
Zooming Into Radio Events by Bus Snooping

Zhitao He
Swedish Institute of Computer Science (SICS)

Kista, Sweden
zhitao@sics.se

Thiemo Voigt
Swedish Institute of Computer Science (SICS)

Kista, Sweden
thiemo@sics.se

ABSTRACT
In this position paper, we advocate the use of bus snoop-
ing to trace radio events. Highly precise and unintrusive,
the technique leads to potentially more efficient code and
enables more insightful protocol analysis than conventional
code instrumentation techniques.

1. INTRODUCTION
Communication between Cooperating Objects is typically
carried out over a multiple-layer protocol stack. The com-
munication interface resides at the bottom of the stack, and
its device driver implements packet transmission and recep-
tion routines as well as certain MAC primitives. Perfor-
mance analysis of the device driver is typically done by in-
sertion of instrumentation code, which logs API calls and
interrupt events with a timestamping function provided by
the host OS. For example, the Contiki OS’s radio driver for
the Tmote Sky platform can timestamp incoming packets
at a default precision of 2.44 ms. Due to CPU loading con-
cerns, the timestamps have a limited resolution; they also
incur extra latency in the code execution path. Further-
more, tracing interactions between a pair of communicating
motes requires accurate time synchronization, which entails
a considerable increase in communication overhead. Con-
tiki’s timesynch protocol, for example, piggybacks a 3-byte
timestamp construct to every data packet.

To alleviate both the precision constraint and the measure-
ment overhead for communication performance analysis, we
advocate an unintrusive bus snooping technique that per-
forms event tracing on the communication interface. We
attach a logic analyzer to the communication bus, which
samples the pins’ logic levels at a high rate. A timeline
of command strobes, interrupt signals, data bits, and extra
test signals can then be constructed over a test run, pro-
viding a rich amount of information to the developer for
performance analysis or debugging purposes. The ability
to simultaneously trace a set of signals, potentially selected
from a pair of communicating motes, makes it particularly

easy to detect events or event sequences triggered by proto-
col state transitions. One can zoom into a particular region
of the timeline view, either for searching an event sequence
or for gauging a code block’s processing latency. Further-
more, the logged signal traces can be exported to a data file
for advanced offline processing.

We show two use cases of our technique to highlight the
productivity enhancements to a software developer. For all
experiments, we use a USB logic analyzer 1 to snoop the
pins of a pair of Tmote Sky motes running Contiki 2.4.

2. OPTIMIZING BUS LATENCY
We analyze the bus events of a frequent elementary mote op-
eration: packet transmission. A Contiki MAC protocol sub-
mits a packet to the radio driver for transmission, by calling
a standard radio send(len, pkt) method with a packet size
parameter along with a payload pointer. The radio driver
then constructs a PHY frame by adding headers and foot-
ers around the payload, and then transmits the frame. A
merit of this generic radio send API is that implementation
details of PHY frame construction and decoding are com-
pletely abstracted away by the device driver. Whether any
performance penalty in terms of bus latency is entailed by
this layer separation requires analysis of the specific device
driver that implements the API. In general, bus latency can
be divided into two components: a marginal cost per data
unit, as a result of copying between the MCU’s packet buffer
and the radio’s frame buffer; a fixed cost per packet due
to signaling overhead. We analyze the performance of the
CC2420 driver’s radio send by snooping the control and data
commands over the SPI bus during a call to the method. A
trigger function of the logic analyzer takes us right to the
beginning of event sequence, from where we can zoom in
for precise timing analysis of the trace. Figure 1(a) shows
a 80 μs trace section captured over a transmission of a 4-
byte frame. The CSn signal is set low during each MCU
access to CC2420; The MOSI signal is updated at the ris-
ing edges of the CLK signal, indicating serially transferred
command/data bytes from the MCU to CC2420. The whole
section can be broken down visually into four bus accesses,
bounded by the three CSn spikes:

1. Issuing a command strobe to flush the TX FIFO: 0x09
in the figure.

91Saleae Logic 16 logic analyzer. Web page: http://www.
saleae.com/logic16



0x09 0x050x3E 0x3E 0x34 0x000x00 0x04

9(a) Default

0x09 0x3E 0x05 0x35 0x00 0x00 0x04

9(b) Fast

0x09 0x3E 0x05 0x35 0x00 0x00 0x04

9(c) Faster

Figure 1: SPI bus latency for transferring a 4-byte

frame. SPI clock rate = 2 MHz, sampling rate = 16

MHz

2. Writing a one-byte PHY header to the TX FIFO: 0x3E
followed by 0x05 (PHY payload size).

3. Writing 3 payload bytes to the TX FIFO: 0x3E fol-
lowed by 3 data bytes from user pointer. (2-byte CRC
checksum will be appended automatically by hardware
before transmission.)

4. Issuing a command strobe to start frame transmission:
0x04.

Step 2 and 3 issue the same 0x3E command twice, one for
writing the 1-byte PHY header and the other for writing the
3-byte payload, which results in a waste of bus bandwidth.
Despite that the redundancy might as well be detected by
careful code inspection through the CC2420 driver, our intu-
itive timeline view allows us to further measure the overhead
to sub-μs precision, which would be unattainable with soft-
ware instrumentation. By placing time markers at transition
edges of the CSn signal, which signal the beginning and the
end for each command access, we arrive at precise latencies
of a FIFO write command: the fixed cost is 13.9 μs and the
marginal cost per written byte is 6.6 μs. This means a 200%
overhead for single byte accesses in this case.

To amortize the fixed cost for a FIFO write, we take full
advantage of batch SPI transfers supported by CC2420 by
combining step 2 and 3 into a single write command. This
however obliges allocation of a single, contiguous packet
buffer for storing both the PHY header and the payload
ahead of the FIFO write. Such an optimization violates of
the original PHY layer-independent API, but yields a con-
siderable latency reduction, as shown in Figure 1(b). To
achieve ultimate bus throughput, we further combine step
1’s single-byte flush command strobe with step 2 write com-
mand into a continuous command sequence, by removing the
chip deselect/select instructions between them, as shown in
Figure 1(c). These two measures save us 20.5 μs per packet
in total, which corresponds to 82 MCU cycles or 5 bit pe-
riods. We can make similar optimizations on the receiver
path, reducing one-hop communication latency further and
maximizing throughput.

3. EVENTS PATTERN MINING
Our event analysis technique can also be applied to study of
random events, such as packet detections dependent on vary-

ing radio channel quality. Previous studies in reactive radio
jamming have exploited CC2420’s Start-of-Frame Delimiter
(SFD) detection interrupt as a triggering signal for an eaves-
dropping jammer to transmit jamming signals [1] [2]. An im-
portant limitation of any reactive jammer though is a min-
imum switching time from listening mode to transmission
mode, which sets a lower bound for the size of any jammable
packet. A standard IEEE 802.15.4 acknowledgment frame
consist of only 6 bytes, which is too short to be jammable
by existing reactive jammers based on SFD decoding.

The problem can be alleviated by reducing the switching
time, which depends on whether we can find a new trig-
gering signal that becomes available earlier than the SFD
interrupt, i.e., some sort of preamble energy indicator. Dur-
ing a search of such an indicator, we focus our attention to a
signal output by the radio receiver’s automatic gain control
(AGC) circuit. We conjecture that the frequency that the
AGC circuit updates its gain correlates somehow to changes
in the received signal strength. We configure the CCA pin of
CC2420 to output the internal signal AGC UPDATE, which
manifests as a high one 16 MHz clock cycle each time the
AGC gain is updated. The 4 MHz MCU on Tmote Sky is
too slow to capture these narrow 16 MHz spikes. We in-
stead tap a probe from our logic analyzer to the pin, thus
are able to capture occurrences of this random signal with
a precision of 0.01 μs.

Our Tmote Sky listening to an idle channel observes 11822
AGC updates in just 5 seconds. Time intervals between each
two consecutive updates range between [4.62 μs, 3.45 ms],
with a mean of 0.425 ms. The statistical distribution of the
update intervals are shown as a histogram in Figure 2(a).

Despite the high frequency of AGC updates and apparently
random intervals between them, we want to further investi-
gate whether a packet triggers any extra updates. We con-
figured another Tmote Sky to send a burst of 320 packets, at
64 pkts/s, while repeating the previous measurement on the
listening mote. The histogram in Figure 2(b) shows an in-
crease of short update intervals. If one zooms into the trace
to examine pin activities preceding each SFD interrupt, an
interesting pattern of the AGC updates can be observed:
approximately 120 μs to 160 μs before frame detection, a
burst of two or more updates occur in short intervals ranged
from 4.62 μs to 20 μs. Since this burst pattern occurs dur-
ing the known period of the 4-byte frame preamble, it might
qualify as a preamble indicator useful for frame prediction.

We set out to design and implement a high-pass filter in the
time domain that extracts bursty AGC updates from the
pool of sporadic updates. First, we export AGC and SFD
pin transition events, all timestamped at 0.01 μs precision,
from the logic analyzer program to a CSV file. We then load
the file into a MATLAB script that filters the AGC events
and attempts to match the resultant AGC update bursts
to corresponding SFD events. A match indicates success-
ful frame prediction, whereas a mismatch indicates a false
prediction. To emulate 6 different signal-to-noise ratios at
the receiver, we step down the transmission power over suc-
cessive test runs. We initially use a narrow interval filter of
just 5 μs, then repeat the tests using a 10 μs filter. Figure 3
shows that the prediction rate is close to 100% at presence



0 0.5 1 1.5 2 2.5 3 3.5
0

500

1000

1500

2000

2500

3000

3500

4000
AGC update intervals on idle channel

Interval length (ms)

C
ou

nt

9(a) Idle Channel

0 0.5 1 1.5 2 2.5 3 3.5
0

500

1000

1500

2000

2500

3000

3500

4000
AGC update intervals on bursty channel

Interval length (ms)

C
ou

nt

9(b) Bursty Channel

Figure 2: Histogram of AGC updates intervals

of a strong signal, but drops as the signal weakens, while
false predictions increase. Comparison between Figure 3(a)
and Figure 3(b) shows that the 10 μs filter yields a higher
prediction rate for weak frames, albeit with higher likelihood
of false predictions.

4. LIMITATIONS
There are a number of limitations imposed by the use of
a logic analyzer. The number of available channels caps
the number of concurrent test signals. Our 16-channel logic
analyzer thus can monitor at most four 4-wire SPI buses at
the same time. The bandwidth capacity of the logic analyzer
limits the sampling rate of each channel, which will become
an an issue if buses of higher data rates are to be snooped.
The trace length is limited by the user’s free disk space.

5. CONCLUSIONS
In this paper, we show how bus snooping can gain us new in-
sights into low level radio events. This bottom-up approach
is precise and unintrusive, compared with conventional soft-
ware instrumentation. We see potential opportunities to
extend the use of this technique for debugging and perfor-
mance analysis at higher layers.

−1 −3 −5 −7 −10 −15
0

10

20

30

40

50

60

70

80

90

100

Prediction/False Prediction Rates
5 us Filter Width

Packet Transmission Power (dBm)

%

 

 

Prediction
False Prediction

9(a)

−1 −3 −5 −7 −10 −15
0

10

20

30

40

50

60

70

80

90

100

Prediction/False Prediction Rates
10 us Filter Width

Packet Transmission Power (dBm)

%

 

 

Prediction
False Prediction

9(b)

Figure 3: The AGC update bursts can be used as

a frame predictor with a very high prediction rate,

given a strong received signal.

Acknowledgments
The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement n◦ 224282
and has been partially supported by the FP7 NoE CONET.

6. REFERENCES
[1] Wood, A., Stankovic, J., Zhou, G.: DEEJAM:

Defeating Energy Efficient Jamming in IEEE
802.15.4-based Wireless Networks. Secon (2007)

[2] He, Z., Voigt, T.: Precise Packet Loss Pattern
Generation by Intentional Interference PWSN (2011)


