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ABSTRACT
We describe a metaprogrammed control interface and sup-
port library for network-accessible embedded systems. To-
gether, this project permits functions written in standard
C code to be exposed via a network interface expressed in
JSON. In turn, this JSON interface mates with a Python
library that provides a high-level, user-friendly, and expres-
sive development environment.

This control interface removes the need to explicitly code
interactions at the Python and network layers. As a result,
the volume of error-prone and redundant hand-written code
(e.g. for error-checking and validation) is vastly reduced.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and Embedded Systems; C.4 [Performance of
Systems]: Design Studies

General Terms
Design, Performance

Keywords
Metaprogramming, Remote Procedure Call (RPC), Embed-
ded Linux, Field-Programmable Gate Arrays (FPGAs)

1. INTRODUCTION
The McGill Cosmology Instrumentation Laboratory has

developed and supported readout electronics for mm-wave-
length telescopes. Our readout system, the Digital Fre-
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quency-domain Multiplexer (dfmux), is actively being used
in high-impact observational cosmology experiments includ-
ing EBEX [Aubin et al. 2010], PolarBear [Lee et al. 2008],
and at the South Pole Telescope [McMahon et al. 2009].
These instruments are making observations of the Cosmic
Microwave Background (CMB) radiation with unpreceden-
ted precision, unlocking new information about the origin,
growth, and ultimate fate of the universe.

The dfmux system biases and reads out bolometer arrays
using Frequency Domain Multiplexing (fmux), a task requir-
ing a large number of modulators and demodulators oper-
ating in parallel. The dfmux implements these in a Field-
Programmable Gate Array (FPGA). In addition to biasing
bolometers and reading out data, this FPGA is the primary
control interface for setting up, monitoring, and maintaining
sensors and associated electronics within the experiment.

The dfmux is well documented from physics and signal-
processing perspectives [Dobbs et al. 2007, MacDermid et al.
2009, Smecher et al. 2012]. From a software perspective, we
have shifted over the past few years from a largely hand-
written mixture of Python and C code to a base of code
that is largely self-constructing and self-documenting. This
shift, using “metaprogramming” techniques, is intended to
improve both code quality and developer efficiency. In this
paper, we describe this evolution, and describe its impacts
on the system’s quality and performance.

The extraordinary amount of relevant software makes it
difficult to provide a concise survey of related work. As a
Remote Procedure Call (RPC) interface, this work is similar
to JSON-RPC [JSON-RPC Working Group 2011]. As an
embedded platform, it owes a great deal to the collaboration
between Xilinx and PetaLogix, which has produced a solid
technical basis and supportive community for running Linux
running on Xilinx’s FPGAs.

This paper is organized as follows: in Section 2, we present
a brief description of the dfmux. (While we use the df-
mux as a motivating example throughout this work, the
same control interface is in use in our cryogenic fridge con-
troller board.) Section 3 describes the firmware stack (where
firmware is used loosely to refer to the FPGA bitstream, ker-
nel, and application code that make up a complete software
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Figure 1: Model of a frequency-multiplexed
bolometer readout. 16 bolometers are multiplexed
onto one set of wires crossing into the cryostat. A
complete deployment uses many such modules.

release for the dfmux.) We remark on the system’s perfor-
mance in Section 4, and conclude with Section 5.

2. THE DFMUX SYSTEM
In millimeter-wave bolometer-array telescopes, the detec-

tors (bolometers) operate at cryogenic temperatures. In
such systems, the wires crossing between room-temperature
and cryogenic portions of the system transmit heat conduc-
tively and place a significant load on the cooling system. For
telescopes with hundreds or thousands of bolometers, some
form of multiplexing (placing many detectors on a smaller
number of wires) is necessary to keep the cooling system
practical.

The dfmux multiplexes bolometers using frequency-domain
multiplexing. Each bolometer in this system is tuned to an
unique, narrow frequency band using an analog filter, and
is biased by a carrier signal. As the image incident on the
telescope’s focal plane changes, each bolometer behaves as
a time-varying gain, producing amplitude modulation (AM)
sidebands around each carrier frequency. The dfmux digi-
tizes and demodulates these signals, and streams the result-
ing signals across an Ethernet network.

Figure 1 shows a dfmux readout system. The dashed ver-
tical line represents the barrier between warm and cold elec-
tronics; in this model, everything to the left of this line oc-
curs within a Field-Programmable Gate Array (FPGA).

In addition to its real-time biasing and readout tasks, the
dfmux performs a variety of control interactions that con-
figure the system’s frequencies, gains, phases and control
switches; monitor the system’s health; et cetera. These in-
teractions occur via the dfmux’s software stack, which is
generally controlled using Python code typified by the fol-
lowing:

>>> import dfmux
>>> d = dfmux.Dfmux(’192.168.0.72’)
>>> d.set_mezz_power(1, power=True)
>>> d.set_fir_stage(3)
>>> d.set_frequency(frequency=690e3, units=d.HZ,
... channel=1, target=d.DEMOD, module=1)
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Figure 2: The boundaries between hardware,
FPGA logic, and software for the dfmux. Other pe-
ripherals/subsystems omitted for simplicity.

>>> d.launch_streamer(’224.168.0.1’, ’8888’)

Listing 1: Interacting with the dfmux

This Python snippet configures the dfmux to decode an
AM radio station. It powers up a dfmux’s analog mezzanine,
which contain the ADCs and DACs. Then, it configures the
output sampling rate, sets a demodulator frequency to 690
kHz, and begins multicasting data to the board’s Ethernet
port. With a suitably coupled antenna at the ADC input
and a short program on a networked PC, these 6 lines of
Python code would produce intelligible results.

In the following sections, we describe how this interaction
takes place, beginning on the board and moving up the stack
and across the network.

3. FIRMWARE/SOFTWARE STACK
Firmware development for the dfmux began in 2006, using

the FPGA vendor’s IP stack (lwIP) and lightweight kernel
(xilkernel). Beginning in 2007, we evaluated and ultimately
adopted an early version of Linux for the MicroBlaze, based
on Linux 2.4. Then, beginning in 2010, we began a paral-
lel development effort to replace the 2007-era software stack
with a more modern version based on Linux 2.6. This up-
dated stack was first released in 2011, and has since become
the recommended firmware for dfmux deployments.

Figure 2 diagrams the firmware stack, showing the bound-
aries between hardware, logic, and software. This diagram
focuses on the dfmux peripheral (which performs modulation
and demodulation), the Ethernet interface (where streamed
data are transmitted), and the external memory subsystem
(shown for context.) Each of these three examples is sup-
ported by a combination of hardware, logic, and software.

3.1 Logic-to-Software Interface
The dfmux has several custom peripherals, the main ex-

ample of which contains the synthesizer and demodulator
logic for biasing and readout of bolometers. This peripheral
synthesizes signals continuously, without ongoing interaction
with the MicroBlaze. It also reads out data continuously,
writing the results to a buffer that is formatted and flushed
to the network via the software streamer.

Typical operations with this peripheral include setting or
retrieving each synthesizer or demodulator channel’s phase,



amplitude, or frequency setting. More complex interactions
include aligning the sampling instants of multiple dfmux
boards within a crate. Where it is feasible, these opera-
tions are performed directly from userspace to hardware by
memory-mapping the peripheral directly [Corbet et al. 2005]
and without involving oversight from the kernel. This results
in a very short kernel module that implements the mmap sys-
tem call. In user-space, hardware can be directly accessed
as follows (where error-handling is omitted):

int device_fd;
struct dfmux_regs *mmap_regs;
device_fd = open("/dev/dfmux", O_RDWR);
mmap_regs = mmap(0, 4096, PROT_READ|PROT_WRITE,

MAP_SHARED, device_fd, 0);
mmap_regs->base_control = 0;

Listing 2: Direct Hardware I/O from Userspace

The last line directly accesses hardware; the first lines
are set-up and need not be called repeatedly. By avoiding
kernel-mode drivers, context switches are minimized and de-
vice interaction is much faster. In addition, the amount of
kernel-mode code to maintain drops greatly; if existing ker-
nel frameworks such as Userspace I/O (UIO) are used, there
may be no custom kernel code at all. Finally, code written
in this manner can generally be upgraded by updating a
user-space program, which can often be done on-line with-
out rebooting the board.

For peripherals with more complex interfaces (e.g. empty-
ing the readout buffer, which involves DMA and interrupts),
we rely on traditional in-kernel device drivers.

3.2 C Interface Library
A single, coherent C library provides local access to the

board’s hardware. All of the board’s interfaces (Python run-
ning locally or remotely, or the web-based interface, or local
C programs such as the data streamer) follow the same code
path through this library. Common tasks such as error han-
dling are centralized, and are thus consistent rather than
being duplicated in an ad-hoc basis for each command.

The higher-level APIs (e.g. Python) directly reflect the
API exposed by this C library. We augment each C function
with macros that permit the library to be self-describing.
For example, the following code is expanded using the tu-
ber method macro to emit an ordinary C function, a sec-
ond C wrapper that accepts and validates arguments in
JavaScript Object Notation (JSON) [Crockford 2006] form,
and a meta-data structure that describes the call’s purpose,
arguments, their defaults, and return type:

tuber_method(Dfmux, VOID, set_mezz_power,
"Set mezzanine power.",
2, ( /* 2 arguments, described below */

(INTEGER, m, NULL, "Which mezzanine?"),
(BOOLEAN, power, json_true(), "Power on?")

),
"There are two mezzanines, indexed 1 and 2."

) {
VALIDATE_MEZZANINE(m,); /* ensure m=1 || m=2 */
if(power)

self->mmap_regs->base_regs.control |= \
m==1 ? 0x8000u : 0x80000000u;

else
self->mmap_regs->base_regs.control &= \

m==1 ? ~0x8000u : ~0x80000000u;
}

Listing 3: The set mezz power function

This listing shows the only code (in Python or C) that
specifically involves setting the mezzanine power. It is typ-
ically invoked using the JSON wrapper function, which ac-
cepts and returns arguments expressed as JSON objects us-
ing the open-source Jansson [Lehtinen 2012] library. This
JSON wrapper can be called by C code, and includes auto-
matically generated argument validation and error-handling
code according to the function’s arguments.

The code and data generated by the tuber method macro
are linked into a shared library, which is used from several
contexts to invoke function calls.

In the following sections, we describe how both remote
and local Python sessions interact with this library. Al-
though we focus on Python code, the dfmux also provides
a browser-based front-end that uses JavaScript to interact
with hardware. Finally, some experiments maintain their
own C/C++ code that interacts with the board over the
network, using the same JSON interface.

3.3 Remote Python Adapter
The JSON interface described above is exposed across the

network using a webserver and FastCGI [Payne 1996] back-
end, permitting Python and JavaScript code to easily inter-
act with the board. For example, the dfmux would dispatch
any of the following JSON objects to the set mezz power
function shown above.

{ "object": "Dfmux", "method": "set_mezz_power",
"args": [ 1, true ] }

{ "object": "Dfmux", "method": "set_mezz_power",
"kwargs": { "m": 1, "power": true } }

Listing 4: Simple JSON Method Calls

To execute these calls, the Ethernet hardware must receive
a packet and pass it to the Linux network stack, which passes
it to the webserver, which passes it to the FastCGI back-
end. Once the JSON contained in the request has been
decoded and executed, and the response encoded back into
JSON, the same process repeats itself in reverse to send a
response packet. Compared to the relatively trivial bit-flips
involved in some of these calls, the overhead and latency of
this process is onerous. To improve performance, we provide
a “bulk” interface that permits a number of sequential calls
to be combined into a single request and executed together:

[ { "object": "Dfmux", "method": "set_mezz_power",
"args": [ 1 ] },

{ "object": "Dfmux", "method": "set_mezz_power",
"args": [ 2 ], "kwargs": { "power": false } } ]

Listing 5: A Bulk JSON Method Call

This JSON snippet turns mezzanines 1 on, and 2 off. It
demonstrates the use of default values (the “power” argu-
ment is missing in the first call) and mixed array/associative
arguments in the second call. This argument-passing style
closely matches Python’s semantics.

Python sessions interact with this interface using an adap-
ter class. This adapter uses Python’s introspection capabil-



ities to intercept method calls and marshal them into JSON
requests, which are invoked on the board. This Python ad-
apter contains no code specific to a particular dfmux firmware
release; instead, it queries the dfmux about what methods
are supported using the metadata described above.

The automatic interface between Python code and net-
work requests decouples Python from firmware upgrades,
and removes the need to add boilerplate code in Python
whenever C code is changed. It replaces a sprawling Python
codebase with a very short piece of generic dispatch code.

In addition to marshalling calls, the Python adapter class
includes several aids for interactive Python sessions e.g. us-
ing ipython [Pérez and Granger 2007]. These aids include
tab-completion and self-documentation via DocStrings. These
aids are implemented using the metadata stored by the tu-
ber method macro.

3.4 Local Python Adapter
For Python sessions running on the board, we have devel-

oped a Python module that provides direct access to hard-
ware. This module uses the JSON methods exported by
the tuber method macro, directly exposing the Jansson ob-
jects used by these methods to Python code, without any
serialization or deserialization.

On the Python side, introspection is again used to inter-
cept method calls and convert them into requests for the
tuber module. Since the on-board Python environment is
rarely used interactively, no effort has been invested into
tab-completion or DocString support.

4. PERFORMANCE
In this section, we remark on the system’s performance.

We focus on those design elements that are relevant for sim-
ilar systems.

4.1 Heavy or Light?
A previous incarnation of this firmware operated without

a Memory Management Unit (MMU). This led to stability
problems due to memory fragmentation. After adding an
MMU, we noted that the overhead associated with context
switches rose substantially. This increase drove us to stream-
line device interactions, by (for example) replacing kernel-
mode drivers with direct I/O from userspace. We have also
worked to minimize interrupt overhead (by maximizing the
amount of useful work accomplished by each interrupt).

After our C code is optimized to avoid context switch-
ing, performance is acceptable. However, the front-end (net-
work stack, webserver, FastCGI interface, and JSON serial-
ization/deserialization) still imposes a significant overhead
compared to the function calls themselves, which are often
as simple as setting or clearing a bit in a hardware register.

We recommend a careful evaluation of the framework that
best suits each application. For our firmware stack, it was a
logical necessity to add an MMU and accept the attendant
decrease in performance. However, the MMU exemplifies
our drift to a relatively heavyweight stack, which prioritizes
flexibility and ease of development over simplicity and per-
formance. Such a firmware stack is not always appropriate.

Heavyweight stacks also come with the risk of design mar-
ginalization, in which specific design elements (e.g. the CPU
or toolchain) make it difficult to adopt the most suitable
or widely adopted tools. For example, MicroBlaze does
not yet support the standard multi-threading library for

Linux [Drepper and Molnar 2003]. Any software that does
not work on the older and more restrictive threading library
available on MicroBlaze cannot easily be used on the dfmux.

4.2 API Unification
One of the main successes of our firmware renovation is

the unification of the Python and C APIs. Not only has this
made the Python API largely automatic, it has changed the
process of writing C code on the board from a minefield to
a relatively powerful, painless environment.

In addition to keeping C coders happy, this unification
has improved code quality. Errors in on-board code used
to be handled explicitly, at several levels (e.g. in a kernel
driver, in the C library invoking it, in a CGI interface to the
library, and finally, in the Python code calling the CGI inter-
face.) Keeping error-checking code synchronized and com-
plete across different firmware releases was a difficult and
error-prone process. Now, not only is error-checking central-
ized in C code, it is largely automated. Bugs in the JSON
interface, for example, are ultimately bugs in the headers
that define the tuber method macro, and are much more
likely to be exercised and fixed than an inconsistency in a
particular method.

4.3 Floating-Point
In a high-level API, it is difficult to avoid floating-point

quantities. For example, when setting a channel’s frequency
in Python, the following calls are equivalent:

>>> d.set_frequency(690e3, units=d.HZ,
... channel=1, target=d.DEMOD, module=1)
>>> d.set_frequency(118541097, units=d.RAW,
... channel=1, target=d.DEMOD, module=1)

Listing 6: Floating-Point Interaction

In the first case, the call specifies “human” units (Hertz);
the second case uses“machine”units (a 32-bit register value).
In both cases, this value ends up as a double-precision value
in C. (Double-precision floats can specify 32-bit signed or
unsigned values without ambiguity.)

Such an API is powerful, since it provides both high-
and low-level access to hardware through a single method.
However, since the MicroBlaze does not have a hardware
floating-point unit (FPU), any code involving these quanti-
ties is compiled into slow floating-point emulation code.

We raise two important limitations with this use of floating-
point emulation. First, casual use of floating-point emula-
tion is only acceptable for calculations that are rare. It is
not appropriate (and causes a substantial slowdown) when
repeated in a loop, e.g. when retrieving and serializing sam-
ples from the streamer.

Secondly, although a single-precision FPU is available for
MicroBlaze, commonly available C code (and large parts
of the C runtime and language) relies on double-precision
floating-point and cannot benefit from a single-precision FPU.
For example, the Jansson JSON library relies on the scan-
f/printf family of functions for string serialization and de-
serialization. These functions are variadic (i.e. accepting a
variable number of arguments). However, the C language
specifies that only double-precision floating-point quantities
are passed to variadic functions; single-precision floats are
up-casted. Probably for this reason, printf/scanf-type func-
tions do not explicitly handle single-precision values, and



any function calling them will have to contend with double-
precision arithmetic even when dealing with single-precision
data. Overall, single-precision FPUs with emulated double-
precision math is a relatively common scenario that also
applies to many ARM CPUs.

We are currently using floating-point emulation with cau-
tion, and accepting the performance impact. The CPU and
FPGA industries seem to be gradually increasing the avail-
ability of double-precision FPUs, so this issue may become
less important in the future.

5. CONCLUSIONS
In this paper, we described the control logic, firmware,

and software associated with McGill’s dfmux readout sys-
tem. We described the control interface, which generates a
JSON interface layer to C code, and exports this JSON in-
terface to Python sessions running both on- and off-board.
The control interface uses metaprogramming techniques to
automatically generate validation and interface code. Com-
pared to earlier iterations of the dfmux’s software stack, this
approach has greatly reduced the amount of code written
and maintained by hand.
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