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ABSTRACT 
Applications with soft real-time requirements can benefit from code 
mobility mechanisms, as long as those mechanisms support the 
timing and Quality of Service requirements of applications. In this 
paper, a generic model for code mobility mechanisms is presented.  
The proposed model gives system designers the necessary tools to 
perform a statistical timing analysis on the execution of the 
mobility mechanisms that can be used to determine the impact of 
code mobility in distributed real-time applications.   
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1. INTRODUCTION 
Real-time systems are increasingly shifting from a set of small, 
local applications to powerful, resource-hungry, open distributed 
applications [4]. By the very nature of open real-time systems, the 
availability of resources is unknown beforehand and service 
provisioning can only be determined dynamically as new 
applications arrive to the system. Consequently, there is an 
increasing demand for supporting distributed applications with the 
flexibility to offload parts of their computations to neighbour or “in 
the cloud” nodes due to local resource scarcity, while ensuring the 
real-time behaviour of these applications, both during execution 
and during reconfiguration, after mobility of code has occurred. 

Therefore, open real-time distributed systems must provide 
applications the support to: i) use services provided by remote 
components; ii) move part(s) of the application’s code to remote 
nodes; and ii) guarantee real-time behaviour. The first requirement 
can be supported by a service-based infrastructure [4], to easily and 
transparently interconnect local and remote parts of an application. 
The second requirement can be supported by code mobility 
frameworks, allowing the installation and execution of parts of an 
application in remote nodes [9]. Finally, a real-time resource 
manager can support the third requirement. A well-established 
solution is to use capacity reserves. This has been proved to be 
successful in improving the response times of soft real-time tasks 
while preserving all hard real-time constraints, both for CPU [3] 
and network [2] scheduling. 

1.1 Related work 
Although not widely studied, a few solutions have already been 
proposed to analyse the impact of code mobility on the real-time 
requirements of applications.  
In [11], the authors propose and experimentally characterise the 
behaviour of a hard real-time framework that supports the 

migration of tasks between nodes. However, the work does not 
propose a mathematical model that enables system designers to 
account for the impact of the mobility protocol on the overall 
timing behaviour of applications.  
A strategy for minimising the impact of code mobility in a 
hierarchical preemptive fixed priority scheduling system for Real-
Time Java is proposed in [10]. The authors mainly determine the 
points in time at which the migration process should be started, 
which guarantees that the deadlines of tasks are met and that the 
migration process is executed between consecutive evocations of a 
migratable task.  
Statefull services require the transfer of state, whose duration 
depends on the length of the data being transferred. However, 
during this period of time no transactions can be executed on that 
service (known as blackout time). However, such determination is 
only possible in systems with a well-known and controlled timing 
behaviour. Therefore, in [12], the authors tackled the problem of 
minimising the blackout time by proposing a partial blocking and a 
non-blocking approach for state transfer, which are capable of 
providing real-time guarantees.  
Nevertheless, none of these works focus on the mobility 
mechanism itself. Such mobility mechanisms should be supported 
by a mobility framework that enables the runtime relocation of 
services in response to reconfiguration/update events (e.g., the 
system might reconfigure itself due to the disappearance of a node 
involved in a computation).  
As an example, consider running a video game on a mobile device 
that has offloaded parts of its computations to neighbour devices. 
Reconfiguration in such a distributed cooperative execution might 
be required if one of the nodes, currently running one of game’s 
components, is no longer capable of outputting the required QoS. In 
such case, the component can be migrated to another node able to 
supply the required QoS. Ideally, such change should be executed 
seamlessly, i.e. the game delays should (preferably) be 
unnoticeable.   
Examples of works that tackle the specific problem of selecting the 
new distributed configuration are [4] and [1]. The former allows the 
determination of a distributed configuration that maximises the 
satisfaction of the user’s QoS preferences among a set of allowed 
QoS levels. The latter tries to fulfil the same goals, but each service 
is only allowed to specify a single QoS level. However, a 
mechanism to determine the impact of code mobility in distributed 
real-time applications is still missing. 

1.2 Contributions and paper structure 
Service mobility in a distributed execution environment is a 
complex operation that evolves through several phases, including 



 

sending the code and state to the destination node and rebinding 
connections between components. Additionally, resources must be 
explicitly reserved on the destination node, prior to the start of the 
mobility process. Due to its complexity, we propose that a Mobility 
Management framework (represented in Figure 1 by Mx) should 
control the mobility of code between nodes of a distributed system. 
This paper focuses on the model and timing analysis for a generic 
code mobility mechanism for distributed soft real-time applications. 
The proposed model is generic enough, helping the system designer 
to define the most appropriate parameters for the mobility 
management modules and to determine the feasibility of the timing 
constrains imposed on applications, including mobility and 
reconfiguration events. 
The remainder of the paper is organised as follows. Section II 
defines the generic model for the distributed applications and for 
the mobility mechanism. Section III discusses and analyses the 
code mobility phases and their timings. The main consequence of 
the mobility mechanism is the introduction of a bounded 
inaccessibility period during which one of the application’s services 
is not available. The proposed analysis allows computing the 
adequate resources required by the mobility framework to 
guarantee the timeliness of the application. Finally, Section IV 
discusses the model provided in the paper and presents some 
conclusions 

2. System Model 

2.1 Module components 
This work applies to soft real-time applications composed by a set 
of interconnected components, each supplying some service, either 
in the same local node, but particularly when components are 
distributed among several nodes. The model considers the system 
to be composed of a set of N nodes {H1, ..., HN} and a set of M 
services {S1, …, SM}. Services are interconnected through links. lx,y 
characterises a connection between services Sx and Sy, (Figure 1). 
Each service and each link has a set of real-time requirements that 
are out of the scope of this paper (a detailed discussion can be 
found in [4]). 
Each node runs a Mobility Management module Mx, where x is the 
index of the node. Each module Mx can be connected to other 
Mobility Management modules My through a network connection, 
lmx,my.  

 
Figure 1. System Model 

As depicted in Figure 1, an operation mS5
H3→H4 represents the 

mobility of service S5 between nodes H3 and H4. In such case, H3 is 
denoted as the source node and H4 is denoted as the destination 
node. Link l’7,6 represents the connection that has to be established 

after the mobility operation is completed (rebinding). 
Consequently, connection l7,6 will have to be safely deleted prior to 
l’7,6 becomes operational. By safely, we mean that no messages 
should be lost or delivered to wrong nodes. This operation implies 
offloading the code of S5, its data state, and rebinding its 
connections, all within timing constraints. 

2.2 Resource management  
It is assumed that access to the system’s resources can be modelled 
as a set of isolated servers, either related to CPU [3] or network [2] 
scheduling. Each of these servers is characterised by its maximum 
reserved capacity (Qi) that can be used during a period (Ti); at the 
end of this period the capacity is replenished. Other CPU 
schedulers can also be used, like the Capacity Sharing and Stealing 
scheduler (CSS) proposed in [13]. For the network scheduling, any 
scheduling algorithm with similar characteristics can also be used, 
like the ones based on the Flexible Time-Triggered approach [14]. 
Based on this guarantees, it is possible to determine services’ 
average response time using the formulations proposed in [3]:   

 (1) 

where Cavg
i represents the average execution time of task Ti and 

FC(x) is the cumulative distribution function (c.d.f.) of the task’s 
execution time. In the remainder of the paper, we will use the 
notation R(Qi, Ti, FC

i()) to represent Equation (1).   

2.3 Mobility Management Framework 
We assume the existence of a modular Mobility Management 
framework in each node, similar to the one proposed in [9].  
These mobility management modules have CPU and networking 
servers assigned to them, guaranteeing the timing requirements of 
its operations. Servers associated with the CPU offer a capacity of 
CF over a period TF. Network resources are split between two 
channels, one for bulky data transfer and another for the exchange 
of short control messages. The first has a capacity of Bdata and a 
period of Tdata while the second has a capacity of Bctrl and a period 
of Tctrl. The main advantage of using these two channels is that we 
can guarantee small response time for control messages, but for 
larger data transfer we are able to make the transfer with small 
overhead. 

2.4 Service’s internal state 
In the proposed model, services are able to split their internal state 
into different State Items, representing different variables, different 
objects or combinations of both. It is up to the service to define 
how state items are configured. The state of a service is thus a set 
of state items defined exclusively by the service, where a State Item 
(SISi

p) is only associated to a service Si, is defined as a tuple: 

 

IDSi
p univocally identifies this State Item and BSi

p is the bandwidth 
required for the transfer of this state item. Some state items are 
created during the service initialisation and are not changed 
subsequently, while others are updated regularly when service calls 
are executed. Therefore, state items are divided in two groups: one 
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that can be migrated during the normal operation of the service 
(Static Sate Items) and another that can only be migrated if there 
are no ongoing service calls (Dynamic State Items). 
 Based on the model exposed in this section, Section III shows how 
it is possible to devise a timing model for a generic mobility 
mechanism. 

3. Code Mobility Timing model 
Service mobility can be split in two main phases: Preparatory and 
Blackout phases. During the Preparatory phase, the migrating 
service continues operational in the source node. This phase is 
further divided into three subphases: mobility decision, code 
shipping, and initial state transfer. During the Blackout phase, the 
service is totally inaccessible to others. It includes the subphases: 
state transfer, connections rebinding, and service restart. Some of 
the subphases are executed serially while others can be executed in 
parallel. Figure 2 depicts a timeline containing an example of a 
mobility procedure. A detailed description and analysis of each step 
is given in the following subsections. In this analysis, for the sake 
of simplicity, we assume that no other service mobility operation 
occurs during the complete procedure and that a higher-level 
resource control framework assures such control. 

 
Figure 2 – Mobility-related timings 

3.1 Preparatory Phase 

3.1.1 Decision process 
The start of service mobility (mobility triggering event) results 
from a decision by the application (currently using the service) or 
by request from an external entity (the user, another application or 
specific framework). As an example, in Figure 2, the triggering 
event is received from another node. 
State changes can also trigger service mobility whenever a user 
requests the execution of an application that can only be admitted 
into the system if the system is reconfigured by migrating some 
services of previously admitted applications to neighbour nodes. As 
an example, consider that a user decides to play an mp3 file in its 
mobile device, having to migrate part of a local application to a 
neighbour notebook. 
Note that migration can only be allowed if there is a feasible system 
configuration that allows the service to continue operating within 
its required QoS levels. Algorithms such as those provided by the 
Prism [1] or CooperatES [4] frameworks take a high-level 
approach, finding a solution for the distribution of the application 
services between nodes in a way that maximises a global utility 
function and, simultaneously, guarantees enough resources (CPU, 
network, memory, etc) for every admitted service. While the former 
assumes just one possible QoS level to the application, the latter 

assumes that each service can work with multiple QoS levels, each 
one with a different utility value to the overall system. 
Additionally, the algorithms proposed in [4] are capable of 
generating a system configuration in a bounded amount of time. 
These algorithms are able to use a global view of the system state 
or can simply use a partial view of the system, e.g. if the node 
computing a decision only has access to a limited number of nodes. 
We should point out that the algorithms proposed in [1] and [2] do 
not take into account the cost introduced by systems 
reconfiguration and particularly code mobility. 

3.1.2 Code shipping 
After finding a new distributed solution, the source node informs 
the destination node of the QoS requirements for the service being 
migrated. The destination node can then make all necessary local 
confirmations on the feasibility of receiving the service. 
Then, the service code is coded (e.g. for data serialisation) for 
transmission on the source node, shipped through the network, and 
decoded on the destination node (e.g. by using a deserialisation 
method).  
The bandwidth required to transfer the code is equal to βcode, a 
constant, since the code size is not expected to vary during transit. 
Therefore, the average time required for the transmission of code 
(tcode) can be calculated by:  

 
(2) 

FC
code,S() and FC

code,D() are the c.d.f. of the execution time required 
by the framework, on the source and destination nodes, 
respectively. 

3.1.3 Initial state transfer 
We assume that a set of Static State Items (e.g. configuration data) 
can be transferred prior to the quiescence of the service on the 
source node. After the transfer of the state items, the destination 
node acknowledges its reception. Consequently, the delay 
associated with the initial state transfer is given by: 

 
(3) 

where FC
ist,N() is the c.p.f. for the required bandwidth, FC

ist,S() and 
FC

ist,D() are the c.p.f. of the CPU processing time, on the source and 
destination node, respectively. 

3.1.4 Total delay of the Preparatory phase 
The time required for the Preparatory phase is given by: 

 (4) 

where tme is the time that elapses from the event that triggered the 
mobility of a service until being received by the node responsible to 
determine a new system configuration. It is assumed that the new 
system configuration is computed in a bounded time tdp [4].  
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It is important to note that, depending on the scenario, some of 
these timings can be equal to zero. As an example, assume the case 
where it is the user that decides to migrate its application from its 
mobile device to its TV. 
Most importantly, during this phase the service continues totally 
operational, but the characterisation of this delay is required in 
order determine the dynamic of the mobility procedure. 

3.2 Blackout Phase 

3.2.1 Quiescence achieving 
Usually, in reconfiguration operations, the service to be updated 
has to be in a safe state called quiescence [7]. In this state, the 
service being migrated:  

i) is not currently engaged in a transaction;  
ii) will not initiate a new transaction;  
iii) is not servicing a transaction; and  
iv) no transaction has or will be initiated by other 

services that require service from this service. At the 
same time, all services connected with the migrating 
service must go into a passive state, which requires 
the fulfilling of condition i) and ii).  

One initial solution to achieve quiescence has been proposed in [7], 
while a less demanding solution, called tranquillity was later 
proposed in [8]. Achieving quiescence requires the completion of 
pending requests by a service and the knowledge of all other 
services that might issue new requests. These other services must 
evolve into a passive state in which they cannot evoke the service 
being migrated, although they can evoke other services available in 
the system. The time needed to achieve quiescence can be 
determined through a timing analysis of the mechanisms proposed 
in [7] or [8]. This calculation, out of the scope of this paper, is 
assumed to be known and equal to tq.  
We argue that achieving quiescence is not a necessary condition for 
the mobility of services in a distributed system, as shown by the 
implementation described in [9], if the service calls are stored by 
the mobility management and delivered to the destination node 
only after the completion of the mobility procedure.  

3.2.2 Final state transfer 
Several different approaches can be considered for state transfer:  

i) transfer all state in a single bundle [10];  
ii) propagate only the operations done on state items 

[5];  
iii) separate the state space into several groups of items, 

each transferred with its own periodicity [6] or; 
retransmit the state whenever it changes [12]. The mobility model 
here considered adapts to these approaches.  
The final state transfer is the subphase that most influences the 
latencies of a service migration, due to its duration and due to the 
service being in a quiescent state (it involves the transfer of 
Dynamic State Items which can only maintain consistency if the 
service is not operational). 
The set of state items that can only be transferred after achieving 
quiescence require a bandwidth of FC

fst,N() and CPU processing 
requirements of FC

fst,S() and  FC
fst,D(), respectively on the source and 

destination nodes. 

CPU processing time is required for the preparation of the data to 
be sent and the required processing time to decode the data on the 
destination node. Therefore, the final state transfer duration (tfst) 
can be calculated, similarly to the case of tist, as follows: 

 

(5) 

3.2.3 Connections rebinding 
In the migration process, connections between services need to be 
changed according to the new location of the migrating service.  
This procedure can be performed in parallel with the final state 
transfer and it involves the exchange of messages between 2 or 
more nodes: the source, destination and, if any, other nodes whose 
services connect to the service being migrated. It mainly requires 
the exchange of messages containing the location of the new end 
points, which requires a bandwidth of βSi

reb. Therefore, assuming 
that service Si has nconSi connections with other nodes, the total 
bandwidth required to rebind all connections (βreb) is nconSi×βSi

reb. 
The time required internally by each service to change the 
connection end point addresses is considered negligible. 
The exchanged messages can also be used to withdraw all 
connected services from the passive state. Therefore, the rebinding 
time (trbind) is given by: 

 (6) 

Since the number of exchanged message can be high, but with a 
small payload, its transmission is performed by the communication 
server assigned for control messages. 

3.2.4 Service restart 
The final subphase, which starts at the end of both the connection 
rebinding and final state transfer subphases, is responsible for the 
restart of the service on the destination node. All code and state 
must already be on the destination node and all necessary 
operations for the installation of the service (if required) have been 
completed. After being started the service re-establishes its internal 
state using the state items previously transferred and enters full 
operation. This operation is performed by the service using its 
scheduling budget (CD

Si, TD
Si), and therefore the time required for 

service restart is given by: 

 (7) 

where FC
fst,S() is the p.d.f. of the CPU requirements for service 

restart. 

3.2.5 Total delay of the Blackout phase 
During this phase, all transactions involving the migrating service 
are stopped, thus leading to a blackout period (tblk). On a real-time 
system this time is particularly important since it influences the 
timeliness of the distributed application. Therefore, the total 
duration of the Blackout phase is given by: 

 (8) 



 

Since the final state transfer and the rebinding of connections can 
be executed in parallel, then we use the function  
to determine the maximum of both subphases.  
As discussed previously, the Quiescence Achieving subphase might 
be eliminated if the system is supported by adequate mobility 
management facilities. The rebinding process is based on a simple 
exchange of messages and on the reconfiguration of transmission 
and receptions ports. The service restart is an operation with a small 
overhead. But, the final transfer subphase delay varies with the size 
of the data being transferred. Particularly, when the state size is 
high, strategies like the ones proposed in [12] can be used in order 
to reduce tfst. Such strategies enable the implementation of partial 
blocking and non-blocking approach on service calls for a 
migrating service.  

4. Mobility framework Architecture 
A Mobility Framework, which enables the mobility of services on 
the Android Operating system, has been developed [9]. The 
framework will used to demonstrate the use of the proposed model 
on real scenarios.  
The framework is implemented as an Android service, which takes 
care of service migration to and from another node, at the same 
time it interacts with the operating system Resource Manager in 
order to determine if the QoS requirements of the service can be 
supported.  
The Android operating system is used both due to its open source 
nature to its innovative architecture. Although its use to support 
real-time applications is still debatable [15] it nevertheless provides 
a suitable architecture for quality of service-aware applications in 
ubiquitous, embedded systems [16]. 
The core services provided by the framework are the: Discovery 
Manager, Package Manager, State Manager and Execution 
Manager. Additionally, the framework also relies on a QoS 
Manager module that is responsible for assuring that QoS 
requirements of each service can be meet. Figure 3 depicts the main 
modules of the framework. 

 
Figure 3 – Mobility framework 

The Discovery Manager module is designed to discover neighbour 
devices on a local network and advertise the host device 
capabilities. Advertise messages contain information about the 
applications and services installed, their associated Intents 

interfaces and QoS requirements. Originally, Android intents 
provide the means for the reutilization of functionalities 
implemented by other application installed in the same device. 
Therefore, the Discovery Manager provides a standard mechanism, 
for each node, to obtain information about installed services and 
about the availability of resources in neighbour devices. It also 
keeps track of node and service disconnections from the network.  
The Package Manager is used to install, uninstall and transfer the 
code of Android services, which are contained in APKs files. This 
module is also responsible for the interaction with the QoS 
Manager in order to request specific QoS levels for the service 
being handled. Therefore, it is the responsibility of the QoS 
Manager to accept or reject service installations, particularly if the 
QoS required level cannot be guaranteed.  
The State Manager handles both the initial and final state transfer 
operations in a flexible way, based on the state items paradigm. 
The Execution Manager allows launching services on a host device 
or on a remote node through the exchange of Android Intents that 
allow the programming of transparent applications (in relation to 
the distribution). In this implementation an Intent resolution 
procedure, based on the data collected by the Discovery Manager, 
determines if the Intent can be run locally or if it must be redirected 
to the node, where the service is running.    
The QoS Manager administers the system resources, either locally, 
on a node, or in a distributed environment. It also encapsulates the 
functionalities of high level QoS control frameworks, like the one 
defined in [4]. Consequently, this module can interact with our 
framework conveying orders for the deployment of services in the 
distributed system.  

5. Conclusions and Future Work 
In recent years, many real-time systems have become open to 
unpredictable operating environments where both system workload 
and platform may vary significantly at run time. As such, the set of 
applications to be executed and their aggregate resource and timing 
requirements are unknown until runtime but, still, a timely answer 
to events must be provided in order to guarantee a desired level of 
performance. 
In this context, a distributed execution of resource intensive 
applications among neighbour nodes seems a promising solution to 
address the increasingly complex demands on resources and 
desirable performance. 
This paper proposed a generic model for code mobility in soft real-
time systems, where applications are constituted by interconnected 
distributed services. 
The main consequence of mobility to the running application is that 
it might result on a temporary degradation on the provided quality 
of service, due to the consequent blackout period. We state that it is 
up to the application programmer to determine the amount of 
degradation that can be supported by the application. 
As such, this work gives the system designer the necessary tools to 
perform a statistical timing analysis on the execution of the 
mobility mechanisms and to determine the most appropriate 
parameters of the mobility framework components, either in 
relation to the local (CPU) or to network resources.  
The proposed model divides the mobility mechanism in two 
phases, thus allowing a reduction on the time during which a 
service is inaccessible (the Preparatory phase is not considered). 



 

This work can leverage future research in the field of code mobility 
and service update in distributed real-time systems. The proposed 
analysis can support the development and evaluation of suitable 
mobility mechanisms. Future work will focus on the use of the state 
items paradigm to propose new state transfer algorithms.  
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