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Abstract-Due to the importance of resource allocation and 
energy efficiency, this paper considers minimizing priority 
inversion and energy consumptions in the embedded real-time 
systems. While dynamic voltage scaling (DVS) is known to 
reduce dynamic power consumption, it also causes increased 
blocking time of lower priority tasks and leakage energy 
consumption due to increased execution. We proposed a 
concept of latency locking to prevent priority inversion using 
sleeping mode and define a block-free interval in which both 
DVS and leakage-aware methods can be applied. In order to 
compute the optimal sleeping time and its duration and to 
meet the timing constraints, we also propose a weighted 
directed graph (WDG) to obtain additional task information. 
By traversing WDG, task information can be updated online 
and the scheduling decisions could be done in linear time 
complexity.  

Keywords-real-time scheduling; priority ceiling protocol; 
priority inversion. 

I. INTRODUCTION 
The power-aware real-time scheduling problem has been 
well studied, relatively few work address energy-efficient 
real-time task synchronization. Most embedded real-time 
applications have shared resources in the system and 
mutually exclusive access to shared resources. On such a 
system, real-time tasks can lead to priority inversion if a 
task is blocked by a lower priority task due to non-
preemptive resource sharing. The recent related work is an 
extension of Priority Ceiling Protocol (PCP) [7] in 
frequency inheritance. Zang and Chanson [9] proposed a 
dual-speed (DS) algorithm: One is for the execution of a 
task when it is not blocked, and the other is adopted to 
execute the task in the critical section when it is blocked. 
Jejurikar and Gupta [5] computes two slowdown factor, 
which can be classified into static slowdown, computed 
offline based on task properties, and dynamic slowdown, 
computed using online task execution information. Chen et 
al. [2] proposed a DVS method using frequency locking 
concept which can be used to render energy-efficient to the 
existing real-time task synchronization protocols. The work 
which is designed with DVS capability to slowdown or 
speedup the blocked or blocking tasks in the critical section. 
These methods may receive additional priority inversion, 
and thus increase the difficulties of schedulability. Our goal 
is to propose a energy-aware task synchronization protocol, 
which can minimize the priority inversion and reduce the 
energy-consumption of the processor. The basic idea is to 
postpone the intention to the locking on resources invoked 
by lower-priority tasks, and to construct a blocking-free 

interval in which the tasks’ speed can be reduced using 
DVS. Additionally, the extended execution due to DVS 
does not increase the priority inversion. 

II. TASK MODEL 
This paper studies periodic real-time tasks that are 
independent during the runtime. Let T be the set of input 
periodic tasks, and n denotes the number of tasks. Each task 
�i is an infinite sequence of task instances, referred to as 
jobs and indexed in order of decreasing priorities. A three-
tuple �i ={Ti, Di, Ci} represents each task, where Ti is the 
period of the task, Di is the relative deadline with Di = Ti, 
and Ci denotes the worst-case execution time (WCET). The 
length of Ti is unique in order to have each task a unique 
priority index in the rate-monotonic (RM) scheduling. The 
jth invocation of task �i is denoted as Ji,j whose actual start 
and finish times are denoted as S(Ji,j) and F(Ji,j), 
respectively. Notation si,j denotes the available static slack 
time for job Ji,j. Job Ji,j could be completed early at time 
EC(i, j) during its WCET.  
All tasks are scheduled on a single processor which 
supports two modes: dormant mode and active mode. When 
the processor is switched to the dormant mode, the power-
consumption of the processor is assumed Sdorm=0 by scaling 
the static power consumption [1], while the system clock 
and chipset retain necessary functions to support motoring 
and waking up processor at right time. To execute jobs, the 
processor has to be in the active mode with speed Sactive. 
The time and power overhead required to switch the 
processor to the dormant mode can be neglected by treating 
them as a part of the overhead to turn on the processor. Let 
Esw and tsw denote the energy and time overhead, 
respectively, for switching from dormant mode to active 
mode. When the processor is idle in the active mode, the 
processor executes NOP instruction at processor speed Sidle 
for low-power consumption. Additionally, when the idle 
interval is longer than break-even time ���

����	
��
, turning it to 

the dormant mode is worthwhile. The DVS model is similar 
to those in lpWDA [6] and can be abridged here. 
We assume that semaphores are used for task 
synchronization. All tasks are assumed to be preemptive, 
while the access to the shared resources must be serialized. 
Therefore, task can be blocked by lower priority tasks. 
When a task has been granted access to a shared resource, it 
is said to be executing in its critical section [8]. The kth 
critical section of task �i is denoted as zi,k which is properly 



nested. Each task specifies the access to the shared resource 
types and the required WCETs. With the given information 
in [4], we can compute the maximum blocking time for a 
task. In the different resource synchronization protocol, 
such as PCP [7], each job might suffer from a different 
amount of blocking time from lower-priority task, due to 
access conflict. The goal of this paper is to propose an 
energy-aware real-time scheduling with task 
synchronization based on PCP, which can minimize the 
priority inversion while reducing the energy-consumption 
of the processor. We propose a data structure called 
weighted directed graph (WDG) which expresses possible 
priority inversion online. By traversing WDG, we can not 
only postpone the intention of locking on the resources 
invoked by lower-priority tasks but also construct a 
blocking-free interval to slowdown the tasks speed using 
DVS methods. 

III. MOTIVATING EXAMPLE 
Suppose that we have three jobs J1 , J2 and J3 , and two 
shared data structures protected by the binary semaphores 
z1 and z2 in the system. In accordance with PCP, the 
sequence of events is depicted in Fig. 1(a). A line at a lower 
level indicates that the corresponding job is in blocked or 
preempted by a higher-priority job while the processor 
mode is active. A line raised to a higher level denotes that 
the job is executing, and the absence of a line denotes that 
the job has not yet been initiated or has completed. A bold 
line at low level denotes that the processor has been 
switched in dormant mode. Suppose that 
� At time t0, J3 is initiated and it then locks semaphore 

z1. 
� At time t�

1, J2 is initiated and preempts J3. 
� At time t2, J2 cannot lock z1, and J3 inherits the 

priority of job J2 and resumes execution. 
� At time t3, J1 preempts J3 in the critical section of z1 

and executes its noncritical section code. 

� At time t4, J1 attempts to enter its critical section z1 
and is blocked by J3 due to priority ceiling, and J3 
inherits the priority of job J1. 

� At time t5, J3 exits its critical section z1 and returns to 
its original priority.  J1 is awakened and locks z1. 

The priority inversions are [t2, t3] and [t4, t5]. 
This research work is motivated by the significant priority 
inversion and power consumption due to unused slack time 
and context switches. The objective is to minimize the 
priority inversion while reducing energy-consumption. 
When the available static slack time (unused time in the 
WCET schedule) or dynamic slack (occurred in the early-
completed task) is larger than break-even time, the lower-
priority task intent to lock a semaphore can be postponed 
until the start time of a higher-priority task. A practical 
approach is to postpone the task execution by switching 
processor to dormant mode. During the sleeping time, 
system still has awareness of the arrival of other jobs, and 
awakes processor at proper time. The example in Fig.1(b) 
postpones the request of lower-priority task intent to a lock 
semaphore. At time t1, J3 has available slack in interval [t9, 
t10] with length longer than break-even time. When a 
system is conscious that J3 has intent to lock z1, it computes 
the upcoming start time of higher priority tasks that might 
be blocked by J3 according to PCP. In the example, J1 and 
J2 could be blocked by J3 due to z1, and the lengths of 
interval [t1, t1'] are less than the available slack. Therefore, 
processor switches to dormant mode at time t1 until the start 
time of J2. At time t1', processor becomes active and J2 
preempts J3 such that J3 is still unable to lock z1, and thus J2 
could lock z2 at time t2. However, J1 could be blocked when 
it intends to lock z1 if J2 successfully lock z2 at t2. To 
further reduce priority inversion, job J2’s intent to lock z2 
should be postponed after t3. Therefore, comparing to the 
result of Fig. 1(a), the idea eliminates all priority inversions 
in intervals [t3, t7]. 

 

Fig.1. The task synchronization of (a) primitive PCP and (b) latency locking method 

 



IV. LATENCY LOCKING PCP 
In this research work, PCP is extended with the concept of 
latency locking, referred to as LL-PCP. The idea is to do 
pre-analysis of possible priority inversion and available 
slack time in the schedule. The objective is to derive the 
best timing and duration for switching processor to dormant 
mode, and thus minimize priority inversion. To understand 
and control the sequence of intent to lock resources, tasks 
are organized as a WDG reduced from the resource 
allocation bipartite graph in [4]. Let G=(U, V, E) denote a 
bipartite graph whose partition of vertices has two subsets 
U and V. E denotes the set of edges of G, and U denote a 
task set T. Let WDG(T, A) denote a weighted directed 
graph whose vertices in T� U are arranged according to 
their task indices. For each edge eu,v�E, �u�U and zv�V, 
the set of arcs A in WDG are generated as follows 

Step1. For any pair of vertices �x,�y�U and x>y, a solid arc 
a(x, y) �A is directed from �x to �y if there exists two or 
more edges ex,v and ey,v in G where zv�V. 

Step2. For any pair of vertices �x,�w�U and x>w, a dotted 
arc a(x, w)�A is directed from �x to �w if there exists a 
vertex �y�U, w>y, and �x and �y satisfy Step1.

Step3. In WDG, for any pair of vertices with multiple arcs, 
eliminate the dotted arcs having the same blocking time as 
that of one of their solid arcs.  

Fig.(2) illustrates the graph reduction from bipartite to 
WDG. In the bipartite graph, each indirect edge is labeled 
with the time required to access the resources. Different 
from the bipartite graph, WDG has a vertex for each task 
but resources. A task �L directly blocks a higher-priority 
task �H is represented by an solid arc a(�L, �H) from task 
vertex �L to �H, while an indirect block is represented by an 
dotted arc. In Fig. 2(a), the bipartite graph is derived from 
Fig.1(a) and can be reduced to the WDG in Fig.2(b). The 
maximum priority inversion of J2 is an indirect blocking 
incurred by J3. We may label each arc by a 3-tuple, the first 
element of each 3-tuple give the actual starting time of 
higher-priority tasks and defined as S(�H), while the second 
element gives the locking time of �L on semaphore z and 
denoted as L(�L, z). The last element specifies the duration 
of the maximum priority inversion and denoted as I(�L, �H). 
The first two elements are updated during runtime while 
the third element is derived directly from the arcs in WDG. 

The example of the 3-tuple labels is illustrated in Figure 
2(b), we have the following definitions. 

 
Fig.3 An example using DVS scheduling

Definition 1. In order to prevent job JL from blocking job 
JH, the expected sleep interval (ESI) for JL is defined as 

ESIL, H=[L(JL, z), S(JH))  ���
�����

��������� . (1) 

Algorithm LL-PCP  
Input: a set of task T, a set of resources R 
(Offline part) 

1.   Reduce bipartite graph to WDG( T , A); 
2.  Compute the value of I(�L, �H) with respect to each arc a(�L, 

�H) in WDG; 
(Online part) 

On arrival of a job Ji

3. Identify a set of tasks TH containing higher priority task �H

than that of Ji; 
4. Compute the value of REW(�i, �H) for each arc a(�i, �H) in 

WDG and �H�TH; 
5. Construct a set Ai'of outgoing arcs of �i, Ai'={ a(�i, �H)| �i,H�

���
�� !"#$�

}   
6. Compute the static available slack sH for each job in TH; 
7. Compare each sH to the corresponding � value of the arcs in

Ai' ; 
8. Construct an arc set  Ai'' �  Ai' where  Ai'' ={a(�i, �x)|  sH

��x,i ,  a(�i, �x) � Ai' and �x�TH }; 
9. Search for an arc a(�i, �x) in Ai'' with the maximum value of 

REW(�i, �x) where �x�TH; 
On beginning of one of the intervals in ESIL,x 
11. Switching the processor to Sdorm until the end of the interval;
On turning the processor to the active mode at time t 
12. Schedule the highest priority job in the ready queue; On 

early-completion of a job at time t; 
13. Compute dynamic slack time due to early completion; 
On completing or beginning a job Ji at time t 
14. IF completes early THEN  

obtain dynamic slack si
d from F(Ji)–EC(Ji); 

15. Set BFI=[S(Jx), F(Jx)] according to the recently carried out 
ESIL,x; 
16. Slowdown the speed of tasks whose deadlines are earlier 

than F(Jx) using lpWDA[6]; 



where ���
�����  denotes the set of noncritical-section 

intervals of job J� in interval [L(JL, z), S(JH)). The length of 
ESIL, H denotes as 

�L, H=S(JH) L(JL, z). % &���
�����&'� ( �)� �� (2) 

Definition 2. defines the expected reduction of priority 
inversion (RPI) due to the processor sleeping in the ESIL, H. 
The value of RPI is derived from 

�L, H= I(�L, �H) �L, H .  (3) 

According to equations (1), (2) and (3), we define a reward 
function for each arc in WDG. 
Definition 3. A reward function for each arc in WDG is  

REW(�L, �H)='*+�,-+�,
.  (4) 

The reward for an arc is referred to the reduction of priority 
inversion time if the processor is switched to sleep during 
the interval ESIL, H. Whenever a new job Ji arrives, the 
value of REW(�L, �i) with respect to each arc is refreshed. 
The larger the value of REW, the longer the priority 
inversion will be avoided. For example, in Fig.2(b), the 
values of �3,1 and �3,2 are set respectively x= t3 t1 (t2 t�1) 
and y= t�1 t1, and the values of �3,1 and �3,2 are respectively 
4 x and 4 y. In accordance with equation 4, the values of 
REW(3,1) and REW(3,2) are './00  and './11  , and obviously 
REW(3,1) < REW(3,2). Assuming that available slack for �3 
is larger than the values of x and y, the proposed algorithm 
switchs the processor to sleep in the duration of [t1 t�1], and 
traverses from vertex J3 to J2. In the vertex J2, we can 
traverse from J2 to J1 by switching the processor to sleep 
mode in interval [t2 t3]. 

Definition 4. (Blocking-free interval, BFI) 
A time interval BFIt, l is said to be blocking free in the real-
time task synchronization if the interval [t, t+l] does not 
have any priority inversion. 
Lemma 1. When the time at which JL has intent to lock z is 
later than the S(JH), they do not give rise to priority 
inversion during interval [S(JH), F(JH)]. 
Proof sketch: In accordance with WDG, JH has higher 
priority than JL, as soon as JL begins after S(JH), JL cannot 
lock z until JH completes. Therefore, JH is not preempted by 
JL until the completion time of JH. 
Obviously, jobs JH and JL do not give rise to the priority 
inversion in the interval [F(JH), DH] when JH completes 
before F(JH). Therefore, when the processor sleeps in 
interval ESIL,H, the value of BFI can be derived from 

BFIt, l=[S(JH), DH]  (5) 
for all jobs JH are successors of JL in WDG. 
The purpose of BFI is to identify the jobs for saving more 
energy using DVS. The jobs whose deadlines are in the BFI 
interval can compute their available slack time to decrease 

their speed and satisfy their timing constraints. The slack 
computation such as lpWDA [6] can be applied without 
modification to our method.  An example is presented in 
Fig.3. By updating the information of arcs in WDG during 
runtime, we can traverse the WDG by following the current 
job and make decisions on switching the processor to active 
or dormant mode. 

V. CONCLUSIONS 
This work-in-progress continuously improves energy-
efficiency of real-time task synchronization with speed 
switching overhead consideration. By using DVS and 
leakage-aware techniques, we decrease not only the priority 
inversion but also energy consumption in the real-time 
systems. The objective is to minimize the priority inversion 
and reduce both dynamic and leakage energy, provided that 
the schedulability of tasks is guaranteed. By traversing the 
vertex of WDG, the scheduling decisions can be done 
efficiently during the runtime. Another characteristic is that, 
in the proposed concept, DVS does not worsen the situation 
of inevitable priority inversion. 
For further study, we shall explore an evaluation function 
that provides suggestions on how to use DVS or leakage-
aware technique during runtime. Future research and 
experiments in these areas may benefit several mobile 
system designs. 
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