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ABSTRACT
System virtualization is a powerful approach for the creation
of integrated systems, which meet the high functionality and
reliability requirements of complex embedded applications.
It is in particular well-suited for mixed-criticality systems,
since the often applied pessimistic manner of critical system
engineering leads to heavily under-utilized resources. Exist-
ing static resource management approaches for virtualized
systems are inappropriate for the dynamically varying re-
source requirements of upcoming adaptive systems. In this
paper, we propose a dynamic resource management protocol
for system virtualization that factors criticality levels in and
allows the addition of subsystems at runtime. The two-level
architecture offers flexibility across virtual machine borders
and has the potential to improve the resource utilization.
In addition, it provides the capability to adapt at runtime
according to defects or changes of the environment.

Categories and Subject Descriptors
J.7 [Computers in other Systems]: [Real time]; D.4.1
[Operating Systems]: Process Management—Scheduling ;
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems

General Terms
Algorithms, Design, Performance, Reliability

Keywords
System Virtualization, Resource Management, Multicore

1. INTRODUCTION
For the next generation of advanced embedded and cyber-
physical systems, there is a trend towards adaptability and
inclusion of self-optimization [14]. Systems that adjust their
goals and behavior at runtime are characterized by varying
resource requirements and demand dynamic resource man-
agement architectures. Integrated systems can often provide

a more resource-efficient implementation compared to mul-
tiple separated hardware systems. System virtualization is
a promising approach for the integration of multiple sys-
tems with maintained separation, and is therefore gaining
significant interest in the embedded real-time world [8]. The
hypervisor allows the sharing of the underlying hardware
among multiple operating systems (OS) in isolated virtual
machines (VM).

Virtualization is in particular well-suited for the consoli-
dation of subsystems of differing criticality (e.g. safety-
critical subsystems, mission-critical subsystems, and sub-
systems of minor importance [7, 3]). First, virtualization
facilitates multi-OS platforms: adequate operating systems
can be provided for the very differing demands of the sub-
systems, e.g. a highly efficient real-time operating system
for safety-critical tasks and a feature-rich general purpose
operating system for tasks with a human machine interface.
Multiple existing software stacks including operating sys-
tem can be reused to build a system of systems. Second,
the resource utilization can be increased significantly by the
addition of subsystems of low criticality to critical subsys-
tems. The dimensioning of the resources of critical systems
has to expect the often overestimated worst-case demand at
all times, which usually results in a poor utilization.

Virtualization solutions for the server and desktop market
apply highly dynamic approaches, e.g. VMware [17], are
however not real-time capable. Padala et al. [13] presented
an adaptive resource control system that dynamically ad-
justs the resource shares, however only in order to meet
quality of service goals. In order to guarantee real-time re-
quirements, existing virtualization solutions for embedded
systems typically assign the resources statically to the VMs.
This is not compatible with the dynamics of adaptive sys-
tems.

We present a more flexible multi-mode resource management
architecture that overcomes these limitations. A survey of
real-time mode change protocols can be found in [15], vir-
tualized systems are however not covered. The architecture
enables open systems, in which the addition of applications
or even subsystems at runtime is possible. This can for ex-
ample be utilized to allow the users of mobile systems to add
applications, with isolated virtual machines ensuring against
risks for the critical parts of the system [4].Copyright is held by the authors
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Figure 1: General Architecture: Hierarchical FRM

2. DYNAMIC RESOURCE MANAGEMENT
ACROSS VM BORDERS

2.1 The Flexible Resource Manager
We propose a flexible resource management approach for
the virtualized execution of mixed-criticality systems. Con-
sidered resources are computation time and memory. The
main characteristics are a two-level hierarchy as an implica-
tion of system virtualization, a mode change protocol, and
a real-time conflict resolution.

2.2 Two-level Hierarchy
System virtualization requires resource management deci-
sions on two levels. The hypervisor retains the ultimate
control of the hardware resources and assigns them to the
VMs. The guest OSs on the second level assign the obtained
resources to their tasks. Our two-level resource management
architecture is depicted in Figure 1. This example includes
three virtual machines of different criticality. It may be as-
sumed that the highest criticality level is assigned to safety-
critical applications under hard real-time restrictions. The
medium criticality level may be assigned to adaptation ac-
tivities that are responsible for potential corrections of the
local system, aligning it to updated global goals. The lowest
criticality level may be assigned to some non-mission criti-
cal applications, e.g. a routine memory check or a software
update.

Core component is the Flexible Resource Manager (FRM).
The FRM is an OS extension to improve the resource uti-
lization of self-optimizing real-time systems, which we devel-
oped in previous work [9]. Until now, the FRM addressed
non-virtualized architectures with a single operating system.
In this work, we adapt the concept to system virtualization
and FRMs are added on both levels. The Guest-FRM is
part of the guest OS and the Hypervisor-FRM is part of
the hypervisor. A partitioned approach with decisions on
both levels and communication in both directions follows.
The Guest-FRMs inform the Hypervisor-FRM about the
dynamic resource requirements and current resource utiliza-
tion. The Hypervisor-FRM’s resource allocation among the
VMs is based on this information. The Hypervisor-FRM in-
forms the Guest-FRMs about the assigned resources, which
facilitates each Guest-FRM to manage its resource share.

In contrast to static virtualization techniques where the par-
titions are assigned a priori to the VMs, our approach allows
for a dynamic resource allocation even across VM borders.
This is achieved by the cooperation of Hypervisor-FRM and
Guest-FRMs, made possible by the communication between
these components. The mechanism to realize the dynamic
resource management is based on a mode change protocol,
which is described in the following section.

2.3 Protocol Definition
Mode change protocols are highly suitable to support self-
optimizing real-time applications [12]. We refer to profiles
and transitions between them. A non-empty set of task pro-
files is assigned to each task. Task profiles represent service
levels or implementation alternatives, as they exist for exam-
ple in case of different optimization levels for self-optimizing
applications (relax optimality for lower resource utilization).
Each profile contains information about minimum and max-
imum resource requirements and is characterized by a qual-
ity. Profiles are specified by the developers of an application.
The behavior of a task profile is defined by three functions.
The enter -function is called on profile activation in order
to initialize the profile. The main-function is executed pe-
riodically as long as the profile is active. In case of a re-
source share reduction, the leave-function is used to release
resources in a controlled manner.

The Guest-FRM is in charge of switching between these pro-
files at runtime. It decides for each point in time and for each
task in which of its profiles it runs. A task can only allocate
resources in the range that is defined by its active profile.
The allocation of more resources requires a preceding pro-
file switch by the Guest-FRM. A profile Pτj of task τj is
therefore characterized by:

• resource allocation minimums and maximums:
∀ resources Rk with limit R̂k :
0 ≤ φmin

j,k ≤ φmax
j,k ≤ R̂k

• profile quality Q(τj) ∈ [0, 1]

• functions enter, main, leave

• subset of the set of task profiles to which the Guest-
FRM can switch from Pτj

In addition to task profiles, there are VM profiles, which
specify the minimal and maximal resource limits of a VM.
VM profiles unite the active profiles of the VM’s tasks. In
case of a task profile transition, the VM profile is updated
and communicated to the Hypervisor-FRM and used for the
resource assignment among the virtual machines. A VM
profile PV Mi is defined as follows:

• resource allocation minimums and maximums:
∀ resources Rk : ∀ tasks j of VMi :
Φmin

i,k =
∑

j φ
min
j,k , Φmax

i,k =
∑

j φ
max
j,k

• VM criticality χ(VMi) ∈ N+

• profile quality Q(VMi) ∈ N : Q(VMi) =
∑

j Q(τj)

• subset of the set of VM profiles to which the Hypervisor-
FRM can switch from PV Mi



A criticality level χ is assigned to each VM. A value of one
is set if the system is non-critical and a larger value denotes
higher criticality. The assignment of criticality on VM level
is no restriction, since our use case deals with the consolida-
tion of entire systems.

The set of active profiles is called configuration. The pos-
sibility to switch between profiles on task level and on VM
level enables a dynamic resource assignment on task level
across VM borders. A Guest-FRM can shift resources from
task τi to another task τj by activating a profile with a lower
resource allocation maximum for τi and activating a profile
with a higher resource allocation maximum for τj . Simi-
larly, due to the cooperation of the FRMs on the two levels,
resources can be reallocated from task τi of VM1 to task
τk of VM2. The Hypervisor-FRM activates a VM profile
with a lower resource allocation maximum for VM1 and ac-
cording to this, the Guest-FRM of VM1 activates a task
profile with a lower resource allocation for τi. This allows
the Hypervisor-FRM to activate a VM profile with a higher
resource allocation maximum for VM2 and the Guest-level
FRM of VM2 to activate a task profile with a higher resource
allocation for τk.

Common practice for real-time systems is the static alloca-
tion of the maximal required resources to each task. This
results in a poor utilization and lack of adaptability. In-
stead, the FRM tries to assign fractions of these resources
at runtime to other tasks whenever a task does not use the
complete amount of resources as needed in the worst case.
This is realized by the introduced profile switching mecha-
nism. If resources were reallocated from a task to another
task and the resource lending task at a later point in time
needs more resources than left, a resource conflict occurs.
Resource conflicts have to be solved under real-time con-
straints.

2.4 Real-time Conflict Resolution
We have to distinguish between two kinds of resource con-
flicts, caused by two kinds of dynamic resource reallocation.
The Guest-FRMs can reallocate resources among their tasks
and the Hypervisor-FRM can reallocate resources among
VMs. In both cases, an acceptance test precedes and a re-
source reallocation is accepted if and only if:

• ∀ Resources Rk , ∀ tasks 1..n :
n∑

i=1

φmax
i,k ≤ R̂k

• the FRM identifies a feasible reconfiguration

A reconfiguration is a set of profile switches that can be
performed by the FRMs to activate a configuration, which
fulfills the worst-case requirements of all tasks. The FRM
uses a configuration reachability graph with a node for each
configuration and edges that denote a possible configura-
tion switch. The duration to perform the configuration is
assigned to each edge. It is calculated by the sum of the
WCETs of the enter/leave functions that have to be exe-
cuted to realize the associated profile switches. If this recon-
figuration plan includes VM profile switches, and by conse-
quence profile switches by Hypervisor-FRM and at least two
Guest-FRMs, it is called global reconfiguration. In contrast,
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Figure 2: Conflict Resolution

a local reconfiguration includes only task profile switches
and is accomplished by a single Guest-FRM. Actually, it
is not sufficient to identify such a reconfiguration plan. The
schedulability analysis has to check whether the time re-
quired to execute the reconfiguration does not lead to a
deadline miss. At the moment, our approach includes only
Earliest Deadline First Scheduling (EDF) [11]. EDF is char-
acterized by a simple schedulability test (utilization ≤ 1).
The aperiodic reconfiguration is integrated into the periodic
schedule by a Total Bandwidth Server [16].

The reconfiguration plans for conflict resolution are stored in
conflict resolution tables. An entry is created after a recon-
figuration was accepted and lists the profile switches that
have to be performed to reach a state that guarantees all
deadlines. If a conflict is always solved by reconfiguration
to the initial state, there is at most one entry per task pro-
file. A larger table with the possibility to reconfigure to
multiple optimization levels is more promising, but requires
additional memory. The conflict resolution protocol is ex-
plained using the example of Figure 2.

Example. It is assumed that task A, executed in virtual
machine VM1, has a specific worst-case requirement of a re-
source and consequently, this resource share was assigned.
Since the actual resource usage of task A was significantly
below the reserved amount, the Guest-FRM switched to an-
other profile and made a fraction of the assigned resources
available to task B of the same VM. In case of a resource con-
flict, i.e. task A requires a larger resource share than left,
the Guest-FRM resolves the conflict by switching to task
profiles with a resource distribution that fulfills the timing
requirements of task A. The sequence of profile switches
that have to be performed to obtain this state was stored
in VM1’s local conflict resolution table when the acceptance
test for the resource reallocation was passed.

It is possible that the Guest-FRM cannot resolve the re-
source conflict, since a global reconfiguration is required to
achieve this. This is the case, if it was caused by a resource
reallocation to another guest system. A share of the re-
source reserved for virtual machine VM1 could have been
assigned to virtual machine VM2 by the Hypervisor-FRM,
and further assigned by VM2’s Guest-FRM to task C. The
Hypervisor-FRM informed VM1’s Guest-FRM about this
resource reallocation and the Guest-FRM noted this in the



local conflict resolution table. The conflict resolution is de-
picted in the UML sequence diagram of Figure 3. In case
of a resource conflict of task A, the Guest-FRM of VM1 in-
forms the Hypervisor-FRM, which prompts the Guest-FRM
of VM2 to release the supplemental resources. The Guest-
FRM of VM2 switches the profile of task C to one of lower
resource utilization. The Hypervisor-FRM can accordingly
switch the profile of both VM1 and VM2 and inform the
Guest-FRM of VM1 to ultimately activate the conflict re-
solving profile switch for task A.

2.5 Reconfiguration Management
The FRMs are in charge of determining the resource allo-
cations at runtime by selecting the active profiles. Profile
switches for optimization reasons are only induced by the
Hypervisor-FRM, which has information about the current
resource requirements of the entire system. As introduced
in the last section, the Guest-FRMs invoke local reconfigu-
rations in order to solve a conflict, however, they do not take
decisions on their own to improve the quality. A coopera-
tion of Hypervisor-FRM and Guest-FRM is nevertheless re-
quired, since profile switches on task level ultimately realize
the resource reallocation. The Hypervisor-FRM informs the
Guest-FRMs, which then invoke the task profile switches.

A heuristic approach is applied for taking these decisions,
comparable to [9]. Whether a reconfiguration has positive
effects or not, depends on the ratio between overhead of the
reconfiguration process to benefit, and on the duration after
which the system has to be re-reconfigured. The duration
depends on various stochastic events which are caused by
both the applications themselves and the environment. The
FRM permanently gathers information about the resource
utilization and computes with the help of Dynamic Bayesian
Networks a likeliness of change of the resource requirements.
The probabilistic analysis produces a mean time of resource
requirement changes, which is used as a forecast.

The criticality influences the resource distribution signifi-
cantly. In general, the higher the criticality level, the lower
the expected resource utilization. The initial resource al-
location assigns the worst-case demand to critical VMs. A
resource reallocation for optimization reasons takes there-
fore place from VMs of higher criticality to VMs of lower
criticality. If multiple reconfigurations can be performed,
those that favor the situation of a VM of higher criticality
receive always a significant better assessment. The profile
qualities are the tie-breaker parameter if multiple reconfig-
urations on one criticality level can be performed. It should
be mentioned that the probabilistic techniques affect only
the (secondary) objective to achieve (near) optimal usage of
resources. The primary critical real-time objectives remain
guaranteed in a fully predictable manner.

2.6 Scheduling
The most important resource is the central processing unit.
Our approach targets homogeneous multiprocessor systems.
System virtualization requires scheduling decisions on two
levels (hierarchical scheduling [10]): both the virtual ma-
chines and the tasks within the VMs have to be sched-
uled. There are two main approaches in the multiprocessor
scheduling domain. As opposed to partitioned scheduling,

migration of tasks among processors is possible under global
scheduling [6].

Partitioned scheduling is for multiple reasons the right ap-
proach for system virtualization. It introduces in general a
lower overhead, since the task migration of global scheduling
results in overhead for synchronization and lost performance
due to cache misses [6]. Furthermore, the consolidation by
system virtualization runs entire software stacks consisting
of guest operating system and tasks within a virtual ma-
chine. It is therefore a coarse-grained approach to reuse sys-
tems with verified (or even certified) characteristics, which
should not be split up. This is especially true for mixed-
criticality systems, since a mixing of criticality levels within
a subsystem should be avoided. Task migration is therefore
neither desirable nor in general technically possible across
operating system borders.

Our first approach allocates each safety-critical guest and
mission-critical guest to a dedicated processor. A proces-
sor is not shared between multiple critical guests (χ > 1),
but an addition of non-critical guests (χ = 1) is possible. If
critical and non-critical guests share a processor, the non-
critical guests are scheduled in background: whenever the
critical guest is not running, the idle processor is used to ex-
ecute the non-critical guest. Consequently, the execution of
a system with n safety-critical or mission-critical guests re-
quires a hardware platform with at least n processors. Con-
trary to task migration, the migration of an entire virtual
machine from one processor to another is less problematic
and in some situations of significant help, as explicated re-
garding Open Systems in the following subsection. To keep
the introduced mapping of critical guests to processors, only
non-critical guests are possibly migrated.

2.7 Open Systems
Open systems require dynamic scheduling algorithms and
an online acceptance test which validates the schedulability
whenever a new task enters the system [5]. The acceptance
test checks whether it is possible to add the arriving task to
the set of previously guaranteed tasks or not. Our approach
enables the addition of both entire guest systems and tasks
at runtime. Based on the fact that the FRM requires the
scheduling algorithm EDF, under which the processor may
be utilized up to 100% [11], a request to add a new real-time
task τk with a worst-case execution time of Ck and a period
of Tk to the existing task set of the subsystem of n tasks can
be accepted if and only if

Ck

Tk
+

n∑

i=1

Ci

Ti
≤ 1.

The much more complex acceptance test for the addition of
an entire new guest system is depicted in Figure 4.

(1) If there is a processor that is unused up to now, the new
guest system is assigned to this processor and the request is
accepted.

(2) If a non-critical guest system shall be added, it is as-
signed to the processor with the lowest utilization. The ad-
dition of a non-critical guest system does not endanger the
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Figure 3: Conflict Resolution: Global Reconfiguration Sequence

real-time tasks, since it is scheduled in background.

(3) If there is not a critical guest assigned to each processor,
the arriving guest system is assigned to the processor with
the lowest utilization among the processors without critical
guest. The schedulability of the new guest system is guar-
anteed, since it shares the processor only with non-critical
guests and obtains therefore highest priority. It is possible
that the addition of the new guest implies an unbalanced
distribution of guest systems to processors. Therefore, non-
critical guests are possibly migrated.

(4) If a critical guest is assigned to each processor, but there
is at least one guest of lower criticality level, the arriving
guest system replaces the critical guest of lowest criticality.
This could again lead to an unbalanced distribution among
the processors, for which reason non-critical guests are mi-
grated, if this improves the distribution.

If none of the checked conditions was valid, the arriving
guest system has to be rejected. Concerning step (4), it is
debatable whether a higher criticality level legitimates auto-
matically the replacement of an entire guest system. It de-
pends on the application domain and may be unjustified and
in this case has to be deactivated to favor system continuity.
But there are definitely situations in which this replacement
makes sense, for example when a mission-critical subsystem
is replaced by a safety-critical subsystem to protect device
or environment at the expense of an unsuccessful mission.

The Hypervisor-FRM performs the schedulability test for
subsystems. The FRM approach requires that both arriv-
ing tasks and arriving subsystems provide profiles, if they
have to be scheduled under real-time constraints. Non-real-
time applications and subsystems can be accepted without
profiles.

3. CONCLUSION
The presented resource management architecture focuses on
three basic concepts. System virtualization and its ability to
reuse subsystems is a powerful technique to meet the func-
tionality and reliability requirements of increasingly com-
plex systems and has potential to support the migration to
multiprocessor platforms. Mixed-criticality systems and vir-
tualization’s integration of both multi-source software and
subsystems with very differing characteristics are a good fit,
and resource sharing is particularly promising for this com-
bination. Open systems increase the flexibility enormously
and are of paramount importance for upcoming adaptive
embedded and cyber-physical systems.

By combining these three concepts, our approach provides
a flexible resource management architecture for the dynam-
ically varying resource requirements of integrated adaptive
systems. The two-level solution beyond virtual machine bor-
ders has the potential to increase the resource utilization
significantly compared to static approaches. Multiple criti-
cality levels are handled appropriately to achieve two goals:
the deterministic behavior of critical missions is guaranteed
and the service quality of non-critical missions is possibly
increased by shifting resources to them. The resource as-
signment can adapt to chances in application behavior and
environment and the addition of tasks and entire subsystems
at runtime is possible.

Subsystems can temporarily use resources that were reserved
for more critical subsystems, if those can be taken away
again in real-time in case of worst-case scenarios of critical
parts. The service quality of non-safety-critical subsystems
can be dynamically reduced in case of worst-case behavior
or overload scenarios of critical parts, if this is required to
protect the correct execution of critical tasks.

The approach is currently under development. We integrate
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it into our real-time hypervisor Proteus [1]. The implemen-
tation of our approach requires paravirtualization, since the
guest-level FRMs have to pass information to the hypervisor.
According to paravirtualization [2], modified guest operating
systems that are able to communicate with the hypervisor
are hosted. The requirement to modify the guest operating
system is outweighed by the advantages gained in terms of
flexibility of an explicit communication and cooperation of
host and guest.
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