
On the Use of Code Mobility Mechanisms in Real-Time
Systems

Luis Lino Ferreira
CISTER Research Centre / School of Engineering of

the Polytechnic Institute of Porto
Porto, Portugal

llf@isep.ipp.pt

Luís Nogueira
CISTER Research Centre / School of Engineering of

the Polytechnic Institute of Porto
Porto, Portugal

lmn@isep.ipp.pt

ABSTRACT
Applications with soft real-time requirements can benefit from code
mobility mechanisms, as long as those mechanisms support the
timing and Quality of Service requirements of applications. In this
paper, a generic model for code mobility mechanisms is presented.
The proposed model gives system designers the necessary tools to
perform a statistical timing analysis on the execution of the
mobility mechanisms that can be used to determine the impact of
code mobility in distributed real-time applications.

Keywords
Real-time systems, distributed embedded systems, mobile systems,
code mobility, quality of service.

1. INTRODUCTION
Real-time systems are increasingly shifting from a set of small,
local applications to powerful, resource-hungry, open distributed
applications [4]. By the very nature of open real-time systems, the
availability of resources is unknown beforehand and service
provisioning can only be determined dynamically as new
applications arrive to the system. Consequently, there is an
increasing demand for supporting distributed applications with the
flexibility to offload parts of their computations to neighbour or “in
the cloud” nodes due to local resource scarcity, while ensuring the
real-time behaviour of these applications, both during execution
and during reconfiguration, after mobility of code has occurred.

Therefore, open real-time distributed systems must provide
applications the support to: i) use services provided by remote
components; ii) move part(s) of the application’s code to remote
nodes; and ii) guarantee real-time behaviour. The first requirement
can be supported by a service-based infrastructure [4], to easily and
transparently interconnect local and remote parts of an application.
The second requirement can be supported by code mobility
frameworks, allowing the installation and execution of parts of an
application in remote nodes [9]. Finally, a real-time resource
manager can support the third requirement. A well-established
solution is to use capacity reserves. This has been proved to be
successful in improving the response times of soft real-time tasks
while preserving all hard real-time constraints, both for CPU [3]
and network [2] scheduling.

1.1 Related work
Although not widely studied, a few solutions have already been
proposed to analyse the impact of code mobility on the real-time
requirements of applications.
In [11], the authors propose and experimentally characterise the
behaviour of a hard real-time framework that supports the

migration of tasks between nodes. However, the work does not
propose a mathematical model that enables system designers to
account for the impact of the mobility protocol on the overall
timing behaviour of applications.
A strategy for minimising the impact of code mobility in a
hierarchical preemptive fixed priority scheduling system for Real-
Time Java is proposed in [10]. The authors mainly determine the
points in time at which the migration process should be started,
which guarantees that the deadlines of tasks are met and that the
migration process is executed between consecutive evocations of a
migratable task.
Statefull services require the transfer of state, whose duration
depends on the length of the data being transferred. However,
during this period of time no transactions can be executed on that
service (known as blackout time). However, such determination is
only possible in systems with a well-known and controlled timing
behaviour. Therefore, in [12], the authors tackled the problem of
minimising the blackout time by proposing a partial blocking and a
non-blocking approach for state transfer, which are capable of
providing real-time guarantees.
Nevertheless, none of these works focus on the mobility
mechanism itself. Such mobility mechanisms should be supported
by a mobility framework that enables the runtime relocation of
services in response to reconfiguration/update events (e.g., the
system might reconfigure itself due to the disappearance of a node
involved in a computation).
As an example, consider running a video game on a mobile device
that has offloaded parts of its computations to neighbour devices.
Reconfiguration in such a distributed cooperative execution might
be required if one of the nodes, currently running one of game’s
components, is no longer capable of outputting the required QoS. In
such case, the component can be migrated to another node able to
supply the required QoS. Ideally, such change should be executed
seamlessly, i.e. the game delays should (preferably) be
unnoticeable.
Examples of works that tackle the specific problem of selecting the
new distributed configuration are [4] and [1]. The former allows the
determination of a distributed configuration that maximises the
satisfaction of the user’s QoS preferences among a set of allowed
QoS levels. The latter tries to fulfil the same goals, but each service
is only allowed to specify a single QoS level. However, a
mechanism to determine the impact of code mobility in distributed
real-time applications is still missing.

1.2 Contributions and paper structure
Service mobility in a distributed execution environment is a
complex operation that evolves through several phases, including

sending the code and state to the destination node and rebinding
connections between components. Additionally, resources must be
explicitly reserved on the destination node, prior to the start of the
mobility process. Due to its complexity, we propose that a Mobility
Management framework (represented in Figure 1 by Mx) should
control the mobility of code between nodes of a distributed system.
This paper focuses on the model and timing analysis for a generic
code mobility mechanism for distributed soft real-time applications.
The proposed model is generic enough, helping the system designer
to define the most appropriate parameters for the mobility
management modules and to determine the feasibility of the timing
constrains imposed on applications, including mobility and
reconfiguration events.
The remainder of the paper is organised as follows. Section II
defines the generic model for the distributed applications and for
the mobility mechanism. Section III discusses and analyses the
code mobility phases and their timings. The main consequence of
the mobility mechanism is the introduction of a bounded
inaccessibility period during which one of the application’s services
is not available. The proposed analysis allows computing the
adequate resources required by the mobility framework to
guarantee the timeliness of the application. Finally, Section IV
discusses the model provided in the paper and presents some
conclusions

2. System Model

2.1 Module components
This work applies to soft real-time applications composed by a set
of interconnected components, each supplying some service, either
in the same local node, but particularly when components are
distributed among several nodes. The model considers the system
to be composed of a set of N nodes {H1, ..., HN} and a set of M
services {S1, …, SM}. Services are interconnected through links. lx,y
characterises a connection between services Sx and Sy, (Figure 1).
Each service and each link has a set of real-time requirements that
are out of the scope of this paper (a detailed discussion can be
found in [4]).
Each node runs a Mobility Management module Mx, where x is the
index of the node. Each module Mx can be connected to other
Mobility Management modules My through a network connection,
lmx,my.

Figure 1. System Model

As depicted in Figure 1, an operation mS5
H3→H4 represents the

mobility of service S5 between nodes H3 and H4. In such case, H3 is
denoted as the source node and H4 is denoted as the destination
node. Link l’7,6 represents the connection that has to be established

after the mobility operation is completed (rebinding).
Consequently, connection l7,6 will have to be safely deleted prior to
l’7,6 becomes operational. By safely, we mean that no messages
should be lost or delivered to wrong nodes. This operation implies
offloading the code of S5, its data state, and rebinding its
connections, all within timing constraints.

2.2 Resource management
It is assumed that access to the system’s resources can be modelled
as a set of isolated servers, either related to CPU [3] or network [2]
scheduling. Each of these servers is characterised by its maximum
reserved capacity (Qi) that can be used during a period (Ti); at the
end of this period the capacity is replenished. Other CPU
schedulers can also be used, like the Capacity Sharing and Stealing
scheduler (CSS) proposed in [13]. For the network scheduling, any
scheduling algorithm with similar characteristics can also be used,
like the ones based on the Flexible Time-Triggered approach [14].
Based on this guarantees, it is possible to determine services’
average response time using the formulations proposed in [3]:

 (1)

where Cavg
i represents the average execution time of task Ti and

FC(x) is the cumulative distribution function (c.d.f.) of the task’s
execution time. In the remainder of the paper, we will use the
notation R(Qi, Ti, FC

i()) to represent Equation (1).

2.3 Mobility Management Framework
We assume the existence of a modular Mobility Management
framework in each node, similar to the one proposed in [9].
These mobility management modules have CPU and networking
servers assigned to them, guaranteeing the timing requirements of
its operations. Servers associated with the CPU offer a capacity of
CF over a period TF. Network resources are split between two
channels, one for bulky data transfer and another for the exchange
of short control messages. The first has a capacity of Bdata and a
period of Tdata while the second has a capacity of Bctrl and a period
of Tctrl. The main advantage of using these two channels is that we
can guarantee small response time for control messages, but for
larger data transfer we are able to make the transfer with small
overhead.

2.4 Service’s internal state
In the proposed model, services are able to split their internal state
into different State Items, representing different variables, different
objects or combinations of both. It is up to the service to define
how state items are configured. The state of a service is thus a set
of state items defined exclusively by the service, where a State Item
(SISi

p) is only associated to a service Si, is defined as a tuple:

IDSi
p univocally identifies this State Item and BSi

p is the bandwidth
required for the transfer of this state item. Some state items are
created during the service initialisation and are not changed
subsequently, while others are updated regularly when service calls
are executed. Therefore, state items are divided in two groups: one

S1

S2

S3 S4

S6

S5

S'5

H2
H3

H1 l1,6

mS5
 H3→H4

l7,6

l1,2

l2,3 l2,4

l6,1

l’7,6

M M

M2 M3

H3

that can be migrated during the normal operation of the service
(Static Sate Items) and another that can only be migrated if there
are no ongoing service calls (Dynamic State Items).
 Based on the model exposed in this section, Section III shows how
it is possible to devise a timing model for a generic mobility
mechanism.

3. Code Mobility Timing model
Service mobility can be split in two main phases: Preparatory and
Blackout phases. During the Preparatory phase, the migrating
service continues operational in the source node. This phase is
further divided into three subphases: mobility decision, code
shipping, and initial state transfer. During the Blackout phase, the
service is totally inaccessible to others. It includes the subphases:
state transfer, connections rebinding, and service restart. Some of
the subphases are executed serially while others can be executed in
parallel. Figure 2 depicts a timeline containing an example of a
mobility procedure. A detailed description and analysis of each step
is given in the following subsections. In this analysis, for the sake
of simplicity, we assume that no other service mobility operation
occurs during the complete procedure and that a higher-level
resource control framework assures such control.

Figure 2 – Mobility-related timings

3.1 Preparatory Phase

3.1.1 Decision process
The start of service mobility (mobility triggering event) results
from a decision by the application (currently using the service) or
by request from an external entity (the user, another application or
specific framework). As an example, in Figure 2, the triggering
event is received from another node.
State changes can also trigger service mobility whenever a user
requests the execution of an application that can only be admitted
into the system if the system is reconfigured by migrating some
services of previously admitted applications to neighbour nodes. As
an example, consider that a user decides to play an mp3 file in its
mobile device, having to migrate part of a local application to a
neighbour notebook.
Note that migration can only be allowed if there is a feasible system
configuration that allows the service to continue operating within
its required QoS levels. Algorithms such as those provided by the
Prism [1] or CooperatES [4] frameworks take a high-level
approach, finding a solution for the distribution of the application
services between nodes in a way that maximises a global utility
function and, simultaneously, guarantees enough resources (CPU,
network, memory, etc) for every admitted service. While the former
assumes just one possible QoS level to the application, the latter

assumes that each service can work with multiple QoS levels, each
one with a different utility value to the overall system.
Additionally, the algorithms proposed in [4] are capable of
generating a system configuration in a bounded amount of time.
These algorithms are able to use a global view of the system state
or can simply use a partial view of the system, e.g. if the node
computing a decision only has access to a limited number of nodes.
We should point out that the algorithms proposed in [1] and [2] do
not take into account the cost introduced by systems
reconfiguration and particularly code mobility.

3.1.2 Code shipping
After finding a new distributed solution, the source node informs
the destination node of the QoS requirements for the service being
migrated. The destination node can then make all necessary local
confirmations on the feasibility of receiving the service.
Then, the service code is coded (e.g. for data serialisation) for
transmission on the source node, shipped through the network, and
decoded on the destination node (e.g. by using a deserialisation
method).
The bandwidth required to transfer the code is equal to βcode, a
constant, since the code size is not expected to vary during transit.
Therefore, the average time required for the transmission of code
(tcode) can be calculated by:

(2)

FC
code,S() and FC

code,D() are the c.d.f. of the execution time required
by the framework, on the source and destination nodes,
respectively.

3.1.3 Initial state transfer
We assume that a set of Static State Items (e.g. configuration data)
can be transferred prior to the quiescence of the service on the
source node. After the transfer of the state items, the destination
node acknowledges its reception. Consequently, the delay
associated with the initial state transfer is given by:

(3)

where FC
ist,N() is the c.p.f. for the required bandwidth, FC

ist,S() and
FC

ist,D() are the c.p.f. of the CPU processing time, on the source and
destination node, respectively.

3.1.4 Total delay of the Preparatory phase
The time required for the Preparatory phase is given by:

 (4)

where tme is the time that elapses from the event that triggered the
mobility of a service until being received by the node responsible to
determine a new system configuration. It is assumed that the new
system configuration is computed in a bounded time tdp [4].

tdp

Preparatory Phase(tprep)

Dec. IState

tist tcode

Mobility triggering
event

Code Quisc. FState

tqui tfst

Rbind

tstart

Start

Blackout Phase(tblk) t

tme

Dest.

Other
host

Source

It is important to note that, depending on the scenario, some of
these timings can be equal to zero. As an example, assume the case
where it is the user that decides to migrate its application from its
mobile device to its TV.
Most importantly, during this phase the service continues totally
operational, but the characterisation of this delay is required in
order determine the dynamic of the mobility procedure.

3.2 Blackout Phase

3.2.1 Quiescence achieving
Usually, in reconfiguration operations, the service to be updated
has to be in a safe state called quiescence [7]. In this state, the
service being migrated:

i) is not currently engaged in a transaction;
ii) will not initiate a new transaction;
iii) is not servicing a transaction; and
iv) no transaction has or will be initiated by other

services that require service from this service. At the
same time, all services connected with the migrating
service must go into a passive state, which requires
the fulfilling of condition i) and ii).

One initial solution to achieve quiescence has been proposed in [7],
while a less demanding solution, called tranquillity was later
proposed in [8]. Achieving quiescence requires the completion of
pending requests by a service and the knowledge of all other
services that might issue new requests. These other services must
evolve into a passive state in which they cannot evoke the service
being migrated, although they can evoke other services available in
the system. The time needed to achieve quiescence can be
determined through a timing analysis of the mechanisms proposed
in [7] or [8]. This calculation, out of the scope of this paper, is
assumed to be known and equal to tq.
We argue that achieving quiescence is not a necessary condition for
the mobility of services in a distributed system, as shown by the
implementation described in [9], if the service calls are stored by
the mobility management and delivered to the destination node
only after the completion of the mobility procedure.

3.2.2 Final state transfer
Several different approaches can be considered for state transfer:

i) transfer all state in a single bundle [10];
ii) propagate only the operations done on state items

[5];
iii) separate the state space into several groups of items,

each transferred with its own periodicity [6] or;
retransmit the state whenever it changes [12]. The mobility model
here considered adapts to these approaches.
The final state transfer is the subphase that most influences the
latencies of a service migration, due to its duration and due to the
service being in a quiescent state (it involves the transfer of
Dynamic State Items which can only maintain consistency if the
service is not operational).
The set of state items that can only be transferred after achieving
quiescence require a bandwidth of FC

fst,N() and CPU processing
requirements of FC

fst,S() and FC
fst,D(), respectively on the source and

destination nodes.

CPU processing time is required for the preparation of the data to
be sent and the required processing time to decode the data on the
destination node. Therefore, the final state transfer duration (tfst)
can be calculated, similarly to the case of tist, as follows:

(5)

3.2.3 Connections rebinding
In the migration process, connections between services need to be
changed according to the new location of the migrating service.
This procedure can be performed in parallel with the final state
transfer and it involves the exchange of messages between 2 or
more nodes: the source, destination and, if any, other nodes whose
services connect to the service being migrated. It mainly requires
the exchange of messages containing the location of the new end
points, which requires a bandwidth of βSi

reb. Therefore, assuming
that service Si has nconSi connections with other nodes, the total
bandwidth required to rebind all connections (βreb) is nconSi×βSi

reb.
The time required internally by each service to change the
connection end point addresses is considered negligible.
The exchanged messages can also be used to withdraw all
connected services from the passive state. Therefore, the rebinding
time (trbind) is given by:

 (6)

Since the number of exchanged message can be high, but with a
small payload, its transmission is performed by the communication
server assigned for control messages.

3.2.4 Service restart
The final subphase, which starts at the end of both the connection
rebinding and final state transfer subphases, is responsible for the
restart of the service on the destination node. All code and state
must already be on the destination node and all necessary
operations for the installation of the service (if required) have been
completed. After being started the service re-establishes its internal
state using the state items previously transferred and enters full
operation. This operation is performed by the service using its
scheduling budget (CD

Si, TD
Si), and therefore the time required for

service restart is given by:

 (7)

where FC
fst,S() is the p.d.f. of the CPU requirements for service

restart.

3.2.5 Total delay of the Blackout phase
During this phase, all transactions involving the migrating service
are stopped, thus leading to a blackout period (tblk). On a real-time
system this time is particularly important since it influences the
timeliness of the distributed application. Therefore, the total
duration of the Blackout phase is given by:

 (8)

Since the final state transfer and the rebinding of connections can
be executed in parallel, then we use the function
to determine the maximum of both subphases.
As discussed previously, the Quiescence Achieving subphase might
be eliminated if the system is supported by adequate mobility
management facilities. The rebinding process is based on a simple
exchange of messages and on the reconfiguration of transmission
and receptions ports. The service restart is an operation with a small
overhead. But, the final transfer subphase delay varies with the size
of the data being transferred. Particularly, when the state size is
high, strategies like the ones proposed in [12] can be used in order
to reduce tfst. Such strategies enable the implementation of partial
blocking and non-blocking approach on service calls for a
migrating service.

4. Mobility framework Architecture
A Mobility Framework, which enables the mobility of services on
the Android Operating system, has been developed [9]. The
framework will used to demonstrate the use of the proposed model
on real scenarios.
The framework is implemented as an Android service, which takes
care of service migration to and from another node, at the same
time it interacts with the operating system Resource Manager in
order to determine if the QoS requirements of the service can be
supported.
The Android operating system is used both due to its open source
nature to its innovative architecture. Although its use to support
real-time applications is still debatable [15] it nevertheless provides
a suitable architecture for quality of service-aware applications in
ubiquitous, embedded systems [16].
The core services provided by the framework are the: Discovery
Manager, Package Manager, State Manager and Execution
Manager. Additionally, the framework also relies on a QoS
Manager module that is responsible for assuring that QoS
requirements of each service can be meet. Figure 3 depicts the main
modules of the framework.

Figure 3 – Mobility framework

The Discovery Manager module is designed to discover neighbour
devices on a local network and advertise the host device
capabilities. Advertise messages contain information about the
applications and services installed, their associated Intents

interfaces and QoS requirements. Originally, Android intents
provide the means for the reutilization of functionalities
implemented by other application installed in the same device.
Therefore, the Discovery Manager provides a standard mechanism,
for each node, to obtain information about installed services and
about the availability of resources in neighbour devices. It also
keeps track of node and service disconnections from the network.
The Package Manager is used to install, uninstall and transfer the
code of Android services, which are contained in APKs files. This
module is also responsible for the interaction with the QoS
Manager in order to request specific QoS levels for the service
being handled. Therefore, it is the responsibility of the QoS
Manager to accept or reject service installations, particularly if the
QoS required level cannot be guaranteed.
The State Manager handles both the initial and final state transfer
operations in a flexible way, based on the state items paradigm.
The Execution Manager allows launching services on a host device
or on a remote node through the exchange of Android Intents that
allow the programming of transparent applications (in relation to
the distribution). In this implementation an Intent resolution
procedure, based on the data collected by the Discovery Manager,
determines if the Intent can be run locally or if it must be redirected
to the node, where the service is running.
The QoS Manager administers the system resources, either locally,
on a node, or in a distributed environment. It also encapsulates the
functionalities of high level QoS control frameworks, like the one
defined in [4]. Consequently, this module can interact with our
framework conveying orders for the deployment of services in the
distributed system.

5. Conclusions and Future Work
In recent years, many real-time systems have become open to
unpredictable operating environments where both system workload
and platform may vary significantly at run time. As such, the set of
applications to be executed and their aggregate resource and timing
requirements are unknown until runtime but, still, a timely answer
to events must be provided in order to guarantee a desired level of
performance.
In this context, a distributed execution of resource intensive
applications among neighbour nodes seems a promising solution to
address the increasingly complex demands on resources and
desirable performance.
This paper proposed a generic model for code mobility in soft real-
time systems, where applications are constituted by interconnected
distributed services.
The main consequence of mobility to the running application is that
it might result on a temporary degradation on the provided quality
of service, due to the consequent blackout period. We state that it is
up to the application programmer to determine the amount of
degradation that can be supported by the application.
As such, this work gives the system designer the necessary tools to
perform a statistical timing analysis on the execution of the
mobility mechanisms and to determine the most appropriate
parameters of the mobility framework components, either in
relation to the local (CPU) or to network resources.
The proposed model divides the mobility mechanism in two
phases, thus allowing a reduction on the time during which a
service is inaccessible (the Preparatory phase is not considered).

This work can leverage future research in the field of code mobility
and service update in distributed real-time systems. The proposed
analysis can support the development and evaluation of suitable
mobility mechanisms. Future work will focus on the use of the state
items paradigm to propose new state transfer algorithms.

REFERENCES
[1] S. Malek, G. Edwards, Y. Brun, H. Tajalli, J. Garcia, I. Krka,

N. Medvidovic, M. Mikic-Rakic, G. Sukhatme, "An
Architecture-Driven Software Mobility Framework," Journal
of Systems and Software, Vol. 83 Issue 6, June, 2010, pp 972-
989.

[2] T. Nolte and K. Lin, “Distributed Real-time System Design
using CBS-based End-to-end Scheduling,” in Proc. of the 9th
International conference on Parallel and Distributed Systems,
pp. 355 – 360, 2002.

[3] L. Abeni, G. Buttazzo, “Integrating multimedia applications in
hard realtime systems”, in Proceedings of the 19th IEEE Real-
Time Systems Symposium, Madrid, Spain, 1998, p. 4.

[4] L. Nogueira and L. Pinho, "Time-bounded Distributed QoS-
Aware Service Configuration in Heterogeneous Cooperative
Environments", in Journal of Parallel and Distributed
Computing, Vol. 69, Issue 6, June 2009, pp. 491-507.

[5] D. Bourges-Waldegg, Y. Duponchel, M. Graf and M. Moser,
"The fluid computing middleware: bringing application
fluidity to the mobile Internet", in Proc. of the 2005
Symposium on Applications and the Internet, pp. 54- 63,
2005.

[6] D. Preuveneers and Y. Berbers, “Context-driven migration
and diffusion of pervasive services on the OSGi framework”,
in International Journal of Autonomous and Adaptive
Communications Systems, Vol. 3, No. 1, pp. 33-22, 2010.

[7] J. Kramer and J. Magee, “The Evolving Philosophers
Problem: Dynamic Change Management”, in IEEE Trans. on
Software Engineering, Vol. 16, Issue 11 (Nov. 1990), pp.
1293-1306.

[8] Y. Vandewoude, P. Ebraert, Y. Berbers and T. D'Hondt, “An
alternative to Quiescence: Tranquility”, in Proc. of the 22nd

IEEE Int. Conf. on Software Maintenance, Washington, DC,
(Sep. , 2006), pp. 73-82.

[9] J. Gonçalves, L. Ferreira, L. Pinho and G. Silva, “Handling
Mobility on a QoS-Aware Service-based Framework for
Mobile Systems”, in Proc. of the 8th IEEE International
Conference on Embedded and Ubiquitous Computing (EUC
2010), Hong Kong, December 2010, to be published.

[10] M. ALRahmawy, A. Wellings, “A model for real time
mobility based on the RTSJ,” in Proc. of the 5th international
Workshop on Java Technologies For Real-Time and
Embedded Systems (Vienna, Austria, Sep. 2007), vol. 231.
ACM, New York, NY, pp. 155-164.

[11] B. K. Choi, S. Rho, R. Bettati, "Fast software component
migration for applications survivability in distributed real-time
systems," in Proc. of the 7th Object-Oriented Real-Time
Distributed Computing, Vienna, Austria, May 2004, pp.269-
276.

[12] E. Schneider, “A Middleware Approach for Dynamic Real-
Time Software Reconfiguration on Distributed Embedded
Systems”, PhD Thesis, Université Louis Pasteur – Strasbourg,
2004.

[13] Nogueira, L., Pinho, L., "A Capacity Sharing and Stealing
Strategy for Open Real-time Systems", Published in Journal of
Systems Architecture, Volume 56, Issues 4-6, April-June
2010, pp. 163-179.

[14] P. Pedreiras, P. Gai, L. Almeida, G. Buttazzo, “FTT-ethernet:
A flexible real-time communication protocol that supports
dynamic QoS management on ethernet-based systems”, IEEE
Transactions on Industrial Informatics, vol. 1, no. 3, p. 162-
172, August 2005.

[15] Maia, C., Nogueira, L., Pinho, L., “Evaluating Android OS for
Embedded Real-Time Systems”, Proceedings of the 6th
International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT 2010), Brussels,
Belgium, 2010, pp. 63-70.

[16] Maia, C., Nogueira, L, Pinho, L., “Cooperative embedded
application in Android Environments”, Submitted for
publication on the 8th International Workshop on Java
Technologies for Real-time and Embedded Systems - JTRES
2010.

