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ABSTRACT
Smart meters can measure the electricity consumption of
a household at a fine temporal granularity. By adequately
processing this aggregated data an estimation of the con-
sumption of individual appliances can be retrieved and used
to provide novel services, such as personalized recommen-
dations on how to reduce the overall energy consumption of
the household. In this paper, we build upon existing work
in consumption data disaggregation and consider smart me-
ter data along with additional information made available
by networked sensors and household appliances. In particu-
lar, we investigate the use of ON/OFF events, which signal
when appliances have been turned on or off, to improve the
accuracy of a state-of-the art disaggregation algorithm that
uses such events along with smart meter data to estimate
the consumption of single appliances. Our results, obtained
by applying the algorithm to a publicly available dataset,
show that the accuracy of the algorithm quickly deterio-
rates as the number of available ON/OFF events decreases.
We thus suggest possible countermeasures to cope with this
limitation and to provide accurate electricity consumption
breakdowns in private households.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

1. INTRODUCTION
The energy sector is undergoing a massive paradigm shift
by reducing the dependency on fossil fuels towards an in-
creasing share of renewable energy sources. To manage in-
tegration of these highly dynamic energy sources into the
electricity network, smart meters are being installed in mil-
lions of private households worldwide [1]. A smart meter is
a sensing device that can measure electric power consump-
tion (from here on also referred to as electricity consump-
tion) and can report the collected readings at given time
intervals, e.g., every second, through a wireless or wired
communication interface. The availability of smart meter
data (possibly along with additional sensory information)
enables the design and development of novel services and
applications [10]. For instance, household inhabitants can
be provided with fine-grained data about the contribution
of individual appliances to the overall electricity consump-
tion. The availability of this information can potentially
motivate users to an overall more thrifty usage of electricity,
e.g., by inducing them to purchase more efficient devices [9,
2, 13]. Also, knowledge about the use of appliances can help

determining the occupancy state of a household and thus
enable other services, like automatic heating control [7].

Recently, several approaches that derive the consumption of
single devices by adequately processing the data collected
by a smart meter have been proposed [4, 8, 11, 5]. How-
ever, because there are many possible combinations of ap-
pliances contributing to the electricity consumption at the
same time, these centralized, single-sensor approaches usu-
ally achieve limited accuracy in real deployments [8, 11].
An alternative, fully distributed approach consists in instru-
menting all household appliances in order to measure their
individual electricity consumption. For instance, so-called
smart power outlets can be used to measure the consump-
tion signatures and report them to a central processing unit
[4]. These solutions can clearly provide a very accurate con-
sumption breakdown but they also result in high deploy-
ment and maintenance costs. A third possibility consists in
combining knowledge of the total electricity consumption,
retrieved through a smart meter, with additional sensory in-
formation like the sequences of ON/OFF events of each de-
vice [5, 6, 12].1 Clearly, the lesser the amount of additional
information that is needed to achieve a given disaggregation
accuracy, the more attractive is its use in practical settings.
Previous studies have indeed shown that the knowledge of
the total electricity consumption along with the sequence
of ON/OFF events of each appliance is sufficient to esti-
mate the consumption breakdown accurately [5]. However,
the accuracy of the estimation decreases significantly if only
partial knowledge about the sequence of ON/OFF events is
available.

In this paper, we focus on these latter hybrid approaches
and provide two main contributions. First, we evaluate the
performance of an existing state-of-the-art load disaggrega-
tion algorithm that relies on the use of ON/OFF events
along with smart meter data. In particular, we quantify
the deterioration of the algorithm’s performance in terms
of device identification accuracy as the number of collected
ON/OFF events decreases. To this end, we use a publicly
available dataset of electricity consumption data [8]. Build-
ing upon our evaluation study, we then propose a set of
mechanisms that can contribute in making the considered
load disaggregation algorithm more robust against the pres-
ence of appliances that do not provide ON/OFF events. To

1An ON/OFF event signals whether the device has been
turned on or off.



this end, cooperation between different sensors and devices
(e.g., smart meters, intelligent power outlets, light sensors)
plays a crucial role in capturing additional sensory informa-
tion, which is required to disaggregate the overall electricity
consumption and attribute it accurately to its individual
contributors.

2. RELATED WORK
Accurate device-level consumption breakdowns could eas-
ily be measured if appliances were able to autonomously
measure and report their own electricity consumption. This
would however require costly hardware enhancements of the
devices and is thus an impractical solution, especially for
cheap and old appliances. Alternatively, smart power out-
lets (such as the ones from Plugwise2) can measure devices’
electricity consumption at the “socket level”. Nonetheless,
accordingly equipping each socket of a private household
would also cause a significant cost and deployment effort.

To overcome these limitations, several authors focused on
the concept of non-intrusive load monitoring (NILM). NILM
strategies typically process the aggregated electricity con-
sumption profile [14] to estimate the corresponding device-
level consumption breakdown. For instance, Kolter et al [8]
resort to a Factorial Hidden Markov Model (FHMM) to per-
form load disaggregation. The model is trained on consump-
tion data from multiple households and when used on data
from a test household it achieves an breakdown accuracy
of 47.7%. This evaluation relies on a metric that captures
accuracy every 10 seconds, thus avoiding that errors even
out over time. Parson et al. focus on the three appliances
that consume the highest amount electricity and use Hidden
Markov Models (HMM) to guess their current state [11].
The corresponding experimental evaluation shows that re-
stricting the set of appliances leads to a consumption break-
down accuracy of 83%. Both Kolter et al.’s and Parson et
al.’s approaches rely solely on smart meter data. In the con-
text of our work, we instead aim at using also information
from other sensors – such as infrared or light sensors – and
thus trade off a slightly higher system complexity with a
corresponding increase in estimation accuracy.

Several authors have indeed already abandoned the idea
of disaggregating electricity consumption using single-point
measurements only [6, 5, 3, 12]. For instance, the ViridiScope
system [6] leverages magnetic field sensors and light sen-
sors to indirectly sense electricity consumption of appliances.
Smart meter data is only used for the purpose of sensor cal-
ibration. Within ViridiScope, uninstrumented appliances
whose consumption cannot be directly measured are de-
fined as ghost power consumers [6]. While our approach
to consumption breakdown relies on ON/OFF events of ap-
pliances as in [5], ViridiScope approximates electricity con-
sumption through indirect sensing. Furthermore, in our
work we explicitly model the influence of ghost power of the
final estimation while ViridiScope assumes that the ghost
power of non-instrumented appliances is constant and rather
small. Jung and Savvides take into account knowledge about
ON/OFF states of all appliances [5] to estimate device-level
consumption breakdowns. To evaluate their approach the
authors gathered three days of data from both a central

2www.plugwise.com

electricity meter and from sensors mounted next to the ap-
pliance’s switches that recorded ON/OFF events. On this
dataset, the consumption breakdown algorithm achieves an
accuracy of 90%. However, the algorithm assumes that com-
plete knowledge about occurring ON/OFF events is avail-
able. This assumption is unfortunately hard to meet in
real deployments. In the following section, we show that
the performance of this disaggregation algorithm decreases
significantly when ON/OFF events are recorded for only a
subset of the available appliances, instead of for all of them.
To cope with this problem, we suggest to explicitly include
ghost power in the disaggregation model.

Other approaches also leverage ON/OFF events but use dif-
ferent techniques to detect them. The ElectriSense system
[3], for example, can detect consumer electronics devices and
fluorescent lighting leveraging the fact that these appliances
use switch mode power supplies and thus generate measur-
able electromagnetic interference (EMI) during their oper-
ation. This approach, however, requires adequate (expen-
sive) hardware to measure high frequency switching events
within the household’s electrical circuit. Instead, our dis-
aggregation algorithm relies on low frequency data from an
ordinary smart meter along with ON/OFF events measured
directly at the appliance. An example of a low-cost sensor
that enables such direct measurements is provided in [12].
Placed next to the appliances to be observed – such as re-
frigerators, lights, desktop computers, or televisions – this
sensor can detect their state changes by measuring variations
in electromagnetic fields.

3. PERFORMANCE ANALYSIS OF A LOAD
DISAGGREGATION ALGORITHM

In this section we discuss the performance of a reference
algorithm to perform load disaggregation using ON/OFF
events. In particular, we quantify the deterioration in terms
of device identification accuracy as the number of collected
ON/OFF events decreases. In the following, we first elabo-
rate on the opportunity of using ON/OFF events to perform
load disaggregation and then describe in detail the reference
algorithm considered for our performance evaluation. Be-
fore presenting the final results, we also describe the dataset
that we have used for running our experiments.

3.1 Collection of ON/OFF events
The availability of smart meter data alone is often not suf-
ficient to achieve high load disaggregation accuracies [8, 11]
and the use of additional information, like the sequence
of ON/OFF events, is thus often unavoidable. Capturing
ON/OFF events is particularly interesting as it only requires
a lightweight (i.e., cheap and easy to deploy) sensing infras-
tructure [6, 5]. However, instrumenting all or most devices
within an household would still cause too high deployment
and maintenance costs. Therefore, algorithms that can cope
with partial information about ON/OFF events would sig-
nificantly increase the attractiveness of approaches based on
this load disaggregation technique.

Figure 1 exemplarily shows the sensing infrastructure that
can be used to gather ON/OFF events. The system includes
a smart meter that captures data at a frequency of 1Hz and
a number of smart power outlets (e.g., from Plugwise) that
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Figure 1: Data collection architecture

can measure and notify when a device is turned on or off.
Although the specific smart power outlets used in our ex-
periments are able to capture the actual consumption curve
of a device, we only assume the availability of a sensor that
is able to determine the operational state of the appliance.
Additional sensors may also be used to indirectly measure
ON/OFF events. For instance, a light sensor can measure
the state of a lamp while a microphone or accelerometer
can allow inferring the current state of a washing machine.
However, in order to make the collection of ON/OFF events
feasible in practical scenarios, it must be implemented as
simple, cheap, and unobtrusively as possible. Considering
the steadily growing trend towards embedding communica-
tion capabilities (like Ethernet or WiFi interfaces) in com-
mon appliances, we believe that it is reasonable to assume
that (at least a subset of) devices within a household will
be able to determine and communicate their operation sta-
tus autonomously. However, a given number of devices is
likely to remain unobservable, e.g., old or cheap appliances.
Therefore, a given amount of the total power consumption
will remain non-attributable to the actual devices causing
it. Borrowing the definition reported in [6], we refer to this
“non-attributable” power as ghost power. Unlike [6], how-
ever, we do not assume ghost power to be small and con-
stant. Instead, we include ghost power as an explicit vari-
able in our model so as to increase accuracy of the overall
consumption breakdown.

3.2 Reference disaggregation algorithm
To the best of our knowledge, Jung and Savvides’s algo-
rithm [5] is the only currently available algorithm that com-
bines smart meter data with ON/OFF events in a compre-
hensive way. It thus represents an obvious choice as a refer-
ence algorithm to analyze the performance of load disaggre-
gation approaches based on ON/OFF events.

The disaggregation algorithm of Jung and Savvides [5] solves
a linear optimization problem to estimate the contribution
of each appliance to the overall power consumption. To this
end, it maintains a trace of the total electricity consumption
as well as a state vector of active appliances. States with the
same set of active appliances are merged on the fly by av-
eraging the total power consumption and increasing a state

counter. Using this data, the algorithm computes the aver-
age consumption of each appliance by minimizing the mean
square error between the sum of estimates of all active ap-
pliances and the total electricity consumption. To improve
the estimation accuracy samples of the ON/OFF state vec-
tor that show fewer appliances in the ON state as well as
samples that occur frequently are given higher weight in the
estimation. Similarly, stationary loads are also given higher
importance, as they can be estimated more accurately. The
estimation procedure is performed over a specific time inter-
val (e.g., one hour) and then restarted, whereas estimations
from previous intervals are“remembered” for each successive
iteration.

In order to perform the experimental study presented below,
we implemented Jung and Savvides’s algorithm in Matlab.
For the sake of simplicity, our implementation does not in-
clude the above mentioned weighting for stationary loads
and we consider a single time interval only. We believe this
simplification does not affect the general validity of our con-
clusions about the robustness of the algorithm. Nonetheless,
we plan to use the original version of Jung and Savvides’s
algorithm in our future work.

3.3 REDD dataset
In order to evaluate non-intrusive load monitoring algorithms
using actual electricity consumption measurements, Kolter
et al. released the REDD dataset [8], which is available
at http://redd.csail.mit.edu. The initial release of the
dataset (version 1.0) contains electricity consumption mea-
surements from six households in the USA collected in April
and May 2011. There are approximately 20 consecutive
days of measurements available for each house. The REDD
dataset provides data from the two main phases of each
house at a granularity of one reading per second and mea-
surements from 11 to 26 individual circuits – depending on
the house – measured every 3–4 seconds. Some of the cir-
cuits contain a single appliance (e.g., a dishwasher) and thus
qualify for device-level consumption breakdown. Other cir-
cuits contain multiple appliances (e.g., lights, kitchen out-
lets), which can then only treated as a group of devices by
the consumption breakdown algorithm. The REDD dataset
represents to date one of the largest and richest publicly
available dataset of electricity consumption measurements.

3.4 Performance analysis
To evaluate the performance of Jung and Savvides’s algo-
rithm on the REDD dataset, we first extract ON/OFF events
from the electricity consumption of each individual circuit.
We then apply our simplified version of the disaggregation
algorithm on the dataset to obtain the electricity consump-
tion of each appliance.

As a second step, we analyze the estimation accuracy for
each appliance using the circuit-level electricity consump-
tion as ground truth information. Next, we investigate the
influence of ghost power on the final estimation accuracy
by selecting a single base appliance as a test device and
progressively filtering out ON/OFF events of selected appli-
ances. Clearly, this procedure does not affect the data rel-
ative to the aggregated electricity consumption. The choice
of the appliances whose ON/OFF events are removed from
the dataset is based on two strategies. The first strategy



Appliance
ON/OFF Mean Power Estimation
Events Consumption Error

Oven 2 1,991W 12.9%
Fridge 29 193W -0.9%
Dishwasher 2 552W 15%
KitchenOutlets2 11 56W -61.8%
KitchenOutlets3 4 89W 12.6%
KitchenOutlets4 2 1,436W 29.6%
Lighting 1 5 90W 39.8%
Lighting 2 5 80W 4.7%
Washer/Dryer 4 1,897W 4.7 %
Microwave 20 1,239W -4.3%
Bathroom 2 1,525W 21.2%
Total ON/OFF events: 86
Mean of relative errors: 19.8%
Relative error weighted by contribution: 14.3%

Table 1: Estimation of consumption breakdown ob-
tained by analyzing 24 hours of the REDD dataset.

removes ON/OFF events of the appliance with the highest
number of state transitions. The second strategy removes
ON/OFF events of appliances that consume a large amount
of electricity.

For the sake of simplicity and without loss of generality,
we report results obtained from the REDD data relative to
house 1 (which has a high number of individual circuits)
and to April 24, 2011 (a day that exhibits many ON/OFF
events). Table 1 shows the results obtained when applying
our implementation of Jung and Savvides’s disaggregation
algorithm to the aggregated electricity consumption data
and including all ON/OFF events. The first column lists ap-
pliances that provide ON/OFF events during the 24-hours
long observation interval. The total electricity consumption
is a result of the aggregation of the consumption of each
of these devices. The second column shows that 86 state
transitions occur during the whole time frame of 24 hours.
The column Mean Power Consumption shows the average
electricity consumption of each device during its ON phase,
and the last column denotes the relative error of the esti-
mated average consumption compared to its actual, mea-
sured value. The total relative error of 14.3% is obtained by
comparing the aggregated values of the estimation and the
actual mean electricity consumption of each appliance.

Figure 2 and Figure 3 show the resulting relative error de-
pending on the number of appliances with missing ON/OFF
events. Figure 2 illustrates the effect on the estimation er-
ror when following the first strategy by removing appliances
with the higher number of state transitions. Similarly Fig-
ure 3 shows the relative estimation error obtained by remov-
ing appliances that consume a large amount of electricity.
Both graphs illustrate that consumption from appliances
with missing ON/OFF events is virtually spread over the
rest of the appliances and thus significantly reduces accu-
racy of the estimation.

4. PROPOSED IMPROVEMENTS
The results presented in the previous section show that the
accuracy of Jung and Savvides’s disaggregation algorithm
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Figure 2: Estimation accuracy based on ghost power
of appliances with a large number of ON/OFF
events.
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Figure 3: Estimation accuracy based on ghost power
of appliances with high electricity consumption.

decreases considerably as the number of reported ON/OFF
events decreases. However, robustness against missing ON/OFF
events is required in order to make the algorithm able to
run reliably also in houses that contain unobserved appli-
ances. Unlike existing work [5, 6] we propose to explicitly
model power consumption of uninstrumented appliances (i.e.
ghost power). To this end, we integrate a virtual ghost power
consumer into Jung and Savvvides’ disaggregation model.
Acting as an “always-on” appliance it accounts for that un-
observable part of the power consumption that would have
been otherwise wrongly assigned to other appliances. Sim-
ilar to the procedure explained in Section 3.4 we apply the
extended disaggregation algorithm on the REDD dataset
and successively filter out ON/OFF events of appliances.
As Figure 4 shows (compared to Figure 2), our version of
Jung and Savvides’s disaggregation algorithm outperforms
the original version in case uninstrumented appliances are
present.

Building upon these results we believe that the accuracy can
be further improved by estimating power consumption of
non-instrumented appliances more accurately. To this end,
we plan to integrate the following mechanism into Jung and
Savvides’s algorithm: (1) Performing approximation over
time; (2) Using characteristics of the load curve; (3) Employ-
ing state information gathered from sensors or the devices
themselves; (4) Sharing consumption patterns. We describe
these mechanisms in detail below, while the experimental
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Figure 4: Improved estimation accuracy using a sim-
ple model to attribute power consumption of unob-
served appliances.

evaluation of the actual gains achieved by such measures in
terms of estimation accuracy is planned for future work.

Value of time. Over time it is possible to identify fractions
of power consumption that are caused by non-instrumented
appliances. This is done by observing specific (instrumented)
appliances and discriminating ghost power from actual changes
in the appliance’s consumption pattern with a certain prob-
ability. In particular this works well for steady-state appli-
ances, which exhibit a constant power consumption for a
given time interval.

Appliances with a constant power consumption (such as
lights) can be used as an indicator for ghost power, in partic-
ular when the total power consumption exhibits a large vari-
ability while the set of running appliances remains constant.
Observing such features allows to estimate the proportion of
non-instrumented appliances in a house. Such an estimate
then supports calibration of the ghost power estimation it-
self, which is essential as we learned from our experiments
performed on the REDD dataset.

Load curve characteristics. The consumption patterns
of many appliances exhibit characteristics such as periodicity
(e.g., cooling appliances), a certain change in power when
being switched on or off (e.g., lights, kettle), or a particular
shape of the load curve once the appliance is running. This
information, which is currently not included in Jung and
Savvides’ algorithm, could contribute to identifying ghost
power consumption as follows:

• Periodicity : Some appliances (e.g., cooling appliances)
exhibit a periodic consumption pattern that can be de-
tected in the load curve. We first derive edges from the
power consumption. In case the temporal occurence of
these edges correlates with ON/OFF events observed
from a sensor that reports such events, we assume that
the edges are caused by an appliance whose events are
reported by this sensor. Otherwise, we assume that
they are caused by an appliance that is not instru-
mented to report ON/OFF events. In this case some
part of the power consumption between these edges

can be classified as ghost power.

• Change in power consumption: Measuring the increase
in power consumption of an appliance that provides
ON/OFF events at the time it is being switched on
gives information about the device’s power consump-
tion right at the beginning of its operation. Similarly,
the decrease in power consumption when an appliance
is being switched off provides an estimate about the de-
vice’s power consumption right before being switched
off. First, this effect can be employed to estimate
ghost power that disturbs the consumption pattern
of appliances with a steady power consumption (e.g.,
a lamp). Second, ghost power caused by appliances
with a steady power consumption can be estimated by
investigating switching events of appliances that are
instrumented to report ON/OFF events.

• Shape: Over time, observing the shape of the load
curve of a device that provides ON/OFF events reveals
certain load curve characteristics. Therefore, changes
in the consumption pattern that are not caused by
observed appliances are possibly – but not necessarily
– evidence for ghost power.

States. Many household appliances exhibit a consumption
pattern that is based on the states the appliance is run-
ning through, while having a constant power consumption
throughout each state.Figure 5 compares the electric con-
sumption of a washing machine at different temperature set-
tings. Here we can distinguish between two main states –
the heating of the water and the spinning of the drum. In
order to measure the total power consumed by the wash-
ing machine accurately, knowing the time it spends in each
state provides valuable input to the algorithm. Determining
state transitions requires more sophisticated sensors than
ON/OFF sensors such as vibration sensors or even network-
connected appliances. The choice of these sensors depends
on the appliance. Employing knowledge about state transi-
tions of instrumented devices can increase accuracy in the es-
timation of the power consumption of this appliance. Hence,
it improves the accuracy of ghost power estimation and thus
the overall accuracy of the consumption breakdown.

Cooperative consumption analysis. In order to differ-
entiate between ghost power and the effects caused by instru-
mented appliances, comparing consumption patterns with
more instrumented households potentially increases accu-
racy of less instrumented households, since devices might
be identified based on their consumption pattern. Sharing
consumption patterns of individual appliances comes at the
expenses of an increased communication burden as well as
potential privacy losses. The trade-off between these costs
and the accuracy that is gained from cooperation must be
thoroughly analyzed.

Integrating and evaluating these improvements on the REDD
dataset highlights what proportion of appliances must be
instrumented to provide an electricity breakdown with high
accuracy in a real world setting. Thus it contributes to make
load disaggregation applicable in a real world environment.
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The information gained from analyzing the REDD dataset
further provides the basis for our real world deployment, in
which we collect electricity consumption information over a
longer time period.

5. CONCLUSIONS
This paper presents the preliminary design of a novel ap-
proach to obtain electricity consumption breakdowns in res-
idential settings. Our approach builds and improves upon
Jung and Savvides’s disaggregation algorithm, which relies
on smart meter data and ON/OFF event reports to achieve
a reliable consumption breakdown. We provide a quantita-
tive analysis, based on the publicly available REDD dataset,
to outline the limitations of Jung and Savvides’s algorithm.
In particular, we showed that the performance of the algo-
rithm in terms of estimation accuracy quickly decreases as
the number of missing ON/OFF events increases. Starting
from this observation, we suggest a set of possible improve-
ments, to perform disaggregation with only partial event
knowledge.

Future work includes an extensive experimental evaluation
of the proposed improvements and an analysis of what pro-
portion – and type – of appliances needs to be instrumented
in order to perform electricity consumption breakdown with
high accuracy. In addition we investigate the scenario in
which ON/OFF events are transmitted unreliably by ex-
tending the estimation algorithm to account for losses of
events.
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