
An Energy-aware Scheduling for Real-time Task Synchronization Using DVS
and Leakage-aware Methods

Da-Ren Chen
Department of Information Management, National
Taichung University of Science and Technology

Taichung, Taiwan, R.O.C.

danny@nutc.edu.tw

You-Shyang Chen
Department of Information Management,Hwa Hsia

Institute of Technology
Taipei, Taiwan, R.O.C.

ys_chen@cc.hwh.edu.tw

Abstract-Due to the importance of resource allocation and
energy efficiency, this paper considers minimizing priority
inversion and energy consumptions in the embedded real-time
systems. While dynamic voltage scaling (DVS) is known to
reduce dynamic power consumption, it also causes increased
blocking time of lower priority tasks and leakage energy
consumption due to increased execution. We proposed a
concept of latency locking to prevent priority inversion using
sleeping mode and define a block-free interval in which both
DVS and leakage-aware methods can be applied. In order to
compute the optimal sleeping time and its duration and to
meet the timing constraints, we also propose a weighted
directed graph (WDG) to obtain additional task information.
By traversing WDG, task information can be updated online
and the scheduling decisions could be done in linear time
complexity.

Keywords-real-time scheduling; priority ceiling protocol;
priority inversion.

I. INTRODUCTION
The power-aware real-time scheduling problem has been
well studied, relatively few work address energy-efficient
real-time task synchronization. Most embedded real-time
applications have shared resources in the system and
mutually exclusive access to shared resources. On such a
system, real-time tasks can lead to priority inversion if a
task is blocked by a lower priority task due to non-
preemptive resource sharing. The recent related work is an
extension of Priority Ceiling Protocol (PCP) [7] in
frequency inheritance. Zang and Chanson [9] proposed a
dual-speed (DS) algorithm: One is for the execution of a
task when it is not blocked, and the other is adopted to
execute the task in the critical section when it is blocked.
Jejurikar and Gupta [5] computes two slowdown factor,
which can be classified into static slowdown, computed
offline based on task properties, and dynamic slowdown,
computed using online task execution information. Chen et
al. [2] proposed a DVS method using frequency locking
concept which can be used to render energy-efficient to the
existing real-time task synchronization protocols. The work
which is designed with DVS capability to slowdown or
speedup the blocked or blocking tasks in the critical section.
These methods may receive additional priority inversion,
and thus increase the difficulties of schedulability. Our goal
is to propose a energy-aware task synchronization protocol,
which can minimize the priority inversion and reduce the
energy-consumption of the processor. The basic idea is to
postpone the intention to the locking on resources invoked
by lower-priority tasks, and to construct a blocking-free

interval in which the tasks’ speed can be reduced using
DVS. Additionally, the extended execution due to DVS
does not increase the priority inversion.

II. TASK MODEL
This paper studies periodic real-time tasks that are
independent during the runtime. Let T be the set of input
periodic tasks, and n denotes the number of tasks. Each task
�i is an infinite sequence of task instances, referred to as
jobs and indexed in order of decreasing priorities. A three-
tuple �i ={Ti, Di, Ci} represents each task, where Ti is the
period of the task, Di is the relative deadline with Di = Ti,
and Ci denotes the worst-case execution time (WCET). The
length of Ti is unique in order to have each task a unique
priority index in the rate-monotonic (RM) scheduling. The
jth invocation of task �i is denoted as Ji,j whose actual start
and finish times are denoted as S(Ji,j) and F(Ji,j),
respectively. Notation si,j denotes the available static slack
time for job Ji,j. Job Ji,j could be completed early at time
EC(i, j) during its WCET.
All tasks are scheduled on a single processor which
supports two modes: dormant mode and active mode. When
the processor is switched to the dormant mode, the power-
consumption of the processor is assumed Sdorm=0 by scaling
the static power consumption [1], while the system clock
and chipset retain necessary functions to support motoring
and waking up processor at right time. To execute jobs, the
processor has to be in the active mode with speed Sactive.
The time and power overhead required to switch the
processor to the dormant mode can be neglected by treating
them as a part of the overhead to turn on the processor. Let
Esw and tsw denote the energy and time overhead,
respectively, for switching from dormant mode to active
mode. When the processor is idle in the active mode, the
processor executes NOP instruction at processor speed Sidle
for low-power consumption. Additionally, when the idle
interval is longer than break-even time ���

����	
��
, turning it to

the dormant mode is worthwhile. The DVS model is similar
to those in lpWDA [6] and can be abridged here.
We assume that semaphores are used for task
synchronization. All tasks are assumed to be preemptive,
while the access to the shared resources must be serialized.
Therefore, task can be blocked by lower priority tasks.
When a task has been granted access to a shared resource, it
is said to be executing in its critical section [8]. The kth
critical section of task �i is denoted as zi,k which is properly

nested. Each task specifies the access to the shared resource
types and the required WCETs. With the given information
in [4], we can compute the maximum blocking time for a
task. In the different resource synchronization protocol,
such as PCP [7], each job might suffer from a different
amount of blocking time from lower-priority task, due to
access conflict. The goal of this paper is to propose an
energy-aware real-time scheduling with task
synchronization based on PCP, which can minimize the
priority inversion while reducing the energy-consumption
of the processor. We propose a data structure called
weighted directed graph (WDG) which expresses possible
priority inversion online. By traversing WDG, we can not
only postpone the intention of locking on the resources
invoked by lower-priority tasks but also construct a
blocking-free interval to slowdown the tasks speed using
DVS methods.

III. MOTIVATING EXAMPLE
Suppose that we have three jobs J1 , J2 and J3 , and two
shared data structures protected by the binary semaphores
z1 and z2 in the system. In accordance with PCP, the
sequence of events is depicted in Fig. 1(a). A line at a lower
level indicates that the corresponding job is in blocked or
preempted by a higher-priority job while the processor
mode is active. A line raised to a higher level denotes that
the job is executing, and the absence of a line denotes that
the job has not yet been initiated or has completed. A bold
line at low level denotes that the processor has been
switched in dormant mode. Suppose that
� At time t0, J3 is initiated and it then locks semaphore

z1.
� At time t�

1, J2 is initiated and preempts J3.
� At time t2, J2 cannot lock z1, and J3 inherits the

priority of job J2 and resumes execution.
� At time t3, J1 preempts J3 in the critical section of z1

and executes its noncritical section code.

� At time t4, J1 attempts to enter its critical section z1
and is blocked by J3 due to priority ceiling, and J3
inherits the priority of job J1.

� At time t5, J3 exits its critical section z1 and returns to
its original priority. J1 is awakened and locks z1.

The priority inversions are [t2, t3] and [t4, t5].
This research work is motivated by the significant priority
inversion and power consumption due to unused slack time
and context switches. The objective is to minimize the
priority inversion while reducing energy-consumption.
When the available static slack time (unused time in the
WCET schedule) or dynamic slack (occurred in the early-
completed task) is larger than break-even time, the lower-
priority task intent to lock a semaphore can be postponed
until the start time of a higher-priority task. A practical
approach is to postpone the task execution by switching
processor to dormant mode. During the sleeping time,
system still has awareness of the arrival of other jobs, and
awakes processor at proper time. The example in Fig.1(b)
postpones the request of lower-priority task intent to a lock
semaphore. At time t1, J3 has available slack in interval [t9,
t10] with length longer than break-even time. When a
system is conscious that J3 has intent to lock z1, it computes
the upcoming start time of higher priority tasks that might
be blocked by J3 according to PCP. In the example, J1 and
J2 could be blocked by J3 due to z1, and the lengths of
interval [t1, t1'] are less than the available slack. Therefore,
processor switches to dormant mode at time t1 until the start
time of J2. At time t1', processor becomes active and J2
preempts J3 such that J3 is still unable to lock z1, and thus J2
could lock z2 at time t2. However, J1 could be blocked when
it intends to lock z1 if J2 successfully lock z2 at t2. To
further reduce priority inversion, job J2’s intent to lock z2
should be postponed after t3. Therefore, comparing to the
result of Fig. 1(a), the idea eliminates all priority inversions
in intervals [t3, t7].

Fig.1. The task synchronization of (a) primitive PCP and (b) latency locking method

IV. LATENCY LOCKING PCP
In this research work, PCP is extended with the concept of
latency locking, referred to as LL-PCP. The idea is to do
pre-analysis of possible priority inversion and available
slack time in the schedule. The objective is to derive the
best timing and duration for switching processor to dormant
mode, and thus minimize priority inversion. To understand
and control the sequence of intent to lock resources, tasks
are organized as a WDG reduced from the resource
allocation bipartite graph in [4]. Let G=(U, V, E) denote a
bipartite graph whose partition of vertices has two subsets
U and V. E denotes the set of edges of G, and U denote a
task set T. Let WDG(T, A) denote a weighted directed
graph whose vertices in T� U are arranged according to
their task indices. For each edge eu,v�E, �u�U and zv�V,
the set of arcs A in WDG are generated as follows

Step1. For any pair of vertices �x,�y�U and x>y, a solid arc
a(x, y) �A is directed from �x to �y if there exists two or
more edges ex,v and ey,v in G where zv�V.

Step2. For any pair of vertices �x,�w�U and x>w, a dotted
arc a(x, w)�A is directed from �x to �w if there exists a
vertex �y�U, w>y, and �x and �y satisfy Step1.

Step3. In WDG, for any pair of vertices with multiple arcs,
eliminate the dotted arcs having the same blocking time as
that of one of their solid arcs.

Fig.(2) illustrates the graph reduction from bipartite to
WDG. In the bipartite graph, each indirect edge is labeled
with the time required to access the resources. Different
from the bipartite graph, WDG has a vertex for each task
but resources. A task �L directly blocks a higher-priority
task �H is represented by an solid arc a(�L, �H) from task
vertex �L to �H, while an indirect block is represented by an
dotted arc. In Fig. 2(a), the bipartite graph is derived from
Fig.1(a) and can be reduced to the WDG in Fig.2(b). The
maximum priority inversion of J2 is an indirect blocking
incurred by J3. We may label each arc by a 3-tuple, the first
element of each 3-tuple give the actual starting time of
higher-priority tasks and defined as S(�H), while the second
element gives the locking time of �L on semaphore z and
denoted as L(�L, z). The last element specifies the duration
of the maximum priority inversion and denoted as I(�L, �H).
The first two elements are updated during runtime while
the third element is derived directly from the arcs in WDG.

The example of the 3-tuple labels is illustrated in Figure
2(b), we have the following definitions.

Fig.3 An example using DVS scheduling

Definition 1. In order to prevent job JL from blocking job
JH, the expected sleep interval (ESI) for JL is defined as

ESIL, H=[L(JL, z), S(JH)) ���
�����

��������� . (1)

Algorithm LL-PCP
Input: a set of task T, a set of resources R
(Offline part)

1. Reduce bipartite graph to WDG(T , A);
2. Compute the value of I(�L, �H) with respect to each arc a(�L,

�H) in WDG;
(Online part)

On arrival of a job Ji

3. Identify a set of tasks TH containing higher priority task �H

than that of Ji;
4. Compute the value of REW(�i, �H) for each arc a(�i, �H) in

WDG and �H�TH;
5. Construct a set Ai'of outgoing arcs of �i, Ai'={ a(�i, �H)| �i,H�

���
�� !"#$�

}
6. Compute the static available slack sH for each job in TH;
7. Compare each sH to the corresponding � value of the arcs in

Ai' ;
8. Construct an arc set Ai'' � Ai' where Ai'' ={a(�i, �x)| sH

��x,i , a(�i, �x) � Ai' and �x�TH };
9. Search for an arc a(�i, �x) in Ai'' with the maximum value of

REW(�i, �x) where �x�TH;
On beginning of one of the intervals in ESIL,x
11. Switching the processor to Sdorm until the end of the interval;
On turning the processor to the active mode at time t
12. Schedule the highest priority job in the ready queue; On

early-completion of a job at time t;
13. Compute dynamic slack time due to early completion;
On completing or beginning a job Ji at time t
14. IF completes early THEN

obtain dynamic slack si
d from F(Ji)–EC(Ji);

15. Set BFI=[S(Jx), F(Jx)] according to the recently carried out
ESIL,x;
16. Slowdown the speed of tasks whose deadlines are earlier

than F(Jx) using lpWDA[6];

where ���
����� denotes the set of noncritical-section

intervals of job J� in interval [L(JL, z), S(JH)). The length of
ESIL, H denotes as

�L, H=S(JH) L(JL, z). % &���
�����&'� (�)� �� (2)

Definition 2. defines the expected reduction of priority
inversion (RPI) due to the processor sleeping in the ESIL, H.
The value of RPI is derived from

�L, H= I(�L, �H) �L, H . (3)

According to equations (1), (2) and (3), we define a reward
function for each arc in WDG.
Definition 3. A reward function for each arc in WDG is

REW(�L, �H)='*+�,-+�,
. (4)

The reward for an arc is referred to the reduction of priority
inversion time if the processor is switched to sleep during
the interval ESIL, H. Whenever a new job Ji arrives, the
value of REW(�L, �i) with respect to each arc is refreshed.
The larger the value of REW, the longer the priority
inversion will be avoided. For example, in Fig.2(b), the
values of �3,1 and �3,2 are set respectively x= t3 t1 (t2 t�1)
and y= t�1 t1, and the values of �3,1 and �3,2 are respectively
4 x and 4 y. In accordance with equation 4, the values of
REW(3,1) and REW(3,2) are './00 and './11 , and obviously
REW(3,1) < REW(3,2). Assuming that available slack for �3
is larger than the values of x and y, the proposed algorithm
switchs the processor to sleep in the duration of [t1 t�1], and
traverses from vertex J3 to J2. In the vertex J2, we can
traverse from J2 to J1 by switching the processor to sleep
mode in interval [t2 t3].

Definition 4. (Blocking-free interval, BFI)
A time interval BFIt, l is said to be blocking free in the real-
time task synchronization if the interval [t, t+l] does not
have any priority inversion.
Lemma 1. When the time at which JL has intent to lock z is
later than the S(JH), they do not give rise to priority
inversion during interval [S(JH), F(JH)].
Proof sketch: In accordance with WDG, JH has higher
priority than JL, as soon as JL begins after S(JH), JL cannot
lock z until JH completes. Therefore, JH is not preempted by
JL until the completion time of JH.
Obviously, jobs JH and JL do not give rise to the priority
inversion in the interval [F(JH), DH] when JH completes
before F(JH). Therefore, when the processor sleeps in
interval ESIL,H, the value of BFI can be derived from

BFIt, l=[S(JH), DH] (5)
for all jobs JH are successors of JL in WDG.
The purpose of BFI is to identify the jobs for saving more
energy using DVS. The jobs whose deadlines are in the BFI
interval can compute their available slack time to decrease

their speed and satisfy their timing constraints. The slack
computation such as lpWDA [6] can be applied without
modification to our method. An example is presented in
Fig.3. By updating the information of arcs in WDG during
runtime, we can traverse the WDG by following the current
job and make decisions on switching the processor to active
or dormant mode.

V. CONCLUSIONS
This work-in-progress continuously improves energy-
efficiency of real-time task synchronization with speed
switching overhead consideration. By using DVS and
leakage-aware techniques, we decrease not only the priority
inversion but also energy consumption in the real-time
systems. The objective is to minimize the priority inversion
and reduce both dynamic and leakage energy, provided that
the schedulability of tasks is guaranteed. By traversing the
vertex of WDG, the scheduling decisions can be done
efficiently during the runtime. Another characteristic is that,
in the proposed concept, DVS does not worsen the situation
of inevitable priority inversion.
For further study, we shall explore an evaluation function
that provides suggestions on how to use DVS or leakage-
aware technique during runtime. Future research and
experiments in these areas may benefit several mobile
system designs.

VI. REFERENCES
[1] Butts, J. Adam, and Sohi, G. S. 2000. A Static Power Model for

Architects. In Proceedings. of the 33rd Annual International
Symposium on Microarchitecture (In Monterey, California from Dec.
10 - 13). MICRO-33, 191-201.

[2] Chen, J.-J., and Kuo, T.-W. 2006. Procrastination for leakage-aware
rate-monotonic scheduling on a dynamic voltage scaling processor.
In ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (Ottawa, June 14-16, 2006).
LCTES 06. ACM, 153–162.

[3] Irani, S., Shukla, S., and Gupta, R. 2003. Algorithms for power
savings. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (On the Inner Harbour Baltimore,
MD, USA Jan. 12-14, 2003). DA 03. ACM, New York, NY, 37–46.

[4] Jane W. S. Liu. Real-time systems. Prentice Hall PTR Upper Saddle
River, NJ, USA, (2000), ISBN:0130996513.

[5] Jejurikar, R., and Gupta, R. K. 2005. Dynamic slack reclamation
with procrastination scheduling in real-time embedded systems. In
Proceedings of the 42nd Design Automation Conference (San Diego,
CA, USA, June 13-17). DAC 05. ACM, New York, NY, 111–116.

[6] Kim, W., Kim,J., and Min, S. L. 2003. Dynamic voltage scaling
algorithm for fixed-priority real-time systems using work-demand
analysis. In Proceedings of the 2003 International Symposium on
Low Power Electronics and Design (ISPLED’03), ACM Press, New
York, NY, 2003, pp. 396–401.

[7] Sha, L., Rajkumar, R., and Lehoczky,J. P. 1990. Priority Inheritance
Protocols: An Approach to Real-Time Synchronization. IEEE Trans.
on Computers, 39 (Sept. 1990), no.9, 1175-1185.

[8] Silberschatz, A. P., Galvin, B., and G. Gagne. 2011. Operating
System Concepts. John Willey and Sons, Inc., (2011).

[9] Zhang, F., and Chanson, S. T. 2002. Processor voltage scheduling
for real-time tasks with non-preemptible sections. In 23rd
Proceedings IEEE Real-Time Systems Symp., (Austin, TX, Dec.
2002). RTSS 02. IEEE, 235–245.

