
Linux on FPGA Platforms - Control Software to Connect
Custom Peripherals

Moritz Kretz
Institute of Computer Engineering of the

University of Heidelberg
B6, 26

68131 Mannheim, Germany
kretz@stud.uni-heidelberg.de

Andreas Kugel
Institute of Computer Engineering of the

University of Heidelberg
B6, 26

68131 Mannheim, Germany
andreas.kugel@ziti.uni-heidelberg.de

ABSTRACT
Accessing custom hardware peripherals from a soft-CPU re-
alized on FPGA fabric is a common task. We use a Virtex-5
FPGA with a MicroBlaze soft-CPU running a standard Li-
nux kernel as the core of our embedded system. In order to
enable processes on the Linux system to communicate with
custom peripherals on the FPGA a device driver is imple-
mented to take advantage of the fast simplex link (FSL) bus
and the resulting performance regarding throughput and la-
tency is measured.

1. INTRODUCTION
In current large scale physics experiments like ATLAS [2]
FPGAs are commonly used in the read-out chain of the de-
tector, for example for buffering or data formatting ([6] [1, p.
24ff]). In the case of the ATLAS pixel detector, the FPGAs
on the read-out driver cards (ROD, [3]) are themselves em-
bedded in a landscape of other components like DSPs. A
single board computer (SBC) running Linux controls the
ROD cards that are placed in a VME crate.
Further up the data acquisition chain commodity comput-
ers are used for buffering and event building/filtering, also
running a common Linux distribution1.

It is desirable to have a unified software environment for
most of the numerous hardware devices being used across the
experiment, as this would simplify software development, al-
low for flexible deployment of functionality and reduce de-
bugging efforts. As Linux is the de facto standard for scien-
tific computing we investigate the use of a standard kernel
on an FPGA to integrate custom hardware peripherals into
a common software environment.
One possible way to communicate with hardware from the
Linux environment (for example for setting or getting regis-
ter values) is by mapping physical memory from /dev/mem
to userspace addresses. Another possibility is specific to the

1http://www.scientificlinux.org

Figure 1: Fast Simplex Link peripheral [9]

MicroBlaze soft-CPU introduced in the next section: a bus
interface can be used to transfer data between CPU and pe-
ripherals. To access this bus from userspace a device driver
needs to be implemented.

2. THE MICROBLAZE SOFT-CPU
The MicroBlaze is a 32 bit RISC-architecture soft-CPU de-
veloped by Xilinx for use on their FPGA devices. It can be
heavily customized to the needs of the target application by
configuring its properties such as instruction and data cache
sizes, use of a memory management unit, use of a floating
point unit etc. To complete the usefulness of the final em-
bedded system, IP cores like an interrupt controller, memory
controller, ethernet core or custom designed peripherals can
be added. These peripherals could include co-processor-like
hardware, that accelerates specific time-consuming opera-
tions, or interfaces to other hardware components connected
to the FPGA. They are then connected to the MicroBlaze
with either the Processor Local Bus (PLB), more recently
the Advanced eXtensible Interface (AXI), or - as in this work
- the FSL. As of 2009 the Linux vanilla kernel supports the
MicroBlaze architecture out of the box.

2.1 FSL Interface
Compared to other buses such as the On Chip Peripheral
Bus (OPB) the fast simplex link (FSL) is a simple method
to connect the MicroBlaze to hardware peripherals (or even
to other MicroBlaze instances). It provides a uni-directional
point-to-point link between the master (transmitter) and the
slave (receiver). Therefore one needs two FSL instances for
bidirectional communication - for example to send back the
result of a calculation that was performed in hardware2. The

2Streamlink as it is being used in the MicroBlaze configura-
tion wizard refers to two FSL instances, with the MicroBlaze
being the master on one instance and the slave on the other.
Later on we might refer to a stream link simply as an FSL.

FSL is implemented as a FIFO buffer that either works in
asynchronous or synchronous mode, depending on its con-
figuration. There are more configuration options for the IP
core such as

• FIFO depth (ranging from 1 to 8192words — 16 in
this implementation)

• bus width (1 bit to 32 bits - if connected to a Micro-
Blaze, the bus width is always 32 bits as the Micro-
Blaze registers are 32 bits wide

• location of the FIFO implementation (LUT-RAM or
BRAM, LUT-RAM in this implementation)

Figure 1 shows the block diagram of the FSL. The signals
FSL M Write and FSL M Read are used to control writ-
ing to and reading from the FIFO, while FSL M Full and
FSL S Exists are asserted to indicate when the FIFO is full
or has valid data to be read by the slave. These signals can
later be used to generate interrupts needed by the Linux
device driver.

The relevant assembler instructions for reading from and
writing to the FSL are nput and nget [8, p. 169f, p. 142f].
The blocking variants put and get will stall the CPU un-
til data can be written to (i.e. the FIFO is not full) or read
from (i.e. data is available) the corresponding FSL interface,
while the non-blocking versions will set the carry bit of the
status register to 0, if the read or write operation was suc-
cessful. The dynamic instructions nputd and ngetd allow
to determine the FSL interface at runtime by looking it up
from a register. All instructions accessing an FSL interface
need to be executed in privileged mode (kernel mode).

2.2 Embedded System Setup
We use the the Xilinx ML506 Virtex-5 development plat-
form3 for our test setup. A vanilla Linux Kernel (2.6.37) is
employed. The embedded system consists of one MicroBlaze
instance in the following configuration: 125MHz clock, bar-
rel shifter, 32 bit multiplier, 256 byte instruction and data
cache with 8 word cache lines, virtual memory manage-
ment and 2 memory protection zones, debug intereface, FSL
stream link interfaces.

We use several peripherals, the noteworthy ones being

• interrupt controller for handling interrupts

• timer

• UART for serial communication

• DDR2-RAM controller to access 256MB of memory

• ethernet MAC for networking support

Figure 2 gives an overview of the major peripherals and the
busses used in the embedded system.

3http://www.xilinx.com/products/devkits/HW-V5-
ML506-UNI-G.htm

Figure 2: The embedded system with the peripher-
als centered around the MicroBlaze CPU.

3. FSL DEVICE DRIVER
In order to communicate with the FSL from userspace, we
have to supply a device driver that takes care of data trans-
fers and provides a convenient interface for the userspace
processes accessing the FSL.

For userspace processes the FSL device looks like a file
(flagged by the filesystem as a device node), supporting
open, close, read and write system calls, a subset of the file
operations specified in the POSIX standard [5]. The file op-
erations are implemented in the driver module, reading data
from userspace and passing it to the FSL, while also reading
from the FSL when there is incoming data and then writing
it to userspace. As the kernel module cannot directly ac-
cess userspace memory, the functions copy_from_user and
copy_to_user are being used for that purpose (get_user
and put_user being simpler, but faster alternatives).

The non-blocking variants immediately return to the user-
space program once the FSL FIFO is full (write operation)
or no more data can be read from the FSL - i.e. the FIFO
is empty (read operation).
For the blocking read and write functionality we do not re-
turn to the calling application if an FSL operation fails, but
wait until it can be performed. There are different concepts
for realizing that kind of behavior, mainly polling (busy-
waiting) or an interrupt based approach. While polling is a
simple and effective method for achieving the desired behav-
ior, it is also not very efficient compared to a solution with
interrupts, due to massive CPU overhead and we therefore
decided to implement the blocking variant with interrupts.

It is important to note that the non-blocking instructions
nputd and ngetd are used throughout the whole implemen-
tation - even for the blocking read and write variants. The
blocking instructions would stall the MicroBlaze completely
until the FSL read/write can be performed and not give the
Linux scheduler the chance to put the calling process to sleep
and give CPU-time to another process.

5 10 50 100 500 1000 5000 50000

0

20

40

60

80

100

120

140

160

 Con!guration 1

 Con!guration 2

 Con!guration 3

S
p

e
e

d
 (

M
b

it
/s

)

32 bit integers

Write Operations

5 10 50 100 500 1000 5000 50000

0

20

40

60

80

100

120

140

160

Read Operations

 Con!guration 1

 Con!guration 2

S
p

e
e

d
 (

M
b

it
/s

)

32 bit integers

Figure 3: Throughput of FSL read and write oper-
ations for different implementations of the driver

3.1 Driver Performance
As one is interested to deliver a good performance for FSL
access, we have to understand the different effects that have
an impact on throughput and latency. The MicroBlaze runs
at 125MHz and is therefore theoretically able to perform
125MIPS which is equal to a maximum throughput of
4Gbit/s (125MHz x 32 bit, assuming one FSL read/write
operation each clock cycle). Nonetheless this is only a theo-
retical value to get an idea of the upper bound on through-
put. It further is important to note that the CPU is part
of the data-path and therefore presumed to be the limiting
performance factor.

Throughput
A test program that generates different write and read pat-
terns for FSL access is used to assess the throughput perfor-
mance of the system. It takes two arguments S and N: first
the amount of data S to be written or read (in terms of 32 bit
integers) and second the number of iterations performed over
the whole array N). The program opens the device file, reads
(or writes) S data words N times, and finally closes the file
again.

5 10 50 100 500 1000 5000 50000

0

25

50

75

100

125

150

175

200

 Cache 1

 Cache 2

S
p

e
e

d
 (

M
b

it
/s

)

32 bit integers

Figure 4: Write performance for two cache configu-
rations of the MicroBlaze

Figure 3 shows the throughput for different values of S for
several implementations of the non-blocking write/read func-
tions (the values of N were chosen in the range of 1000 to
250000 resulting in a total runtime between 10 and 35 sec-
onds per data point).

Write performance was assessed for three different imple-
mentations. Configuration 1 uses an internal kernel mod-
ule buffer and the copy_from_user function. In configu-
ration 2 the get_user function is used as opposed to the
copy_from_user function in configuration 1. It only copies
single words from userspace memory, but this is unprob-
lematic as this value is directly written to the link. Con-
figuration 3 employs the faster __get_user function, but we
manually need to make sure the pointer to the memory loca-
tion supplied by the write system call is valid by calling the
kernel function access_ok

4 before accessing the memory.

We notice that for small amounts of data being written there
is almost no performance difference between the approaches,
suggesting that CPU time is mostly spent in the application.
As the data size increases, configuration 3 cleary outper-
forms configuration 2 (which itself is faster than configura-
tion 1). This is not unexpected for our write scenario: the
internal driver module buffer used in configuration 1 adds
additional instructions and memory accesses and does not
help for our implementation.

There seem to exist upper bounds on throughput for larger
data sizes, which are mainly caused by two limiting factors:
CPU speed and memory access latency. CPU time at the
upper end of the data size axis will mostly be spend in the
write loop of the driver module. The write loop consists of
12 instructions yielding a maximum theoretical throughput
of 333Mbit/s and leaves little room for optimization.
Memory access on the other hand can easily be sped up by
increasing the cache sizes of the MicroBlaze (resulting in
more used resources on the FPGA) and thus reducing the
number of cache misses.

4see [4, p. 142f] for an API reference

Figure 5: Distribution of interrupt latencies for idle system and system under load

System Load Mean σ Min. Median Max. 99.9%
t1 Unloaded 1473 137 1200 1440 9415 1752
t1 Loaded 1605 612 1217 1558 20722 11754
t2 Unloaded 16425 20760 6951 8753 192346 84006
t2 Loaded 14658 26684 7159 9077 1627081 139813

Table 1: Results of the second series of latency measurements. The last column shows the latency thresholds,
for which 99.9% of the measured latencies are shorter. Units in clock cycles.

Figure 6: Latencies for a blocking FSL operation,
according to [7]

For the read operations configuration 1 uses put_user and
configuration 2 __put_user together with the access_ok

function.

Interestingly enough, configuration 1 with put_user is faster
than configuration 2, opposed to the earlier result for con-
figuration 2 of the write performance measurement. For this
we do not have a plausible explanation.
The other features of the figure are analogical to the ones of
the write measurement discussed earlier.

In Figure 4 write performance for two different cache sizes
is compared: the cache 1 configuration features 256Byte
instruction and data caches (equivalent to configuration 3 in
Figure 3), while the cache 2 configuration has two 32 kByte
caches.

First we notice the performance improvement of the larger
cache configuration not only for small values of S, but also
at the upper end of the scale. The performance improve-
ment for smaller values of S is most likely due to the in-
creased instruction cache size, while at larger data sizes the
increased data cache size pays off. We can clearly see that for
S=1000 and S=5000 the throughput is plateauing at around

200Mbit/s: cache misses are practically non-existent and
the penalty imposed by context level switches does not play
a major role anymore.

We note that for the last data point S=50000 performance
decreases again for the second configuration. The data does
not completely fit in the cache any longer and therefore we
have an increased number of cache misses. The speed differ-
ence compared to the smaller cache configuration is solely
explainable by the different instruction cache sizes.

Latency
Figure 6 illustrates the chain of events for a blocking FSL
operation. After the interrupt is generated by the FSL there
is a delay caused by hardware and the initial interrupt han-
dling of the kernel until the ISR of the driver module is
finally called. We call the time interval t1 from generation
of the interrupt until execution of the custom ISR interrupt
latency. Next, the ISR is executed and the process is woken
up again (duration t2) and the FSL operation executed - we
call the overall latency t1 + t2 preemption latency.

The two time spans t1 and t2 were measured with the help
of a custom VHDL module. In the ISR of the driver module
an FSL operation on an unused streamlink was added as the
first instruction in order to detect the call of the ISR. The
VHDL module triggers a counter on interrupt generation,
write operation to the unused FSL, and read operation on
the FSL and then writes the measured latencies to BRAMs
on the FPGA (256 kBit in total, corresponding to 16384 tu-
ples of t1 and t2). On the Linux system one process writes
data to the FSL and another one reads from the FSL (block-
ing). Our first test series was carried out on an idle system,
while for the second data series load and interrupts were gen-
erated by copying multiple files via NFS/Ethernet resulting

in a load average of >1.0 of the system.

Table 1 presents the results of the measurement of t1 and t2.
According to our sample the interrupt latency t1 lies within
a relatively small margin around the mean values of the la-
tency distributions. There are few outliers on the upper end
having almost no effect on the mean values for both mea-
surements, though. Nonetheless, the interrupt latency for
a system under load is noticeably higher than for an idle
system.
The distributions for t2 on the other hand are quite asym-
metric and scattered. The median is a good figure to assess
the expected range of values for t2 (that make up the most
part of the preemption latency). There are more outliers in
the data sets (with values up to 1.6million clock cycles, that
means over 100 times slower than the median latency) and
therefore system behavior becomes more and more unpre-
dictable under load.

Figure 5 shows the two datasets for an idle system and for
a system under load. While most data points are tightly
arranged for the unloaded system, they are more scattered
under load. Still one can make up several cluster regions
even for the loaded system that depict recurring execution
and memory access patterns.

4. CONCLUSIONS
We implemented a Linux device driver to access custom
hardware peripherals from a standard Linux kernel running
on a MicroBlaze soft-CPU. Measuring the performance of
our implementation we noticed a strong dependency of the
throughput on the cache sizes of the MicroBlaze. With a
large enough cache data rates of up to 200Mbit/s could be
achieved.
Further the driver latencies of loaded and unloaded sys-
tems were investigated - a minimum preemption latency of
65µs was observed for the unloaded system, while 99.9% of
the measured times were faster than 686µs (unloaded) and
1210µs (loaded) respectively. The latency distribution was
widely spread for both cases.

5. REFERENCES
[1] G. Aad et al. ATLAS pixel detector electronics and

sensors. J. Instrum., 3:P07007, 2008.

[2] G. Aad et al. The ATLAS Experiment at the CERN
Large Hadron Collider. J. Instrum., 3:S08003, 2008.

[3] G. Balbi et al. A PowerPC-based control system for the
read-out-driver module of the ATLAS IBL. J. Instrum.,
7(02):C02016, 2012.

[4] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux
Device Drivers. O’Reilly, 2005.

[5] IEEE. 1996 (ISO/IEC) [IEEE/ANSI Std 1003.1, 1996
Edition] Information Technology — Portable Operating
System Interface (POSIX R©) — Part 1: System
Application: Program Interface (API) [C Language].
IEEE, 1996.

[6] A. Kugel. The ATLAS ROBIN - A High Performance
Data-Acquisition Module. PhD thesis, Universität
Mannheim, 2009.

[7] P. Laurich. A comparison of hard real-time Linux
alternatives, 2004.

[8] Xilinx. MicroBlaze Processor Reference Guide, 2008.

[9] Xilinx. LogiCORE IP Fast Simplex Link (FSL) V20
Bus (v2.11c), April 2010.

