
A New Technique for Analyzing Soft Real-Time Self-Suspending Task Systems ∗

Cong Liu and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

We consider the problem of globally scheduling soft real-
time sporadic self-suspending task systems on multiproces-
sors. Existing analysis methods are pessimistic, yielding
O(n) utilization loss where n is the number of tasks in the
system. Unless the number of tasks is small and suspen-
sion delays are short, such methods entail significant capac-
ity loss. We identify the fundamental sources that cause pes-
simism in existing methods, and propose a new analysis tech-
nique that entails only O(m) suspension-related utilization
loss, where m is the number of processors.

1 Introduction
In many real-time systems, suspension delays may occur

when tasks interact with external devices such as I/O devices.
Unfortunately, schedulability in real-time systems is nega-
tively impacted by such delays if deadline misses cannot be
tolerated [4]. In this paper, we consider whether, on multipro-
cessor platforms, such negative impacts can be ameliorated if
task deadlines are soft. Our focus on multiprocessors is moti-
vated by the advent of multicore platforms. There is currently
great interest in providing operating-system support to enable
real-time workloads to be hosted on such platforms. Many
such workloads can be expected to include self-suspending
tasks. Moreover, in many settings, such workloads can be
expected to have soft timing constraints. The soft timing con-
straint considered in this paper pertains to implicit-deadline
sporadic task systems and requires that deadline tardiness be
bounded.

Two analysis approaches can be applied to analyze soft
real-time (SRT) sporadic self-suspending (SSS) task systems
on multiprocessors. Perhaps the most commonly used is the
suspension-oblivious approach [3], which simply integrates
suspensions into per-task worst-case-execution-time require-
ments. However, this approach clearly yields O(n) utiliza-
tion loss where n is the number of self-suspending tasks in
the system. The alternative is to explicitly consider suspen-
sions in the task model and the corresponding schedulability
analysis; this is known as suspension-aware analysis. Al-

∗Work supported by NSF grants CNS 0834270, CNS 0834132, and CNS
1016954; ARO grant W911NF-09-1-0535; AFOSR grant FA9550-09-1-
0549; and AFRL grant FA8750-11-1-0033.

though suspension-aware analysis can improve schedulabil-
ity in many cases compared to the suspension-oblivious ap-
proach, existing suspension-aware analysis [2] still entails
significant utilization loss.

To analyze SSS task systems more efficiently, we propose
a new suspension-aware analysis technique that yields O(m)
suspension-related utilization loss, where m is the number of
processors. Our technique is derived by identifying and then
eliminating the fundamental sources that cause pessimism
(i.e., O(n) utilization loss) in previous analysis. Specifically,
we derive a schedulability test under the proposed technique
showing that any given SSS task system can be supported un-
der global-earliest-deadline-first (GEDF) with bounded tardi-
ness if Usum+

∑m
j=1 v

j ≤ m holds, where Usum is the total
system utilization and vj is the jth maximum ratio of a task’s
suspension time over its period among tasks in the system.

The rest of this paper is organized as follows. In Sec. 2,
we present the SSS task model. Then, in Sec. 3, we identify
the fundamental sources causing pessimism in prior analy-
sis and present our new analysis technique and a resulting
schedulability test. We conclude in Sec. 4.

2 System Model
We consider the problem of scheduling a set τ =

{τ1, ..., τn} of n independent SSS tasks on m ≥ 1 identical
processors {M1,M2, ...,Mm}. We assume n > m; other-
wise we can simply assign each task to one processor. Each
task is released repeatedly, with each such invocation called
a job. Jobs alternate between computation and suspension
phases. We assume that each job of τl executes for at most
el time units (across all of its execution phases) and suspends
for at most sl time units (across all of its suspension phases).
We place no restrictions on how these phases interleave (a
job can even begin or end with a suspension phase). The jth

job of τl, denoted τl,j , is released at time rl,j and has a dead-
line at time dl,j . Associated with each task τl is a period pl,
which specifies both the minimum time between two consec-
utive job releases of τl and the relative deadline of each such
job, i.e., dl,j = rl,j + pl. The utilization of a task τl is de-
fined as ul = el/pl, and the utilization of the task system τ
as Usum =

∑
τi∈τ ui. An SSS task system τ is said to be an

implicit-deadline system if di = pi holds for each τi.1 In this

1τ is said to be a constrained-deadline system if, for each task τi ∈
τ , di ≤ pi, and an arbitrary-deadline system if, for each τi, the relation

paper, we consider implicit-deadline SSS task systems.
Successive jobs of the same task are required to execute in

sequence. If a job τi,j completes at time t, then its tardiness is
max(0, t−di,j). A task’s tardiness is the maximum tardiness
of any of its jobs. Note that, when a job of a task misses its
deadline, the release time of the next job of that task is not
altered. We require that ei + si ≤ pi and ui ≤ 1 hold for
any task τi ∈ τ , and that Usum ≤ m holds for τ ; otherwise,
tardiness can grow unboundedly.

Under GEDF, released jobs are prioritized by their abso-
lute deadlines. We assume that ties are broken by task ID
(lower IDs are favored).

3 An O(m) Analysis Technique
In this section, we present our proposed O(m) analysis

technique and a resulting schedulability test for SRT SSS task
systems. We first provide brief summaries of existing anal-
ysis approaches and highlight sources of pessimism in them.
Efforts to overcome such pessimism will drive the design of
the proposed new technique.

There are two existing approaches for dealing with
globally-scheduled SRT multiprocessor SSS task systems:
the suspension-oblivious approach, denoted SC, which con-
verts all suspensions to computation [3], and a suspension-
aware analysis approach presented by Liu and Anderson in
[2], denoted LA.

Overview of the SC approach. The SC approach converts
all suspensions into computation. After transforming all SSS
tasks into ordinary sporadic tasks with only computation,
prior SRT schedulability analysis [1] can be applied, result-
ing a utilization constraint of Usum +

∑n
i=1

si
pi
≤ m.

Overview of the LA approach. The LA test is built around
the following general strategy, first introduced by Devi and
Anderson [1]. First, let τl,j be a job of a task τl in τ , and S
be a GEDF schedule for τ with the following property: the
tardiness of every job τi,k with priority greater than τl,j is at
most x+ ei+ si, where x ≥ 0. Then, determine the smallest
x such that the tardiness of τl,j is at most x + el + sl. This
by induction implies a tardiness of at most x+ ei + si for all
jobs of every task τi in τ . The smallest x is determined by
computing an upper and a lower bound on the pending work
at dl,j for tasks in τ that can compete with τl,j after its dead-
line dl,j . Next, we briefly summarize the process of obtain-
ing such upper and lower bounds, and then identify sources
causing pessimism in them.

The upper and lower bounds are obtained by comparing
the allocations to jobs with priority at least that of τl,j in
S and a processor share (PS) schedule, both on m proces-
sors, and quantifying the difference between the two. The
PS schedule is an ideal schedule where each job of each task
in τ completes exactly at its deadline. In the PS schedule,
each task τi executes with a rate equal to ui in any job ex-
ecution window [ri,j , di,j), which ensures that each job τi,j

between di and pi is not constrained (e.g., di > pi is possible).

completes exactly at its deadline. (Note that suspensions are
not considered in the PS schedule.) A valid PS schedule ex-
ists for τ if Usum ≤ m holds.

The upper bound on the pending work at dl,j can be ob-
tained by bounding the pending work at time tn, where tn is
defined to be the end of the latest non-busy interval (i.e., at
least one processor is idle at any instant within this interval).
This is because the amount of pending work (in comparison
to the PS schedule) cannot increase throughout a busy inter-
val (as all processors are busy at any instant within this in-
terval). To bound the pending work at tn, we have to bound
the number of tasks that have enabled tardy jobs at tn.2 For
ordinary task systems with no self-suspensions, the number
of such tasks can be upper bounded by m− 1, for otherwise
tn would be busy. For SSS task systems, however, all n tasks
can have enabled tardy jobs suspending at tn and tn can still
be non-busy. Since such a worst-case scenario may happen
and thus must be considered in the analysis, significant pes-
simism is incurred in the obtained upper bound.

In lower-bounding the pending work at dl,j , we need to
bound the least amount of the pending work that executes
within [dl,j , fl,j), where fl,j is the completion time of our
analyzed job τl,j . For ordinary task systems with no self-
suspensions, such a bound is straightforward to obtain be-
cause within [dl,j , fl,j)

3 a non-busy time instant could exist
if and only if there are fewer than m tasks that have enabled
jobs waiting for execution after dl,j . For SSS task systems,
unfortunately, idle intervals could exist within [dl,j , fl,j) due
to suspensions even if at least m tasks have enabled tardy
jobs. Thus, to lower bound the pending work, we need to
upper bound the idleness that could possibly exist within
[tl,j , fl,j). The worst-case scenario as mentioned above,
where all tasks have multiple tardy jobs suspending simul-
taneously within [tl,j , fl,j), is the main source causing pes-
simism in the obtained lower bound.

The fundamental cause of pessimism in prior analysis.
By the above discussion, we can identify the fundamental
source causing pessimism in prior analysis, which is the fol-
lowing worst-case scenario: all n self-suspending tasks have
tardy jobs that suspend at some time t simultaneously, thus
causing t to be non-busy; this creates idleness that results in
pessimism in the analysis.

Key observation that motivates this research. Inter-
estingly, the suspension-oblivious approach eliminates the
worst-case scenario just discussed, albeit at the expense of
pessimism elsewhere in the analysis. That is, by converting
all n tasks’ suspensions into computation, the worst-case sce-
nario is avoided because then at most m − 1 tasks can have
enabled tardy jobs at any non-busy time instant. However,
converting all n tasks’ suspensions to computation is clearly

2Job τi,v is enabled at t if ri,v ≤ t, τi,v has not completed by t, and its
predecessor job τi,v−1 (if any) has completed by t. Job τi,v is tardy at t if
di,v < t.

3Note that all jobs considered here have deadlines no later than dl,j since
their priorities are at least that of τl,j .

3

th
.

suspension of τi,j

ri,j-c
Mk

di,jdi,j-c ri,jfi,j-c-1 fi,jdi,j-c-1

after converting suspensions of jobs
of τi into computation in non-busy
intervals on Mk in [ri,j-c, th)

computation of jobs of τi,j suspensions of jobs of τi
turned into computation

jobs of τi get preempted

Figure 1: The transformation method.

5

computation of some
job of τi that originally
happens on Mk’ in [ta, tb)

Mk

ta tb

Mk’

thri,j-c

Mk

ta tb

Mk’

thri,j-c

switch

computation that originally
happens on Mk in [ta, tb)

Figure 2: Switching the computation of τi originally executed on
Mk′ to Mk.

overkill when attempting to avoid the worst-case scenario;
rather, converting at most m tasks’ suspensions to computa-
tion should suffice. This observation motivates the new anal-
ysis technique we propose, which yields a much improved
schedulability test with only O(m) suspension-related uti-
lization loss.

New Analysis Technique. We now sketch the new O(m)
analysis technique. Motivated by the above discussion, the
key idea behind our new technique is the following: At any
non-busy time t, if k processors (1 ≤ k ≤ m) are idle at t
while at least k suspending tasks have enabled tardy jobs that
suspend simultaneously at t, then, by converting suspensions
of k jobs of k such tasks into computation at t, t becomes
busy. Converting the suspensions of all such tasks into com-
putation is clearly unnecessary and pessimistic.

Similar to [2], our analysis draws inspiration from the
seminal work of Devi and Anderson [1], and follows the
same general framework (which has been described earlier).
Due to space constraints, we cannot provide every detail con-
cerning the derivations of the upper and lower bounds. In-
stead, we focus on explaining how the proposed analysis
technique eliminates the worst-case scenario and thus leads
to a schedulability test with only O(m) suspension-related
utilization loss.

As described earlier, we apply the same proof setup to de-
fine our analyzed job τl,j and the GEDF schedule S. The
part of the schedule S that needs to be analyzed is [0, fl,j).
We transform this part of the schedule from right to left (i.e.,
from time fl,j to time 0) to obtain a new schedule S as de-
scribed next. The goal of this transformation is to convert
certain tardy jobs’ suspensions into computation in non-busy
time intervals to eliminate idleness as discussed above. For
any job τi,k, if its suspensions are converted into computation
in a time interval [t1, t2), then τi,k is considered to execute
in [t1, t2). We transform S to S by applying the following

6

computation of
jobs of τi on Mk

Mk

Mk’

thri,j-c

move

computation of jobs
of tasks other than τi

idle

Mk

Mk’

thri,j-c

suspensions of
jobs of τi on Mk

Figure 3: Moving the computation of tasks other than τi from Mk

to some idle processor Mk′ .

transformation method to each processor in turn (ordered by
processor ID). In the following, Mk denotes the current con-
sidered processor (initially M1). For simplicity, we use “S”
to denote the updated schedule after each intermediate trans-
formation step (the final transformed schedule S is obtained
after the whole transformation process completes).

Transformation method. Moving from fl,j to the left in
S on Mk, let th denote the first encountered non-busy time
instant on Mk where at least one task τi has an enabled job
τi,j suspending at th where

di,j < th. (1)

Let j−c (0 ≤ c ≤ j−1) denote the minimum job index of τi
such that all jobs {τi,j−c, τi,j−c+1, ..., τi,j} are tardy, as illus-
trated in Fig. 1. We assume that all the computation and sus-
pensions of jobs of τi occurring within [ri,j−c, th) happen on
Mk. This can be achieved by switching any computation of
τi in some interval [ta, tb) ∈ [ri,j−c, th) originally executed
on some processor Mk′ other than Mk with the computation
(if any) occurring in [ta, tb) on Mk, as illustrated in Fig. 2,
which is valid from an analysis point of view. Then for all
intervals in [ri,j−c, th) on Mk where jobs not belonging to τi
execute while some job of τi suspends, if any of such inter-
vals is non-busy (at least one processor is idle in this interval),
then we also move the computation occurring within this in-
terval on Mk to some processor Mk′ that is idle in the same
interval, as illustrated in Fig. 3. This step guarantees that all
intervals in [ri,j−c, th) on Mk where jobs not belonging to
τi execute are busy on all processors. (Note that after per-
forming the above switching and moving steps, the start and
the completion times of jobs remain unchanged.) Due to the
fact that all jobs of τi enabled in [ri,j−c, th) are tardy, inter-
val [ri,j−c, th) on Mk consists of three types of subintervals:
(i) those in which jobs of τi are executing, (ii) those in which
jobs of τi are suspending (note that jobs of tasks other than
τi may also execute on Mk in such subintervals; if this is the
case, then note that any such subinterval is busy on Mk), and
(iii) those in which jobs of τi are preempted. Thus, within
any non-busy interval on Mk in [ri,j−c, th), jobs of τi must
be suspending (for otherwise this interval would be busy on
Mk). Therefore, within all non-busy time intervals on Mk in
[ri,j−c, tk), we convert the suspensions of all jobs of τi that
are enabled within [ri,j , th) (i.e., {τi,j−c, τj−c+1, ..., τi,j})
into computation, as illustrated in Fig. 1. This transforma-
tion guarantees that Mk is busy within [ri,j−c, tk). Note that
when applying the rule on the next processor Mk+1 (if any),

τi clearly cannot be chosen again for the same transformation
process (i.e., converting suspensions into computation in idle
intervals) within [ri,j−c, th). Moreover, since all intervals
within [ri,j−c, th) onMk where jobs not belonging to τi exe-
cute are busy on all processors, any later switch or move does
not change the fact that [ri,j−c, th) is busy on Mk in the final
transformed schedule S. Next, further moving from rl,j−c to
the left in S onMk, find the next th, τi,j , and τi,j−c following
the same definitions given above, transform the schedule in
the newly defined interval [ri,j−c, th) on Mk using the same
approach. This process is repeatedly performed on Mk until
th = 0. As mentioned earlier, this process will be applied on
each processor in turn, after which we obtain the transformed
schedule S.
Analysis. By transforming S into S according to the above
rule, we are able to eliminate the worst-case scenario where
at least m tasks have enabled tardy jobs suspending at the
same non-busy instant, as formerly presented by the follow-
ing claim.

Claim 1. At any non-busy time instant t ∈ [0, fl,j) in the
transformed schedule S, at most m − 1 tasks can have en-
abled jobs with deadlines before t.

Proof. For any non-busy time instant ta ∈ [0, fl,j) in S, there
is at least one processor that is idle at t. Let Mk denote such
a processor. Assume more than m − 1 tasks have enabled
jobs at ta with deadlines before ta. If m such jobs execute
at ta, then ta would be busy. Thus, at most m − 1 such jobs
execute and at least one such job is suspending at ta. Since ta
is non-busy onMk, by our transformation method, one of the
tasks that has an enabled job suspending at ta with a deadline
before ta would be chosen at ta such that the suspension of
the enabled job of this task at ta is converted to computation
at ta,4 which makes ta busy on Mk, a contradiction.

Our analysis proceeds by comparing the allocations to
jobs with priority at least that of τl,j in S and the correspond-
ing PS schedule PS after the transformation.5 A crucial step
for our analysis to be valid is to show that such a PS exists.
That is, we need to guarantee that at any time t in PS, the to-
tal utilization of τ is at mostm. The following claim provides
a necessary condition that can provide such a guarantee.

Claim 2. If Usum +
∑m
j=1 v

j ≤ m, then after the transfor-
mation, a PS schedule PS exists.

Proof. Consider any processor Mk. Moving from right to
left in [0, fl,j) on Mk, whenever we first choose a task τi for
the transformation process, we use tardy jobs of this same

4If there are h processors that idle at ta, then at least h such tasks have
enabled jobs suspending at ta, and hence each processor is guaranteed to
have one task available at ta for the transformation

5Note that in PS, any job of any task still completes exactly at its dead-
line. To ensure this, each task τi executes with a rate between ui and
ui + si,j/pi in any job execution window [ri,j , di,j), where si,j ≤ si
is the amount of suspension time of job τi,j that is converted into computa-
tion in S.

task until ri,j−c (which is the earliest job release time among
all tardy jobs of τi used in one transformation step). Clearly
all these jobs have non-overlapping periods since they belong
to the same task. Next, moving further left from ri,j−c in the
schedule on Mk to a new time th (as defined in the trans-
formation method), if we use some task τj other than τi for
the next transformation step on Mk, then the enabled job of
τj at th must satisfy (1). Since this new th occurs before
ri,j−c, the enabled job of τj at th must have a deadline be-
fore ri,j−c. This implies that jobs of τj whose suspensions
are converted into computation have non-overlapping periods
with those jobs of τi used for the transformation with respect
to Mk. By applying the same reasoning to the rest of the
schedule S on Mk, it follows that all jobs whose suspensions
are converted into computation on Mk do not have overlap-
ping periods. This same reasoning can be applied to all other
processors. Since there are m processors and the jobs used
for the transformation on each processor do not have overlap-
ping periods, at any time t in PS, there exist at most m jobs
with overlapping periods whose suspensions are converted
into computation, which can increase total utilization by at
most

∑m
j=1 v

j . This implies that at any time t in PS, the
total utilization of τ is at most Usum +

∑m
j=1 v

j , which is at
most m according to the claim statement.

In order to correctly apply the transformation technique as
described above, the expense we have to pay is the potential
utilization loss of at most

∑m
j=1 v

j due to the conversion of
any m tasks’ suspensions into computation. Thus, any SRT
SSS task system that can accommodate this expense can be
proved to be GEDF-schedulable, which is formerly described
by the following schedulability test.

Theorem 1. Any SRT SSS task system τ is GEDF-
schedulable with bound tardiness onm processors if Usum+∑m
i=1 v

j ≤ m.

4 Summary
In this paper, we presented a new multiprocessor schedu-

lability analysis technique for globally-scheduled SRT SSS
task systems. By identifying and eliminating the sources
causing pessimism in prior analysis, our proposed analysis
technique achieves a much improved schedulability test with
only O(m) suspension-related utilization loss. Given that m
is often small in practice (typically two, four, or eight cores
per chip), this technique is significant and is applicable to real
systems.

References
[1] U. Devi. Soft real-time scheduling on multiprocessors. In Ph.D. Dis-

sertation, UNC Chapel Hill, 2006.
[2] C. Liu and J. Anderson. Task scheduling with self-suspensions in soft

real-time multiprocessor systems. In Proc. of the 30th RTSS, pp. 425-
436, 2009.

[3] J. Liu. Real-time systems. Prentice Hall, 2000.
[4] F. Ridouard, P. Richard, and F. Cottet. Negative results for scheduling

independent hard real-time tasks with self-suspensions. In Proc. of the
25th RTSS, pp. 47-56, 2004.

