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller Area
Network (CAN) schedulability analysis: Refuted, revisited and
revised,” Real-Time Systems, vol. 35, pp. 239–272, 2007.
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