
Architectural Time-predictability Factor (ATF): A
Metric to Evaluate Time Predictability of Processors

Yiqiang Ding, Wei Zhang
Department of Electrical and Computer Engineering

Virginia Commonwealth University
Richmond, VA 23284
wzhang4@vcu.edu

Abstract—Due to the prohibitive cost of worst-case timing
analysis for modern processors, the design of time-predictable
processors has become increasingly important for hard real-time
and safety-critical systems. However, to the best of our knowledge
currently there is no effective and widely accepted metric to
quantitatively evaluate time predictability of processors, which
greatly impedes the advancement of time-predictable processor
design.
This paper first introduces the concept of architectural time

predictability (ATP), which separates timing uncertainty concerns
caused by hardware from software. We then propose a metric
called Architectural Time-predictability Factor (ATF) to measure
architectural time predictability. Our evaluation on a Very Long
Instruction Word (VLIW) processor indicates that ATF is an
effective metric to quantitatively evaluate architectural time
predictability of a whole processor as well as its architectural
and microarchitectural components such as caches, branch pre-
diction, speculative execution, parallel pipelines, and Scratch-Pad
Memory (SPM). Thus ATF can be used to quantitatively guide
architectural design for enhancing time predictability or making
better trade-offs between performance and time predictability.

I. INTRODUCTION

As well known, accurately estimating the worst-case exe-
cution time (WCET) is crucial for hard real-time and safety-
critical systems. However many traditional microprocessor
architectural designs such as caches and branch prediction
are aimed at improving the average-case performance, which
unfortunately are harmful to time predictability [1], [2]. As
a result, WCET analysis for modern processors has become
very complex, if not impossible. The recent development
of multithreaded and multicore architectures aggravates this
problem. The resource contention in those architectures can
adversely affect the execution time and further complicate
WCET analysis. On the other hand, designing a micropro-
cessor with high time predictability but low performance is
likely to be useless. Therefore researchers have been study-
ing time-predictable microprocessor design to reconcile time
predictability and performance [1], with the goal to achieve
better time predictability (or WCET analyzeability) while
minimizing the impact on average-case performance.
Some designs of time-predictable processors have been pro-

posed. Delvai et al. designed SPEAR (Scalable Processor for
Embedded Applications in Real-Time Environments), which
employed a simple 3-stage pipeline and no cache memories

[3]. Paolieri et al. [4] examined a time-predictable multicore
architecture to support WCET analyzeability. Colnaric et al.
[1] proposed a simple asymmetrical multiprocessor architec-
ture for hard real-time applications, in which no dynamic
architectural feature such as pipelines and caches was used.
Yamasaki et al. [5] studied prioritized multithreaded processor
through IPC control and prioritization. Edwards and Lee [6]
proposed the precision timed (PRET) machine. Schoeberl
[7] proposed a time-predictable Java processor. However, in
all these studies, time predictability was not quantitatively
evaluated, probably due to the lack of an effective and widely
accepted metric when these studies were conducted.
Compared to the quantitative study of microprocessor de-

sign for improving the average-case performance, the time-
predictable processor design so far has been a qualitative study
and ad-hoc somehow. Because there is no well-defined metric
to evaluate time predictability of processors, most prior work
on time-predictable processor design either simply reported
the worst-case performance through measurement or analysis,
or qualitatively explained their designs were time-predictable
by removing undesirable architectural features. The lack of
a metric of time predictability thus not only prevents de-
signers from understanding and comparing different time-
predictable designs quantitatively, but also makes it difficult
to make intelligent trade-offs between time predictability and
average-case performance, which often conflict with each
other. To make an analogy, it would be hard to imagine how
much progress the computer architecture community would
have made without having a metric to quantitatively evaluate
average-case performance!
Lately, defining a metric of time predictability has received

considerable attention by the real-time and embedded comput-
ing community. To the best of our knowledge, Thiele et al. [1]
defined time-predictability as the pessimism of WCET analysis
and BCET analysis. Grund [8] defined time-predictability as
the relation between BCET and WCET and argued that time
predictability should be an inherent system property. Grund et
al. [9] then proposed a template for predictability definitions
and refined the definition into state-induced time predictability
and input-induced time predictability. Kirner and Puschner
[10] formalized a universal definition of time predictability
by combining WCET analyzeability and the stability of the



system. However, in all the above work except Grund et
al. [8], [9], the calculation of time predictability is still
dependent on the computation of WCET. Since the WCET
estimation is usually pessimistic and there is no standard way
to compute WCET (though different methods to derive WCET
such as abstract interpretation and static cache simulation etc.
do exist), any time predictability metric relying on WCET
analysis is likely to be inaccurate and hard to be standardized
in practice.
Moreover, in all the above works except Grund et al. [8], [9],

the definition of time predictability does not separate the time
variation caused by software and hardware, making it overly
complicated to derive a time predictability metric that can
effectively guide the architectural design for time predictabil-
ity. While Grund et al. [8], [9] proposed state-induced timing
predictability (SIP) to separate timing uncertainty between
hardware and software, the metric they proposed to evaluate
SIP needs to exhaustively find out the maximum and minimum
execution time of all different states, which may not be
computationally feasible. In contrast, this paper proposes a
metric to efficiently assess architectural time predictability, and
its effectiveness has been validated on a Very Long Instruction
Word (VLIW) processor.
In this paper, we make the following contributions to the

time-predictable design of processors:
1) We introduce the concept of timing contract and archi-
tectural time predictability (ATP) to separate the tim-
ing unpredictability concern caused by hardware design
from software, thus making it feasible to quantitatively
assess and guide time-predictable architectural design.

2) We propose to use Architectural Time-predictability
Factor (ATF) as a metric to quantitatively evaluate
architectural time predictability of a processor, as well as
architectural time predictability of various architectural
and microarchitectural components of the processor.

3) We have evaluated the ATF of a VLIW processor as
well as its microarchitectural components, including
caches, parallel pipelines, branch predictor, speculative
execution and the use of SPM. To the best of our
knowledge, this is the first paper to use a quantitative
metric to systematically evaluate the time predictability
of a high-performance processor.

The remaining of the paper is organized as follows. Section
II introduces the concept of architectural time predictabil-
ity. Section III defines the metric of architectural time-
predictability factor. Section IV qualitatively analyzes architec-
tural time predictability of a VLIW processor. The evaluation
methodology and the experimental results are presented in
Section V and Section VI respectively. Finally, the conclusions
are made in Section VII.

II. ARCHITECTURAL TIME PREDICTABILITY
While static timing analysis aims at estimating the WCET

safely and as close as possible to the actual WCET of a given
processor, whether it is time-predictable or not; the goal of
time-predictable architectural design is to design processor

architectures so that their timing behavior can be precisely
and efficiently predicted. To predict the timing behavior of a
processor, we must have a desirable baseline timing behavior
to compare with. This baseline time behavior is called the
timing contract in this paper, as it functions like a contract
to guide the timing behavior of the actual execution. For
example, the timing contract may specify how many cycles
each instruction takes, in which order instructions can overlap
their execution in the pipelines etc. If a processor is designed
and implemented to fully enforce the timing contract, then
it will be fully architecturally time-predictable. Therefore,
we can then define architectural time predictability as the
following.
Definition 1: Architectural Time Predictability: Given an

architectural design of a processor, architectural time pre-
dictability indicates how close the actual timing behavior is to
the baseline timing behavior specified in the timing contract
of the processor.
Since not all the architectural designs are fully time-

predictable, how do we specify the timing contract for an ar-
chitectural component that is inherently not time-predictable?
In that case, the timing contract should specify the desired tim-
ing behavior while also ensuring high performance. In other
words, optimistic, not pessimistic assumption is preferred to
establish an “ideal” baseline processor. For example, if a pro-
cessor employs a cache memory, the desired timing behavior
should be all cache hits, i.e. a perfect cache. While assuming
all cache misses is still time-predictable, the performance will
be too bad and hence is not desirable. On the other hand,
when the timing behavior of an architectural component is
totally time-predictable, no assumption, whether optimistic or
not, should be made to objectively model the actual timing
behavior. For example, if a processor employs a scratch-pad
memory, then the latency of every load instruction is fixed
and known (i.e. the data are either from the SPM or from
the memory). Therefore, the timing contract of this processor
should specify the latencies of all the loads without making
further assumption.
It should be noted that ATP is independent of the timing

uncertainty caused by software. If the input changes, a differ-
ent path is exercised and the execution time can vary, but this
processor can be still fully time-predictable if the execution
time exactly follows the timing contract (i.e. the timing varia-
tion caused by different inputs is the same for both the “ideal”
processor specified in timing contract and the real processor).
In other words, the goal of time-predictable processor design
should not be to ensure the execution time is not varied or
can be bounded with different inputs. Bounding the worst-case
execution time with various inputs should be the business of
WCET analysis, not the hardware design. However, a time-
predictable processor can make WCET analysis in general
and the low-level analysis in particular significantly easier
as the impact of microarchitectural components (e.g. caching,
branch prediction) on the execution time can be predicted or
controlled.



III. ARCHITECTURAL TIME-PREDICTABILITY FACTOR

Built upon the definition of ATP, we propose to use Archi-
tectural Time-predictability Factor to quantitatively evaluate
architectural time predictability. Given a processor P , an
arbitrary real-time trace T that is a stream of instructions with
a fixed input, the actual dynamic execution time D(P, T ), and
the statically predicted execution time based on the timing
contract S(P, T ), ATF is defined as the following.

ATF (P, T ) =
D(P, T )

S(P, T )
(1)

It should be noted that here we evaluate ATP based on an
arbitrary trace. Given different inputs, a real-time program may
generate different traces, thus ATF for this program can be
computed based on the ATFs of different traces, for example as
an average or standard deviation of the ATFs for all the traces
evaluated. This is very similar to performance evaluation,
in which we can get the execution time of each trace, and
derive an average performance result across different traces
to indicate the overall performance. Note that the execution
time variation due to different inputs or traces are caused by
software unpredictability. Techniques to analyze the worst-
case program paths have been extensively studied in the
literature of WCET analysis [2], which is complementary to
the architectural time predictability studied in this paper. To
simplify discussion, we focus on studying ATF for an arbitrary
trace in the rest of the paper.
Given a trace T , D(P, T ) can be measured at runtime.

Thus the remaining question is how we calculate S(P, T ).
While S(P, T ) can be computed statically, it is quite different
from static timing analysis, as we cannot require the processor
to always produce the worst-case performance to make itself
time-predictable. The S(P, T ) is statically computed according
to the timing specification defined in the timing contract.
Since the timing contract specifies the timing behavior of
an architecture that is fully time-predictable, S(P, T ) should
be independent of the machine states. For example, varied
cache latencies are not allowed in a timing contract, as cache
hits/misses depend on the history of cache accesses. In this
paper, we start the timing contract with a high-performance
single-core processor with parallel pipelines, perfect caches,
and no speculative execution so that the latency of each type
of instructions, including loads and stores, can be statically
specified.
The timing contract can be then exposed to the compiler

to schedule instructions, based on which S(P, T ) can be di-
rectly computed. Actually, modern optimizing compilers have
already exploited the hardware timing information including
latencies of various instructions to schedule instructions in-
telligently for maximizing resource utilization and attaining
the best performance. Thus after compilation, not only the
number of instructions but also the scheduling (i.e. static clock
cycles) of each instruction can be known. Given a processor
P and a trace T , the scheduling time of each instruction in
T is usually assigned by the compiler based on a certain

scope, e.g. a basic block or a superblock, based on which
the statically predicted execution time of a trace can be easily
calculated, which is simply called static scheduling time in
this paper. The details of computing static scheduling time for
the processor we evaluate can be seen in Section V-A.
Given a trace T , although the instructions of the trace are

executed in a processor following the scheduling, their actual
execution time may vary at runtime due to the performance-
enhancing but non-time-predictable architectural features such
as branch mis-predictions and cache misses. This is because
the actual processor we implement may not have perfect
pipelines, perfect branch prediction, and perfect caches etc. As
a result, the actual execution time of a trace T on the given
processor P is simply called dynamic execution time in this
paper, which can be directly measured on a real processor or
a cycle-accurate simulator.
Thus given any processor P and any trace T , by applying

Equation 1, ATF can be simply calculated in Equation 2.
Typically, ATF should be no less than 11. If architectural time-
predictability factor is 1, it means the architecture is 100%
time-predictable. Otherwise, the closer the ATF is to 1, the
more time-predictable the architecture is.

ATF =
dynamic exec time

static sched time
(2)

Why is ATF useful? Researchers in WCET analysis and
computer architectures have already figured out certain hard-
ware components such as caches, and branch prediction are
not time predictable, so why do we need to use ATF? This is
equivalent to say since caches are faster than main memory, a
processor with a cache will definitely have better performance
than a processor without a cache, thus there is no need to
evaluate the actual performance of the processors with or
without the cache. When designing a processor, a computer ar-
chitect usually has multiple design objectives and constraints,
including but not limited to average-case performance, energy
dissipation, cost, compatibility, and time predictability for
real-time systems, etc. It should be noted that while time
predictability is surely an important design objective for real-
time systems, computer architects are unlikely to only focus
on achieving time predictability without considering other
important design objectives such as average-case performance.
Prior studies on time-predictable design are mostly qualitative
in nature, which cannot tell quantitatively how good or how
bad the time predictability is, or how much better the time
predictability can be improved by applying a new design. With
the availability of ATF, it becomes possible to quantitatively
study the impact of architectural and microarchitectural design
on time predictability, which can be used to make intelli-
gent tradeoffs between time predictability and other design
objectives. For example, cache locking is widely known to

1ATF may be smaller than 1 in case that we are using a superscalar
processor with out-of-order execution so that the dynamic execution sequence
leads to less execution time than the static scheduling time predicted by the
compiler. In this case, the ATF is less than 1, and the smaller the ATF, the
more unpredictable the processor is.



provide better time predictability for cache accesses. However,
once a piece of data is locked into a particular cache block,
that cache block cannot be dynamically reused to hold other
data. As a result, the cache performance may degrade. For
a processor that needs to balance time predictability and
performance, designers might want to only lock a fraction
of data or optimally reserve a fraction of cache space for
locking while leaving the remaining cache lines for regular
caching to achieving higher performance, which can be guided
by ATF (for time predictability) and the execution time (for
performance).
Is ATF larger than 1 useful? An ATF of 1 indicates perfect

time predictability, which is an important design goal of hard
real-time and safety-critical systems. However, there could be
multiple architectural and microarchitectural designs that can
achieve an ATF of 1, but with different impact on performance
or energy. Thus, being able to evaluate the ATF of different
architectural and microarchitectural design is crucial in this
process. By comparison, without the ATF, it would be hard to
validate the perfect time predictability, especially for complex
processors. Moreover, today soft real-time systems, such as
iphones or other handheld devices are widely and increasingly
used in our society, for which the quality of service (QoS)
is important. Unfortunately, conventional architectural design
such as multiprocessor present severe challenges when trying
to provide even soft real-time guarantees [11]. Thus, achieving
an ATF close to 1, but not necessarily exact 1, could be
beneficial for a wide variety of soft real-time systems, for
which reducing the time variation, jitters and providing QoS
are important.
Note that several prior studies [1], [10] used estimated

WCET to compute time predictability. In this paper, we
use static scheduling time instead of WCET. The estimated
WCETs often have different amount of overestimation, which
can hardly make the time predictability evaluation accurate. In
other words, the inaccuracy of WCET analysis should not be
a reason to prevent us from deterministically evaluating time
predictability. In contrast, static scheduling time is based on
the compiler-generated schedule and the timing behavior spec-
ified in the timing contract, both of which are deterministic for
a given trace. Also, since every program needs to be compiled
before execution (the discussion on interpretation and dynamic
compilation is out of the scope of this paper), the methodology
to estimate static scheduling time can be generally applied to
different programs and various processors to provide a solid
foundation for evaluating architectural time predictability.

IV. QUALITATIVE ANALYSIS OF ATP ON A VLIW
ARCHITECTURE

In this paper, we validate the effectiveness of ATF on a
VLIW architecture based on HPL-PD [12], which is a para-
metric processor architecture aiming at improving instruction
level parallelism (ILP) by adopting advanced compiler and
architectural techniques. In a VLIW architecture, the compiler,
not the hardware, is responsible for orchestrating the ILP
of programs. To facilitate compiler scheduling, the VLIW

architecture exposes as much hardware and timing information
as possible to the compiler, such as the latency of each
instruction, the number of functional units etc. Therefore, a
VLIW processor is relatively more time-predictable than a su-
perscalar processor, which dynamically schedules instructions
by hardware. However, the HPL-PD based VLIW processor
still has some architectural features that can compromise
architectural time predictability as the following:
Branch architecture of HPL-PD not only replaces conven-

tional branch instructions with a set of instructions to initiate
a prefetch of the branch target early to minimize delays,
but also uses a combination of bimodal branch predictor
and global history with index sharing to predict the branch
target dynamically [13]. In case of a branch mis-prediction
of conditional branches, some stall time is added into the
execution time at run-time.
Speculative execution in HPL-PD consists of control spec-

ulation and data speculation. Control speculation represents
code motion across conditional branches. Data speculation is
designed to increase the range of code motion for memory
instructions. Speculative execution is generally safe but may
lead to exceptions. If an exception is raised during the exe-
cution of a necessary speculated instruction, the recovery of
the exception requires the re-execution of some instructions,
resulting in additional execution time. Also as exceptions can
only be detected at run-time, speculative execution can possi-
bly degrade architectural time predictability of the processor
with the handling and recovery of any exception.
Cache memories of HPL-PD consist of first-level instruc-

tion and data caches and a second-level unified cache. Since
the latency to access the memory hierarchy for an instruction
depends on the result of accessing the caches (i.e. a hit or
a miss), which can only be precisely known at run-time, the
compiler always optimistically assumes a hit in the first-level
cache for each memory access. Thus cache memories can lead
to time unpredictability.

V. EVALUATION METHODOLOGY
We evaluate the ATP of the VLIW architecture based

on Trimaran [14], which is an integrated compilation and
performance monitoring infrastructure of VLIW architectures.
We select 6 real-time benchmarks from Mälardalen WCET
benchmark suit [15] and 4 benchmarks from MediaBench
[16] for the experiments. The general information of these
benchmarks is shown in Table I.
The simulated processor is configured with 2 integer ALUs,

2 float ALUs, 1 branch unit, 1 load/store unit and 2-level
caches. The 2-level caches consist of a level-1 instruction
cache, a level-1 data cache and a level-2 unified cache. The
parameters of the level-1 instruction cache are: size 512 bytes,
block size 16 bytes, direct-mapped, miss penalty 7 cycles; the
parameters of the level-1 data cache include: size 1024 bytes,
block size 32 bytes, direct-mapped, miss penalty 10 cycles;
and the parameters of the level-2 unified cache are: size 2048
bytes, block size 64 bytes, direct-mapped, miss penalty 100
cycles. Note that due to the small sizes of the benchmarks,



especially the real-time benchmarks, we use small cache
configurations in our evaluation.
In a statically-scheduled VLIW processor, whenever there

is a cache miss, the whole instruction pipeline will be stalled
to wait until the data is returned. Therefore, the dynamic
execution time of a trace running on the VLIW processor can
be computed based on Equation 3, where compute time is the
execution cycle through the pipeline, cache stall time is the
stall cycles caused by cache accesses, and branch stall time

is the stall cycles caused by branch mis-predictions.

dynamic exec time = compute time+ cache stall time

+branch stall time
(3)

In order to study not only the architectural time pre-
dictability of the processor but also that of each architectural
component, we define the following three component-level
ATFs to indicate the ATP of speculative execution, caches,
and branch prediction respectively. It should be noted that
the component-level ATF just studies the effect of an unpre-
dictable microarchitectural component on ATP, thus its value
could be less than 1, and 0 indicates that this component does
not have negative impact on architectural time predictability.

speculative ATF =
(compute time− static sched time)

static sched time
(4)

cache ATF =
cache stall time

static sched time
(5)

branch predictor ATF =
branch stall time

static sched time
(6)

A. Static Scheduling Time Analysis
To quantitatively evaluate architectural time predictability

of an architecture, static scheduling time of a trace must be
analyzed accurately. In contrast, dynamic execution time can
be easily obtained through simulation or measurement. In the
HPL-PD architecture, the main idea of the static scheduling
time analysis of a trace is to accumulate the static scheduling
time of all basic blocks (BB)s according to the control flow
and the scheduling time determined by intermediate repre-
sentation(IR) of the program and the given input, which is
described in Algorithm 1.
The algorithm begins with determining the weights (i.e. the

execution frequencies) of all BBs and its edges in the trace
by control flow profiling based on the given input. Then the
scheduling time of each instruction in the trace is calculated
in the scope of the BB according to pipeline scheduling. Lines
7 to 13 calculate the static scheduling time of BBs with exit
edges. An exit edge of a BB represents a control flow going
out of the BB. In Trimaran framework, a real instruction is
executed, while a non-real instruction is not executed. If the
source instruction of an exit edge is a real instruction, the
static scheduling time of one execution of the BB related to

Algorithm 1 Static Scheduling T ime Analysis

1: input: intermediate representation of the program and an input
2: output: static scheduling time of the trace
3: begin
4: Control Flow Profiling(IR, input)
5: Pipeline Scheduling(IR)
6: for all BB do
7: for each exit edge of BB do
8: if src inst of current exit edge is a real inst then
9: BB time+=(src inst.sched time+1) × exit edge.weight

10: else if src inst of current exit edge is a pseudo inst then
11: BB time+=src inst.sched time × exit edge.weight

12: end if
13: end for
14: if no exit edge in BB then
15: if last inst of BB is a real inst then
16: BB time=(last inst.sched time+1) × BB.weight

17: else if last inst of BB is a pseudo inst then
18: BB time=last inst.sched time × BB.weight

19: end if
20: end if
21: static sched time+=BB time

22: end for
23: return static sched time

24: end

benchmark static sched time dynamic exec time ATF
crc 20774 20774 1
edn 37655 37655 1
lms 260940 260940 1
matmult 81395 81395 1
ndes 46005 46005 1
statemate 1154 1154 1
cjpeg 12390627 12390627 1
djpeg 3839632 3839632 1
mesamipmap 25787205 25787205 1
mesatexgen 76954216 76954216 1

TABLE II
ATF OF ALL BENCHMARKS IN AN IDEAL VLIW PROCESSOR.

this exit edge equals to the scheduling time of this instruction
plus 1; otherwise, it only equals to the scheduling time of this
instruction. The static scheduling time of the executions of
the BB from an exit edge equals to the static scheduling time
of one execution multiplied by the weight of this exit edge.
Then the static scheduling time of the BB is the sum of the
static scheduling time of the executions from all exit edges. In
case of a BB without any exit edge as shown from Lines 14
to 20, the static scheduling time of one execution of the BB
is calculated with the scheduling time of its last instruction.
Then the static scheduling time of the BB equals to the static
scheduling time of one execution multiplied by the weight of
the BB. The algorithm is terminated when the static scheduling
time of all BBs are accumulated, and its timing complexity is
linear to the total number of the exit edges of the trace.

VI. EXPERIMENTAL RESULTS

A. An Ideal VLIW Processor

First, we perform experiments on an ideal VLIW processor,
which disables speculative execution and has a perfect cache
and a perfect branch predictor. As shown in Table II, architec-
tural time-predictability factors of all benchmarks are exactly
1. These data reveal that architectural time predictability of an
ideal VLIW processor is perfect as one would expect.



benchmark category description code size (bytes) data size (bytes)
crc real-time cyclic redundancy check computation on 40 bytes of data 664 458
edn real-time finite impulse response (FIR) filter calculations 13504 3104
lms real-time lms adaptive signal enhancement 2136 1296
matmult real-time matrix multiplication of two 20 × 20 matrices 480 4828
ndes real-time complex embedded code 3580 986
statemate real-time automatically generated code 2476 498
cjpeg mediabench jpeg image compression 71468 135565
djpeg mediabench jpeg image decompression 70516 26508
mesamipmap mediabench OpenGL graphics clone: using mipmap quadrilateral 124892 39397
mesatexgen mediabench OpenGL graphics clone: texture mapping 180228 45074

TABLE I
GENERAL INFORMATION OF ALL BENCHMARKS

B. A Realistic VLIW Processor
Figure 1 demonstrates ATFs of all benchmarks for a realistic

VLIW processor. The bar of each benchmark in this figure
consists of four components, including the normalized static
scheduling time, speculative ATF, cache ATF and branch
predictor ATF. The ATFs range from 1.26 to 11.18, and are
4.67 on average, indicating the realistic VLIW architecture is
not fully time-predictable, which is consistent with our qual-
itative analysis in Section IV. We notice that the benchmark
statemate has the worst ATF value. This is because it is
a small benchmark that only takes 1154 computation cycles,
so the memory stall time due to cache misses (mostly cold
misses) becomes significantly larger than the static scheduling
time, leading to a very high ATF value.

Fig. 1. ATFs of all benchmarks in a realistic VLIW processor.

Table III gives the speculative ATFs, cache ATFs and
branch predictor ATFs of the realistic VLIW processor. We
observe that speculative ATFs are 0 for all benchmarks except
mesamipmap and mesatexgen. This is due to the fact that
only these two benchmarks have both instructions executed
speculatively and the exceptions caught as shown in Table IV.
On average, the speculative ATFs are still near 0, implying
that while speculative execution can affect ATP, its impact is
actually negligible for the VLIW processor we studied.
Table III also shows that branch predictor ATFs of all

benchmarks range from 0.0078 to 0.1835, and are 0.0449 on
average. The time variation between static scheduling time
and dynamic execution time is due to the time of flushing the
pipelines in case that the instructions on the mis-predicted
paths are executed before the branch targets are known.

benchmark speculated inst exceptions
crc 0 0
edn 0 0
lms 0 0
matmult 0 0
ndes 0 0
statemate 8 0
cjpeg 9462 0
djpeg 7588 0
mesamipmap 599172 10
mesatexgen 824499 10

TABLE IV
THE NUMBER OF SPECULATED INSTRUCTIONS AND EXCEPTIONS.

benchmark branch inst branch stall time mis-prediction
crc 5553 3812 953
edn 4121 600 150
lms 28537 4956 1239
matmult 9707 1912 478
ndes 6209 3724 931
statemate 59 52 13
cjpeg 2160542 551320 137830
djpeg 197424 55784 13946
mesamipmap 3563318 201828 50457
mesatexgen 6787772 1072312 268078

TABLE V
THE NUMBER OF BRANCH INSTRUCTIONS AND THE BRANCH

MIS-PREDICTIONS OF ALL BENCHMARKS

Although the combined branch predictor is used in the VLIW
processor, branch mis-predictions still occur and lead to the
stall time. As shown in Table V, branch stall time of each
benchmark is proportional to the number of mis-predictions,
which means ATP of the branch predictor can be improved
by increasing the accuracy of the branch prediction. However,
branch prediction only degrades the ATP of the processor by
a comparatively small degree, because branch stall time is a
relatively insignificant portion of the total dynamic execution
time.
Additionally, cache ATFs of all benchmarks range from

0.0779 to 10.1334, and are 3.627 on average as shown in
Table III, which means time variation from memory hierarchy
is not predictable. Because cache ATF is about 77% of ATF
for all benchmarks on average, architectural time predictability
of the VLIW architecture in study is mostly affected by time
predictability of memory hierarchy.



benchmark static sched time compute time cache stall time branch stall time speculative ATF cache ATF branch predictor ATF
crc 20774 20774 1619 3812 0 0.0779 0.1835
edn 37655 37655 54973 600 0 1.4599 0.0159
lms 260940 260940 336656 4956 0 1.2902 0.019
matmult 81395 81395 111573 1912 0 1.3708 0.0235
ndes 46005 46005 61850 3724 0 1.3444 0.0809
statemate 1154 1154 11694 52 0 10.1334 0.0451
cjpeg 12390627 12390627 38510460 551320 0 3.108 0.0445
djpeg 3839632 3839632 25169447 55784 0 6.5552 0.0145
mesamipmap 25787205 25787375 79860330 201828 0.00000659 3.0969 0.0078
mesatexgen 76954216 76954331 602816266 1072312 0.00000149 7.8334 0.0139

TABLE III
SPECULATIVE ATFS, CACHE ATFS AND BRANCH PREDICTOR ATFS OF A REALISTIC VLIW PROCESSOR.

C. Impact of The Number of Integer ALUs
The number of ALUs in a processor is another important

factor that can affect ILP and the average-case performance.
However, its impact on time predictability is not clear. Since
the arithmetic instructions of the benchmarks in our exper-
iments are mainly integer instructions, we perform some
sensitive experiments on the number of integer ALUs (IALUs),
which ranges from 1, 2 to 4.
As expected, increasing the number of IALUs reduces the

dynamic execution cycles of each benchmark as shown in
Table VI. However, it does not imply that the time predictabil-
ity will also become better. Actually as shown in Figure
2, ATF of each benchmark is increased with more integer
ALUs, indicating worse time predictability. This is because
with a larger number of IALUs, the compiler can also schedule
more operations per cycle, leading to less static scheduling
time. Interestingly, we found the reduction of static scheduling
time is more than the dynamic execution time. The reason is
that in a realistic HPL-PD processor, cache misses or branch
misprediction can have greater impact on performance with
more operations scheduled per cycle. However, this does not
mean that changing the number of IALUs is inherently not
time-predictable.
To verify our hypothesis mentioned above, we also conduct

experiments with 1, 2 and 4 IALUs on the ideal VLIW proces-
sor. We find that the ATF is always 1 regardless of the number
of IALUs and the dynamic execution time is reduced with the
increase of IALUs. Therefore, changing the number of IALUs
(or generally the functional units) itself should not affect the
time predictability; however, due to its interaction with other
time-unpredictable architectural components such as caches
and branch predictors, the architectural time predictability of
the processor could be affected.

D. Scratchpad Memory
Scratchpad memories (SPMs) [17] are used in embedded

processors to improve time predictability and power efficiency.
In a scratchpad memory system, the mapping of program
and data elements is performed either by the user or by the
compiler using a suitable algorithm, resulting in predictable
memory access time. In order to evaluate the effect of SPMs
on ATP, we replace the 2-level caches in the processor with
corresponding 2-level SPMs [18] including: a level-1 instruc-

benchmark 1 I-ALU 2 I-ALU 4 I-ALU
crc 33480 26205 26000
edn 101131 93228 89507
lms 605272 602552 591197
matmult 197997 194880 185282
ndes 125812 111579 108881
statemate 13076 12900 12512
cjpeg 53068587 51452407 50467769
djpeg 33063023 29064863 28794668
mesamipmap 113238593 105849533 103897385
mesatexgen 685328738 680842909 676586630

TABLE VI
THE dynamic execution time WITH THE NUMBER OF INTEGER ALUS

VARYING FROM 1, 2 TO 4.

Fig. 2. The ATF with the number of integer ALUs ranging from 1, 2 to 4.

tion SPM, a level-1 data SPM and a level-2 unified SPM.
The size and the latency of each SPM are the same as the
corresponding cache described in Section V.
In our SPM allocation method, both instructions and data

of a trace are assigned to SPMs by the compiler in the
descending order of the number of accesses until all SPMs
are filled. The assignment starts from the level-1 SPMs. For
the level-2 unified SPM, a fair assignment policy is adopted for
simplicity, that is a half of the level-2 unified SPM is assigned
to instructions and data respectively. The same policy based on
the number of accesses is used for the level-2 SPM allocation
as well.
As shown in Figure 3, ATFs of the processor with SPMs

are much less than those of the processor with caches, indi-
cating using SPMs can significantly enhance architectural time
predictability. On average ATF of the processor with SPMs is



benchmark cache spm spm/cache ratio
crc 26205 24600 93.88%
edn 93228 795655 853.45%
lms 602552 611683 101.52%
matmult 194880 1050607 539.10%
ndes 111579 313057 280.57%
statemate 12900 9618 74.56%
cjpeg 51452407 510420442 992.02%
djpeg 29064863 225820936 776.96%
mesamipmap 105849533 680353365 642.76%
mesatexgen 680842909 7072252472 1038.75%

TABLE VII
DYNAMIC EXECUTION TIMES OF ALL BENCHMARKS IN A PROCESSOR
WITH SPMS COMPARED WITH THOSE IN A PROCESSOR WITH CACHES.

1.02 and it is 3.65 times less than that of the processor with
caches. Because the memory stall time of a trace depends
on the assignment of instructions and data on SPMs, it can
be calculated precisely after the compilation and included
in the static scheduling time for the processor with SPMs.
However, the ATF of the processor with SPMs is still not
1, which is mainly caused by timing variation due to branch
mis-prediction and mis-speculative execution with exceptions.
However, dynamic execution times of all benchmarks except

crc and statemate are increased by using SPMs instead of
caches, as shown in Table VII. This is because the assignment
of instructions and data in SPMs is fixed and no space in SPMs
can be used by multiple instructions/data, leading to longer
memory stall time in case the total size of instructions and
data is larger than the size of SPMs or caches. In contrast, the
caches can dynamically reuse the limited space to get better
memory performance. For crc and statemate however,
due to their small code and data footprints, all their instructions
and data can be totally assigned into SPMs, hence leading to
better performance. In summary, compared to caches, SPMs
can significantly improve ATP; however, they can possibly
degrade the average-case performance of the processor if the
SPM space is not used efficiently2.

Fig. 3. ATFs of a processor with SPMs compared with ATFs of a processor
with caches.

2Please note this is just based on the SPM implemented in our experiments,
which is not an optimal SPM allocation method. Also, dynamic SPM allo-
cation may improve performance by reusing the SPM space more efficiently;
however, this is out of the scope of this paper.

E. Sensitive Experiments of Cache Size

We have also performed sensitivity analysis to examine the
impact of different cache sizes on cache ATF. In sensitive
experiments of the L1 instruction cache, the size of the L1
instruction cache ranges from 128 bytes, 256 bytes, to 512
bytes; while the size of the L1 data cache is fixed to be
1024 bytes, and the size of the L2 unified cache is fixed
to be 2048 bytes (other parameters are the same as those
described in Section V). As shown in Figure 4(a), cache ATF
of each benchmark except statemate is decreased with the
increase of the L1 instruction cache size, because cache stall
time is reduced with the decrease of the L1 instruction cache
miss rates as depicted in Figure 4(b). For statemate, it
is a very small benchmark whose instruction accesses suffer
mostly from cold misses, thus increasing the instruction cache
size does not lead to noticeable reduction on the instruction
cache misses and dynamic execution time. Consequently, the
impact on ATF is insignificant.
We also observe that both crc and matmult have small

code size. Thus when the instruction cache size increases
to 512 bytes and 256 bytes respectively, their instruction
cache miss rates drop to very small values (i.e. 0.12% and
0.3%). The cache ATF of crc decreases to 7.8% when the
instruction cache size is 512 bytes, because crc also has
small data footprint and the cache stall cycles are dominated
by instruction cache misses. By comparison, matmult has
larger data footprint, thus its cache ATF decreases when the
instruction cache size is increased to 256 bytes but stays almost
the same when the instruction cache size is increased to 512
bytes.
In sensitive experiments of the L1 data cache, the size of L1

data cache ranges from 256 bytes, 512 bytes, to 1024 bytes; the
size of L1 instruction cache is always 512 bytes; and the size
of L2 unified cache is always 4096 bytes (other parameters are
the same as those described in Section V). As demonstrated in
Figure 5(a), cache ATF of each benchmark is decreased with
the increase of the L1 data cache size, because cache stall time
is reduced with the decrease of the L1 data cache miss rate
as shown in Figure 5(b). We notice that while crc is a small
benchmark with small data footprint, most of its data accesses
are cold misses, thus increasing the L1 data cache size does not
significantly reduce its data cache miss rate. Since the cache
stall cycles are only a small fraction of the total execution
cycles for crc, its ATF is very small as compared to other
benchmarks. Specifically, the ATF is 9.3%, 7.5%, and 6.5%
when the L1 data cache size is 256 bytes, 512 bytes, and 1024
bytes respectively.
In sensitive experiments of the L2 unified cache, the size

of L2 unified cache ranges from 2048 bytes, 4096 bytes, to
8192 bytes; the size of both L1 instruction and data caches
are fixed to be 512 bytes (other parameters are the same
as those described in Section V). As shown in Figure 6(a),
cache ATF of each benchmark is decreased with larger L2
unified cache sizes, because cache stall time is reduced with
the decrease of the L2 unified cache miss rate as depicted in



(a) cache ATF (b) L1 instruction cache miss rate
Fig. 4. Cache ATF and L1 instruction cache miss rate sensitive to the size of L1 instruction cache.

(a) cache ATF (b) L1 data cache miss rate
Fig. 5. Cache ATF and L1 data cache miss rate sensitive to the size of L1 data cache.

(a) cache ATF (b) L2 unified cache miss rate
Fig. 6. Cache ATF and L2 unified cache miss rate sensitive to the size of L2 unified cache.

Figure 6(b). Overall we find increasing the L2 cache size is
most effective at improving ATF due to its effectiveness on
reducing the cache stall time. However, increasing the cache
size also adds hardware cost and may increase the cache access
latency, therefore there is a trade-off designers should make.

VII. CONCLUSIONS
In order to guide the time-predictable architectural design

for enhancing time predictability, we present the concept of
architectural time predictability to separate the timing uncer-
tainty concern of hardware design from software. Then we
propose a new metric named architectural time-predictability
factor to quantitatively evaluate architectural time predictabil-
ity. The availability of such a metric allows computer architects

to quantitatively evaluate the impact of different architec-
tural/microarchitectural techniques on time predictability of
processors, in addition to other important design objectives
such as performance and energy dissipation, thus enabling
them to make intelligent tradeoffs among time predictability,
performance and energy consumption, which often conflict
with each other. Without a metric like this, making quantitative
tradeoffs will be impossible, and design for time predictability
is at most an art, not science.

Our evaluation on a VLIW processor demonstrates that
the proposed metric can effectively assess architectural time
predictability of the processor, as well as architectural time
predictability of various architectural and microarchitectural



components. More specifically, our evaluation indicates that
while speculative execution, branch prediction and cache
memories can all affect architectural time predictability, caches
have the most significant impact on ATP of the VLIW pro-
cessor we studied. Moreover, our experiments quantitatively
show that using large caches can improve both performance
and time predictability; increasing the number of functional
units can improve performance but degrade time predictability
(though not inherently); and using SPMs instead of caches can
increase time predictability but may degrade performance.
This paper is our first step towards quantitatively studying

time-predictable and high-performance design of micropro-
cessors. Based on ATF, we can also evaluate the impact on
architectural time predictability for a variety of architectural
techniques, such as out-of-order execution, prefetching, multi-
threaded and multicore execution etc., which can help us either
enhance time predictability of existing processors or create
new architectures for better time predictability. Moreover, we
plan to use ATF to make better and quantitative tradeoffs
between time predictability and performance to support both
hard and soft real-time computing and/or a mix of real-time
and non-real-time applications with different criticalities.

REFERENCES

[1] L. Thiele and R. Wilhelm, “Design for time-predictability,” in
Perspectives Workshop: Design of Systems with Predictable Behaviour,
ser. Dagstuhl Seminar Proceedings, L. Thiele and R. Wilhelm, Eds.,
no. 03471. Dagstuhl, Germany: Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany,
2004. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2004/2

[2] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The
worst-case execution-time problem - overview of methods and survey of
tools,” ACM Trans. Embed. Comput. Syst., vol. 7, pp. 36:1–36:53, May
2008. [Online]. Available: http://doi.acm.org/10.1145/1347375.1347389

[3] M. Delvai, W. Huber, P. Puschner, and A. Steininger, “Processor support
for temporal predictability - the spear design example,” in Real-Time
Systems, 2003. Proceedings. 15th Euromicro Conference on, july 2003,
pp. 169 – 176.

[4] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and
M. Valero, “Hardware support for wcet analysis of hard real-
time multicore systems,” in Proceedings of the 36th annual
international symposium on Computer architecture, ser. ISCA ’09.
New York, NY, USA: ACM, 2009, pp. 57–68. [Online]. Available:
http://doi.acm.org/10.1145/1555754.1555764

[5] N. Yamasaki, I. Magaki, and T. Itou, “Prioritized smt architecture
with ipc control method for real-time processing,” in Real Time and
Embedded Technology and Applications Symposium, 2007. RTAS ’07.
13th IEEE, april 2007, pp. 12 –21.

[6] S. A. Edwards and E. A. Lee, “The case for the precision timed
(pret) machine,” in Proceedings of the 44th annual Design Automation
Conference, ser. DAC ’07. New York, NY, USA: ACM, 2007, pp. 264–
265. [Online]. Available: http://doi.acm.org/10.1145/1278480.1278545

[7] M. Schoeberl, “Time-predictable computer architecture,” EURASIP J.
Embedded Syst., vol. 2009, pp. 2:1–2:17, January 2009. [Online].
Available: http://dx.doi.org/10.1155/2009/758480

[8] D. Grund, “Towards a formal definition of timing predictability,” in
Workshop on Reconciling Performance with Predictability, Grenoble,
France, 2009.

[9] D. Grund, J. Reineke, and R. Wilhelm, “A template for predictability
definitions with supporting evidence,” in Bringing Theory to Practice:
Predictability and Performance in Embedded Systems, 2011.

[10] R. Kirner and P. Puschner, “Time-predictable computing,” in 8th IFIP
WG 10.2 International Workshop on Software Technologies for Embed-
ded and Ubiquitous Systems, Waidhofen, Austria, 2010.

[11] J. Lee and K. Asanovic, “Meterg: Measurement-based end-to-end per-
formance estimation technique in qos-capable multiprocessors,” Proc of
the 12the IEEE Real-Time and Embedded Technology and Application
Symposium (RTAS), 2006.

[12] V. Kathail, M. S. Schlansker, and B. R. Rau, “Hpl-pd architecture
specification: Version 1.1,” HP Laboratories Palo Alto, Tech. Rep., 2000.

[13] S. McFarling, “Combining branch predictors,” Western Research Labo-
ratory, Tech. Rep., 1993.

[14] “Trimaran homepage,” http://www.trimaran.org. [Online]. Available:
http://www.trimaran.org

[15] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen
WCET benchmarks – past, present and future,” B. Lisper, Ed. Brussels,
Belgium: OCG, Jul. 2010, pp. 137–147.

[16] C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: a tool for
evaluating and synthesizing multimedia and communications systems,”
Microarchitecture, IEEE/ACM International Symposium on, vol. 0, p.
330, 1997.

[17] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: design alternative for cache on-chip memory
in embedded systems,” in Proceedings of the tenth international
symposium on Hardware/software codesign, ser. CODES ’02. New
York, NY, USA: ACM, 2002, pp. 73–78. [Online]. Available:
http://doi.acm.org/10.1145/774789.774805

[18] M. Kandemir and A. Choudhary, “Compiler-directed scratch pad mem-
ory hierarchy design and management,” Design Automation Conference,
vol. 0, p. 628, 2002.


