
Waveperf : A Benchmark Generator for Performance
Evaluation

Joffrey Kriegel, Florian Broekaert
Thales Communications and Security

Paris, France
{joffrey.kriegel,

florian.broekaert}@thalesgroup.com

Alain Pegatoquet, Michel Auguin
University of Nice Sophia-Antipolis

Sophia-Antipolis, France
{alain.pegatoquet,

michel.auguin}@unice.fr

ABSTRACT

Multi-core processors are more and more present in the em-
bedded and real-time world. This paper introduces a code
generator software applied to the benchmarking of embed-
ded platforms. This solution creates an application runnable
on embedded multicore platform and compliant with both
POSIX or Xenomai interface. Running the application out-
puts an execution trace for each thread of the benchmark.
It is also used to check the interruption latency and the pre-
emption of real-time platforms.

Categories and Subject Descriptors

D.4.8 [Performance]: Measurements

General Terms

Evaluation, Performance, Multi-core

Keywords

Multi-core, performance evaluation, code generator, bench-
mark

1. INTRODUCTION
With the increasing number of commercial embedded plat-

forms, the need for a standard operating system has emerged.
Linux distributions are more and more used in embedded
systems. It becomes therefore important to test both the
computing-power and real-time behaviour of this operating
system. Benchmarks [1] are commonly used for that pur-
pose. They allow testing the performance of a new platform
as well as checking if a platform is powerful enough for the
target software to be run. However, current benchmarks [2]
[3] rather give a performance index than really testing com-
plex real-time multi-threaded applications. For general par-
allel systems, a number of benchmark suites are available
such as SPLASH-2 [7] and PARSEC [5]. However, to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EWiLi ’12 Lorient, FRANCE
.

best of our knowledge there is few open source benchmark
suite that specifically targets parallel embedded systems.

Some recent works [4] have implemented parallelism in
standard open-source benchmarks, so that the performance
of multi-core platforms can be estimated. In the mean-
time, commercial benchmarks [1] have also implemented
multi-core benchmark. Multibench assess the relative per-
formance of multi-core platforms while [6] proposes a frame-
work for writing parallel and real-time benchmarks in JAVA
language. But testing new platforms is rarely done with
a Java Virtual Machine. More often, only Linux with RT
patch, or Xenomai are used for the first tests.

Another approach to evaluate real-time scheduling is to
use simulators such as Cheddar [9] or Storm [10]. But in
that case the main objective is to test the real platform.

The objective of this paper is to introduce a benchmark
generator for evaluating the performance (in term of com-
puting but also in term of interrupts latencies) of a multi-
core platform using Linux and/or Xenomai. We also aim
to rapidly build specific benchmarks similar to the target
software to implement.

The section 2 presents the generator, the different compo-
nents as well as examples of standard used functions. The
section 3 presents results obtained using this methodology.

2. THE BENCHMARK GENERATOR
This methodology consists in a benchmarking software

generator tool based on an application model created by the
end user. The tool measures the tasks execution duration
and is able to monitor the execution scheduling. Thanks to
this, the user can then validate a software model and ver-
ify the performance of this model on the targeted hardware
platform. So, the real-time constraints are analyzed ensur-
ing that the tasks respect their execution time. Different
software architecture models can be evaluated to explore the
hardware architecture performance. As the generated code
is POSIX compliant, it is possible to execute it on hardware
platforms using this norm. Of course, the generated code
can be used on multi-core platforms to execute tasks in par-
allel. The CPU-affinity can be either static or dynamic.

2.1 Description
An executable C++ code can be generated from a speci-

fication using configuration text files. A configuration file is
required for each software block and also for the architecture
top level description. Configurations files are split into three
distinct parts:

• Component: describes the external view of a block

through input and output signals definition. As an
example, Listing 1 shows a definition for the mac com-
ponent of a radio benchmark application. Provides
and uses keywords respectively define input and out-
put signals for that component. In this example two
inputs and one output are created for this component.
In the following, all the parts of this component are
described.

component mac {
prov ides Runnable upper sap 1 ;
prov ides Runnable upper sap 2 ;
uses Runnable l ower sap 0 ;

} ;

Listing 1: An example illustrating the Component

definition for the radio benchmark.

• Behavior: defines the behavior of a block when an in-
put signal is received. For that purpose, a state num-
ber (if a state machine is defined), the output signal
and its corresponding number of activation must be
specified. As an example, Listing 2 describes the be-
havior definition of the mac component previously de-
fined (mac behaviour). This definition indicates that
each time the upper sap 1 signal is received, no output
signal will be generated, but each time upper sap 2 sig-
nal is received, a lower sap 0 signal is generated once.
For this block behavioral description, no state machine
is required. This is expressed by the (1) statement
which means that only one state is possible. The fol-
lowing parameters (equal to 1 for both output signals)
˜indicate the number of times output signals will be
generated. This feature allows defining multi-rate sys-
tem. A second example is given for a more complex

behaviour mac behaviour o f mac {
upper sap 1 . run {

(1) 0 { none . none }
}
upper sap 2 . run {

(1) 1 { l ower sap 0 . run }
}

} ;

Listing 2: An example illustrating part of the

Behaviour definition for the mac component.

behavior. Listing 3 describes a possible behavior of
the phy rx component. In this example, a variable
is instantiated and then initialized (counter). A state
machine is also created with only one state (SA).

• Characteristics: defines the CPU processing time or
the number of operations to execute when an input
signal is received. For instance, Listing 4 depicts the
processing time characteristics that corresponds to the
behavior of the component. This is achieved by in-
dicating “Timing in ms” after the characteristics key-
word. This listing shows how timing can be defined
on input signal reception and before output signal ac-
tivation. The (1) statement means that only one state
is possible. Then, for upper sap 1, 0.2 indicates the

behaviour phy rx behaviour o f phy rx {
var { int counter ; } ;
i n i t { counter = 0 ; } ;
s t a t e { SA } ;
i n i t i a l s t a t e { SA } ;

t i c k s amp l e s i n . run {
(1) SA −[(t h i s −>counter < 10)]−>

SA 0 { none . none } ! { t h i s −>counter++; }
(2) SA −[(t h i s −>counter == 10)]−>

SA 1 { f rame out . run } !
{ t h i s −>counter = 0 ; }

}
} ;

Listing 3: An example illustrating part of the

Behaviour definition for the phy rx component.

required execution time expressed in millisecond (ms).
For the signal upper sap 2, 0.2ms are also required,
but after sending the output signal (as seen before),
the component has to compute again during 0.04ms.
So, it indicates the processing time required after out-
put signals activation.

c h a r a c t e r i s t i c s (Timing in ms) mac characs
o f mac behaviour {

upper sap 1 . run {
(1) { 0 .2 }

}
upper sap 2 . run {

(1) { 0 .2 0 .04 }
}

} ;

Listing 4: An example illustrating the

Characteristics definition of the mac component.

Architecture files define the way blocks are connected. Af-
ter having included blocks configuration files, blocks must be
instantiated in order to declare a behavior and characteris-
tics for each block. Then, connections between blocks must
be specified through input/output signals. The Listing 5
depicts the top level architecture file for the H.264 applica-
tion. As shown, all required blocks are instantiated using
the “component instance” keyword. As an example, “main”
is an instance of the “main behaviour” with reference to its
CPU processing time “main timing characs” previously de-
fined.

i n c lude r lc manager . txt ;
i n c lude mac . txt ;
i n c lude phy tx . txt ;

component instance r l c manager behav iour
r lc manager r l c manager charac s ;

component instance mac behaviour mac
mac characs ;

component instance phy tx behaviour phy tx
phy tx characs ;

Listing 5: An example illustrating the

system software architecture definition for a H.264

application.

In the architecture file, it is also possible to implement

timers for the application. Listing 6 shows an implemen-
tation of a timer having a 500.000ns period and beginning
500.000ns after receiving a “start” command. Each timer
has an output named “tick” which can be connected to any
other component. Timers are widely used for designing real
time applications.

component instance Timer impl phy timer t imer
;

c on f i g u r a t i o n phy timer−>
c on f i g u r e t ime r s p e c and s c h ed f i f o (0 ,
500000 , 0 , 500000 , true , 10) ;

connect ion (synchronous) phy t imer to phy tx
phy timer . t i c k phy tx . t i c k ;

Listing 6: An example illustrating the instantiation

of a timer.

In order to test non-deterministic behaviors (Interruptions
not timed), an ethernet port can be defined to activate a
thread. This thread listens to the ethernet connection and
wakes up when something from the LAN is coming (for ex-
ample a ping to the platform IP address). Listing 7 de-
picts how to an ethernet component, an ethernet sensor
“Raw ip interface” and a connection between them. Note
that the number of bytes received is outputted at the end of
the benchmark. A timer can therefore be used to create ran-

i n c lude eth . txt ;

component instance e the rne t behav iour
e t h i n s t e th e rn e t t im ing cha ra c s ;

component instance Raw ip in t e r f a c e
e th dev i c e i p i n t e r f a c e ;

c on f i g u r a t i o n eth dev i ce−>
c o n f i g u r e p r i o r i t y a n d s c h e d f i f o (5 ,
t rue) ;

connect ion (synchronous) t imer connec t i on 1
e th dev i c e . data out e t h i n s t . r x f r om io ;

Listing 7: An example illustrating the instantiation

of an IP interface.

dom behavior, since a thread can be activated at any time.
Another feature that can be described in this architecture
file is the connection (dependency) between threads. These
connections can be either synchronous or asynchronous. A
synchronous connection is blocking for a thread (A in our
example) that starts the execution of another thread (e.g.
thread B). As a consequence both threads are executed on
the same CPU. The behavior of a synchronous connection
is therefore similar to a function call. A thread inherits the
priority from its father thread. In another hand, an asyn-
chronous connection allows the parallel execution of threads.
Figure 2 illustrates this parallel execution. As it can be seen,
a FIFO must be used between two threads (A and B in our
example). The thread A will first copy data for thread B
into the FIFO and then continue its own execution. The
thread B can then take the data and process them in paral-
lel. When an asynchronous connection is set, it is possible
to configure the new threads with priority.
In order to get estimations for multi-core based platforms,
a new parameter has been added. This parameter (“con-

after(p)

before(q)

after(q)

before(p)

p q

Figure 1: Synchronous connexion between thread A

and B.

qp

before(p) before(q)

after(p) after(q)

Figure 2: Asynchronous connexion between thread

A and B.

figure affinity”) allows the designer (or a future automated
tool) to choose the processing unit (CPU) where the thread
will be executed. So far, the CPU allocation is performed
statically, i.e. a thread is assigned to a CPU and cannot
migrate. If the CPU affinity is not set, the thread can mi-
grate (thanks to the OS scheduler) on any CPU. However,
the CPU activity will be unknown in the execution trace.
The C++ code generated from this specification can be ex-
ecuted on any platform respecting the POSIX standard, in
order to verify for instance the right scheduling of tasks or
that real-time constraints are respected. The next section
introduces the generated code and useful functions.

2.2 What is generated ?
As already mentioned, waveperf is able to generate Posix

or native Xenomai standard code. C++ objects are created
for each component in the system. The generated compo-
nents are the same for Posix or Xenomai standard. The
main difference is in the thread and timer creation. A li-
brary is created for both Posix and Xenomai use. In these
libraries, the implementation of Characteristics parts, inter-
action between components, and timers can be found. First,
let us see the Xenomai native implementation :

• For asynchronous connection, at startup of the bench-
mark, the generator uses “rt task create()” then
“rt task start()”and finally creates a semaphore to sus-
pend the thread with“rt sem create()”. When the con-
nection is activated by another thread, the semaphore
sends “rt sem v()” and the thread is unblocked.

• For timer instantiation, the“rt task set periodic()”func-
tion is used to create a timer with a period of X-
nanoseconds.

• For “execution time” Characteristics, the method con-
sists in making a huge amount of loops during the
benchmark initialization, and then to check the time
required for each loop. Thus, when a call is done for

an “execution time”, the right number of loop is per-
formed. The calibration is done with “rt timer read()”
to get the number of loops duration.

Similarly, the POSIX implementation is done as described
below:

• The asynchronous connections are created with
“pthread create()”and“pthread attr setschedparam()”
for setting the priority. A “sem post()” is used to un-
lock the thread when needed.

• “timer settime()” and “timer create()” are respectively
used to set the period and create a timer.

• The benchmark generator uses “gettimeofday()” in or-
der to get the number of loops duration.

As a conclusion, only a few number of functions are needed
(about 6) to implement the generator for a new OS (Vx-
Works, RTAI, ...) or standard (such as POSIX).

3. RESULTS

3.1 Interruption analysis
One of the main objectives of the benchmark generator is

to test platform real-time performance in case of interrup-
tions or preemptions. The framework is able to generate an
application for the following configurations:

• Linux Posix standard

• Linux Posix with Xenomai

• Xenomai native driver

In order to test interruptions impacts on (real-time) em-
bedded Linux, an application model of a radio communi-
cation has been created. Three tasks are implemented with
different priorities. The task having the highest priority cor-
responds to the simulation of the physical layer (PHY). A
timer has been implemented to simulate an activation of
the PHY task at a 2000Hz frequency. Then, a second task
simulates the medium access layer (MAC) with a 100Hz fre-
quency. The third task, having the lowest priority, is the
input buffer from the Ethernet stack (Fig.3). To ensure a
correct behavior of the future application, the PHY thread
must not be interrupted by another thread and must be per-
fectly periodic (regular).

Figure 3: Radio benchmark simplified description.

This example of application model has been done for a
mono-core platform to make sure that all threads are exe-
cuted on the same processor.
As a consequence, this benchmark has been first gener-

ated with a Posix interface and used on an embedded Linux
2.6.26. The kernel is configured with high resolution timers.

Figure 4: Posix implementation.

The Fig. 4 depicts an execution trace of the radio bench-
mark tasks. The PHY task (on top of the Fig. 4) has the
highest priority level and should tick at a 2000Hz frequency.
However, it can be observed that the PHY task execution
is not regular. This is due to the other threads execution.
A first analysis of that problem could be that the standard
Linux is not good enough for our real-time needs. Actually,
this kind of problem can also be observed using a POSIX in-
terface with the xenomai patched kernel. Therefore, a xeno-
mai native application has then been generated to check if
native interfaces have a better behavior.

Figure 5: Xenomai native implementation.

Fig. 5 represents the behavior of the generated application
using a xenomai native implementation. As it can be seen,
right now the PHY thread has a fully regular behavior as it
is not perturbed by the execution of other threads. Neither
the MAC layer timer nor the inputs from the ethernet port
modify the behavior.

This framework allows the user to model different appli-
cation test cases very easily and to generate the related code
for a set of standard interface (Linux Posix, Xenomai Posix,
Xenomai Native). The generated application is able to de-
tect interruption issues (either due to the OS or the inter-
face) in the embedded platform.

3.2 Performance analysis
Another objective of our benchmark generator is to evalu-

ate the performance of a CPU. Each component can execute
one of the three different “characteristics” :

• A number of Dhrystone instructions: the processor ex-
ecutes an amount of Dhrystone instructions.

• An active wait: the processor executes instructions
during an amount of time.

• A passive wait: The processor sleeps during an amount
of time.

The number of instructions is mainly used for estimating the
performance of a platform. It can also be used to determine

if a processor is able to respect the execution constraints of
an application. In [8] for instance, authors are able to deter-
mine the number of instructions of an application without
any profiling. Authors show that they can extract the num-
ber of instructions of a software radio application as well as
its complexity and its data rate. The active wait is used if
the actual execution time of a component is known a pri-
ori, or if only the interruptions are tested. The passive wait
(sleep) is used to model, for example, the latency between
the data transmission on the radio interface and the recep-
tion of input data.
As output, each benchmark provides an execution trace

exhibiting the CPU load for each processor as well as each
block activity (Fig.6). Performance can thus be measured
and problems, such as a real-time constraints violations or
CPU overload, can be easily identified.

Figure 6: Output of H.264 decoder model on a dual-

core.

Platform Real Application Benchmark Model error
name Application (%)

With filter
OMAP3 @ 600MHz 8.9 FPS 9.73 FPS 9.7

Without filter
OMAP3 @ 600MHz 19.3 FPS 21.2 FPS 9.8
Man’s month to

develop application 6 0.05 (1 day)

Table 1: Comparison between Auto-generated

benchmark and real H.264 decoder application.

Different kinds of benchmark have been modeled using our
generator. As an example, a H.264 video decoder (Table1),
a Software Define Radio Physical layer and a GSM sensing
application. The generator is able to generate benchmarks
for different operating systems such as Linux, LynxOS or
Xenomai, and for all the platforms supporting these OSes.
For example, we have generated benchmarks that can be
executed on an ARM Cortex-A8 (monocore), ARM Cortex-
A9, Intel x86 and Freescale QorIQ (multi-core).

4. CONCLUSION
This paper have presented a benchmark generator that

can rapidly evaluate the performance of a new platform.
Moreover, this generator can be used to compare different

platforms performance (even if the real software is not avail-
able yet), or to determine if a platform is able to respect the
application performance requirements (thanks to the num-
ber of Dhrystone instruction characteristic). It can also
model a new software architecture that needs to be tested on
a platform. For example, different settings of task priorities
can be tested as well as new computing models in the gener-
ated threads (to add for instance some cache miss). Finally,
an interesting feature is that our tool can easily generate
an application model with different operating system imple-
mentations (standard Posix, Native Xenomai).

Future works will be focused on generating benchmark for
more types of OS (VxWorks for example) as well as adding
new execution characteristics for the components.

5. REFERENCES
[1] J.A. Poovey, T.M. Conte, M. Levy, S. Gal-On - “A

Benchmark Characterization of the EEMBC
Benchmark Suite” IEEE Micro, Volume : 29, Issue:5,
Sept.-Oct. 2009

[2] S. Cho and Y. Kim - “Linux BYTEmark Benchmarks:
A Performance Comparison of Embedded Mobile
Processors”, IEEE The 9th International Conference on
Advanced Communication Technology, Feb. 2007

[3] M. R. Guthaus, J. S. Pingenberg, D. Emst, T. M.
Austin, T. Mudge, R. B. Brown - MiBench: A free,
commercially representative embedded benchmark
suite, WWC-4. IEEE International Workshop on
Workload Characterization, 2001

[4] S.M.Z. Iqbal, Y. Liang, and H. Grahn - “ParMiBench
- An Open-Source Benchmark for Embedded
Multiprocessor Systems”, IEEE Computer Architecture
Letters, VOL. 9, NO. 2, July-December 2010

[5] C. Bienia, S. Kumar, J.P. Singh, and K. Li - “The
PARSEC Benchmark Suite: Characterization and
Architectural Implications”, Proc. of the 17th Int’l
Conf. on Parallel Architectures and Compilation
Techniques, pp. 72-81, 2008.

[6] V. Olaru, A. Hangan, Gh. Sebestyen RTSJMcBench -
“a Framework for Writing Parallel Benchmarks for
Real-Time Java on Multi-Core Architectures”, IEEE
International Conference on Automation Quality and
Testing Robotics (AQTR), 2010

[7] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta - “The SPLASH-2 programs: characterization
and methodological considerations”, Proc. of the 22nd
Int’l Symp. on Computer Architecture, pp. 24-36, 1995.

[8] J. Neel, P. Robert, J.H. Reed - “a Formal Methodology
for Estimating the Feasible Processor Solution Space
for a Software Radio”, Proceeding of the SDR 05
Technical Conference and Product Exposition, 2005

[9] K. Pradheep Kumar,A.P. Shanthi - “Multicore Real
Time Scheduling Using Fuzzified Priority and
Non-uniform Laxity”, International Conference on
Complex, Intelligent and Software Intensive Systems
(CISIS), 2010

[10] R. Urunuela, A. Deplanche, Y. Trinquet - “STORM
a simulation tool for real-time multiprocessor
scheduling evaluation ”, IEEE Conference on Emerging
Technologies and Factory Automation (ETFA), 2010

	Introduction
	The benchmark generator
	Description
	What is generated ?

	Results
	Interruption analysis
	Performance analysis

	Conclusion
	References

