
Network-Wide Energy Optimization for
Adaptive Embedded Systems

Patrick Heinrich
Fraunhofer Institute for Communication Systems ESK

Hansastraße 32
80686 Munich, Germany

+49 89 547088-383
patrick.heinrich@esk.fraunhofer.de

Christian Prehofer
Fraunhofer Institute for Communication Systems ESK

Hansastraße 32
80686 Munich, Germany

+49 89 547088-352
christian.prehofer@esk.fraunhofer.de

ABSTRACT
This paper discusses network-wide energy optimization of em-
bedded systems which can adapt by switching configurations. We 
model applications and their task chains in a network of embed-
ded devices, including sleep modes and change of configuration, 
which provides a basic adaptation mechanism. We present a 
formal model of the energy consumption for such systems and 
apply it to automotive embedded systems. In particular, we devel-
op new potential for network-wide energy savings as well as 
optimizations for adaptive systems. For instance, we show that 
non-optimal configurations may lead to a globally optimal system 
setup, if a system adapts regularly.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and 
Application-Based Systems – real-time and embedded systems.

General Terms
Design.

Keywords
Embedded systems, energy-efficiency, network-wide optimiza-
tion, adaptive systems, automotive.

1. INTRODUCTION
This paper discusses energy optimization of embedded systems 
which can adapt and switch configurations. While there is consid-
erable work on energy efficiency for embedded systems, we show 
that there is a need to model and optimize the network-wide ener-
gy consumption of such embedded systems.
We focus on automotive systems which consist of a number of 
electronic control units (ECUs), connected via a communication 
network. Applications (e.g. collision warning) consist of a chain 
of tasks, residing on different electronic control units. For each
task chain (i.e. application) different configurations are possible.
We consider the change between different applications (and their 
corresponding configuration) at runtime as an essential adaptation 
mechanism. The change between applications and their active 
periods are usage dependent. 

In our setting, ECUs have to execute real-time tasks. Systems with 
hard real-time constraints must meet the given deadlines. We 
assume that the individual tasks are given by worst-case execution 
time (WCET), their deadline, cycle time and the dependency on 
other tasks including the necessary communication. The vehicle 
applications are typically decentralized, i.e. parts of application 
software (tasks) are executed at different ECUs. This also means 
that different task allocations are possible for vehicle software. 
Most energy saving technologies optimize the energy consump-
tion of one component (i.e. CPU), mostly at runtime. Examples 
are dynamic hardware resource management and dynamic volt-
age/frequency scaling. Other methods are optimizing the efficient 
use of the resources, such as energy-efficient task scheduling 
[1, 2] or trade-offs, e.g. reducing quality of service to decrease 
energy consumption [3, 4]. 
A lot of research focuses on the reduction of system-wide energy 
consumption, which means ECU-wide in this paper. For instance 
dynamic power management (DPM), which deactivate unused 
components of a system to save energy (e.g. [5]). [6] uses dynam-
ic voltage scaling and DPM to reduce energy consumption sys-
tem-wide and considers the energy consumption of peripherals 
(e.g. memory) within standby and activation/deactivation time of 
the processor. A software framework to use the different hardware 
energy-saving techniques and find a trade-off between those is 
presented in [7]. This optimization aims to reduce system-wide 
energy consumption for different applications during runtime, but 
the energy for reconfiguration is neglected. The possibilities of 
network-wide energy optimization are not used in these works. A 
network-wide optimization is considered within wireless sensor 
networks, but with the focus of energy efficient message routing. 
The intention of this paper is to show the potentials and challeng-
es of network-wide energy optimization of adaptive systems by an 
analytical model. In particular, we show by example that optimi-
zations for single applications (task chains) may not result in 
network-wide optimal combination of several, alternating applica-
tions. We also show cases where additional hardware may reduce 
the energy consumption. Our model is based on the analysis of the 
energy consumption of the individual components and their de-
pendencies. In this paper, we use existing data of their energy 
consumption. Detailed measurements for specific components and 
activities like networking are non-trivial and go beyond the scope 
of this paper.

2. NETWORK-WIDE ENERGY OPTIMI-
ZATION
In this section, we discuss factors and challenges to model energy 
consumption. Besides the CPU power consumption, we consider Copyright is held by the authors



the energy to communicate via a network and the energy during 
sleep modes of components. This hardware may also have addi-
tional impact on the energy consumption of a system. An example 
is the calibration time of sensors, which is necessary to assure 
accurate results. During that time the ECU has to process a ne-
glectable workload, but changing to sleep mode is typically not 
possible. In this case, an ECU-wide optimization is difficult, 
because the local tasks need calibrated sensors. Network-wide 
optimization is able to allocate additional tasks to that hardware to 
use the unused ECU resources during calibration time. 
The challenge of network-wide optimization is to model the ener-
gy consumers and their dependencies correctly. Assuming a spe-
cific set of task chains, one for each application, we aim to find 
the right assignment of tasks to ECUs and the timing of sleep 
modes to ensure lowest energy consumption. This is a challenge 
because of the large number of parameters and aspects. A vehicle 
may have hundreds of functions and even a single hardware has 
different energy modes. As an example, [8] has five different 
energy modes.
We consider adaptive systems where the active applications, 
expressed as task chains, may vary over time. For each set of 
active task chains, we have several possible configurations and 
one has to be selected. Alternating task chains may then switch 
between different active task chains or just between different 
configurations of the same task chains. 
Changing task chains means activating and deactivating tasks and, 
if necessary, changing the network configuration, which both 
consume energy. 
Furthermore, the energy consumption depends on the usage of the 
system. If a configuration is used for a very short time, energy-
efficiency is less critical w.r.t. the overall system.

3. MODELLING ENERGY CONSUMP-
TION
In this section, we present a model for adaptive, network-wide 
energy consumption of embedded systems. A simple, running 
example shall show the energy consumption of different configu-
rations and the advantages of network-wide and usage behavior 
dependent optimization. The illustrated system is part of a vehicle 
application which changes its set of task chains (i.e. the applica-
tions) depending on external conditions. To simplify the example, 
the system just has one active task chain at any time. Tasks are 
executable at every node, except they need local resources (i.e. 
sensors). For simplicity, we assume that the execution time only 
depends on CPU frequency and it is assumed that a valid schedule 
can be found.
In our case study, the first application is object identification 
using radar sensors, which is used for adaptive cruise control 
(ACC). ACC uses intelligent object detection (e.g. for obstacles). 
The ACC task chain uses two radar sensor-ECUs and two ECUs 
which execute the necessary tasks (T) and communicate using a 
network. Figure 1 shows a configuration (C1a) and its hardware 
and the tasks with its dependencies. Task T0 captures the radar 
data and preprocess these. Task T1 identifies objects recorded by 
the radar sensor and task T2 compares the results of the object 
identification. Tasks T1 and T2 are used in two instances at the 
two sensors in the example. Task T3 is part of an application 
specific function, e.g. ACC, which is out of scope of this case 
study.

Figure 1: Task Chain ACC - Configuration C1a

Assuming ACC is not usable with a vehicle speed below 30 km/h 
the radar sensor is used for collision warning in this case. Thus we 
alternate between ACC and the second application, collision 
warning, in this example. The collision warning application which 
is less safety critical uses just one radar sensor. This task assem-
bled as configuration (C2a) is shown in Figure 2.

Figure 2: Task Chain Collision Warn. - Configuration C2

The tasks and the communication between these have specific 
parameters. We assume the worst-case execution time at a specific 
frequency is convertable to the task execution time te at frequency 
fte. The cycle time tc and the necessary communication per cycle ct
between tasks are also shown in Table 1.

Table 1: Task Properties
Task T0 T1 T2 T3

Worst-Case 
Execution Time

10 ms
@ 82 MHz

15 ms
@ 82 MHz

10 ms
@ 132 MHz

n/a

Cycle Time 100 ms 100 ms 100 ms n/a
Communication 
per Cycle

T0��1:
192 kBit

T1��2:
32 kBit

T2��3:
16 kBit

3.1 Modeling Energy-Consumers and System 
Assumptions
In this section, we detail the energy consumers of our case study. 
Hardware has a processing speed fhw and dependent power con-
sumption Phw. Highly energy efficient processors exist such as [8], 
which consumes 180 μA/MHz. Other embedded hardware with-
out energy-awareness such as [9] consumes about 5 mA/MHz. 
Assuming a medium energy-efficient hardware the sensor hard-
ware, which is used here, consumes 800 μA/MHz. The sensor-
ECUs work with 82 MHz and a supply voltage of 1.65 V, which 
result in a power consumption of 108 mW. We assume a more 
efficient ECU hardware. This needs 500 μA/MHz and consumes 
109 mW at 132 MHz and 1.65 V supply voltage. Both compo-
nents are able to change to a sleep mode, during which the hard-
ware consumes power Ps of 82.5 μW (50 μA). The change to the 
sleep mode itself and back to normal consumes time tcs, which is 
supposed to be 5 ms with the power Pcs of 108 mW respectively 
the energy Ecs of 0.54 mWs. The number of sleep ns depends on 
the tasks’ cycle time.
Communication also needs energy for the data transport. Within 
safety critical systems often time-triggered communication proto-
cols such as FlexRay are used, which need synchronized nodes 
and a common known communication schedule. This means 
bandwidth is reserved and a reconfiguration is necessary to reallo-
cate bandwidth. In the specific case of time-triggered communica-
tion not only sender and receiver need to be reconfigured, but all 
nodes within the network need to be reconfigured. We consider 

Sensor-ECU 1 Sensor-ECU 2 ECU 1 ECU 2

Network

T0 T0T1 T1 T2 T3

Sensor-ECU 1 Sensor-ECU 2 ECU 1 ECU 2

Network

T0 T1 T3



here a FlexRay communication controller [10] and the corre-
sponding transceiver [11], for which we can estimate energy 
consumption as follows. The FlexRay controller has a maximum 
power consumption of 165 mW and the FlexRay transceiver 
175 mW (normal mode). Using the maximum bandwidth of 
10 MBit/s a bit consumes 34 nWs/Bit per node, which is a very 
rough estimation, because of static energy consumers such as for 
synchronization. Due to this and for simplicity we estimate a fixed 
(not per node) energy consumption of 30 nWs/Bit in total within 
our case study.
In section 3.3 the energy for changing configuration is considered. 
We assume an activation/deactivation of one task consumes 1 ms 
and with that a task activation/deactivation energy Etc of
0.108 mWs, which includes the loading of software into memory 
and ECU-internal configurations. If the whole ECU changes to 
sleep mode, just the energy for changing to sleep mode and back 
is considered. The reconfiguration of the network consumes ener-
gy at every node’s communication controller as discussed above. 
[12] measured the switch of a communication schedule including 
acknowledgement of the nodes which is 80 ms. The energy to 
change the network configuration Enc within this case study 
(2 sensor-ECUs and 2 ECUs) is then 108.8 mWs per change. The 
number of task changes ntc, network changes nnc and ECU mode 
changes nmc can easily be obtained from the configurations. A 
further aspect is the different active times of the applications C1 
and C2, here C1 is 10% and C2 90% of time activated. This could 
be the case for a vehicle, which is commonly used within cities, 
e.g. taxis. The number of configuration changes is assumed to be 
60 per hour, e.g. every minute.
The calibration time of the radar sensor (as discussed at section 2)
is assumed to be 5 ms. This calibration is necessary after every 
sleep mode and means a restart 5 ms before the first (valid) calcu-
lation can be done.
To simplify the calculation, the costs for communication within an 
ECU are neglected. An ECU just has one sleep mode and a fixed 
cost for mode switching. The storing and buffering of data is not 
considered, that means memory costs are neglected. The cost for 
communication is assumed as fixed energy consumption per 
transferred bit; no overhead costs (e.g. error checks, sync, keep-
alive messages, routing, etc) are analyzed in detail. Sensors are 
allowed for deactivation, but after activation a specific time period 
(calibration time) is necessary before a sensor is usable. It is 
considered that sensor-ECUs and ECUs change to sleep mode 
after task execution.

3.2 Finding Optimal Configurations
In this section we present the model to estimate the energy con-
sumption of an application and calculate the energy consumption 
of different configurations, but without considering the change of 
configurations. The energy consumption for a specific configura-
tion is modeled with the summation of the energy consumptions 
of task executions, sleep periods with the associated mode chang-
es and communications. The energy consumption is calculated 
over a common multiple of all task periods tmult, which also de-
termines the number of sleeps ns. The equations to calculate the 
total energy consumption of a configuration are shown at equa-
tion (1-4).

������� = 	 (�
��
�,� + �������,�)��.  ��������� + ���� (1)

with

�
��
� = �
��
� � ��� = �	 
�,!��"�,!

#,!

$��
� �
��%&��%���� ' 
*-/"
�01 � ��� (2)

and ������� = ((��2�
 3  �
��
� 3 4� � ���) � ��) + 4� � ��� (3)

and

���� = 	 (5
 � ��)��.�� ��
��%
����2����
������ (4)

To optimize the energy consumption of configuration C1a (see 
Figure 1), the task allocation is changed. One possible configura-
tion C1b is shown in Figure 3, which reduces the energy con-
sumption by 2.80%. This is a result of the lower energy consump-
tion of ECU 1 compared to the sensor-ECUs. Figure 4 shows 
configuration C1c, which reduces the energy consumption further 
by 2.98%. This energy saving is a result of taking into account the 
calibration times of the sensors. Comparing configuration C1a and 
C1c an energy saving of 5.78% is reached. This shows the poten-
tial of network-wide optimization. 
The application “collision warning” has the configuration C2 
(Figure 2). The calculated energy consumptions of all the configu-
rations are shown in detail in Table 2.

Figure 3: Task chain ACC - Configuration C1b

Figure 4: Task chain ACC - Configuration C1c

Table 2: Energy consumption [mWs] of the configurations
Configuration C1a C1b C1c C2
Task Execution 75.83 63.66 76.96 32.47
Sleep Periods

+
Mode Change

0.017
+

16.20

0.019
+

16.20

0.018
+

10.80

0.022
+

5.40
Data Transport 2.40 12.00 1.44 0.96

Total 94.45 91.88 89.21 38.85

3.3 Optimal Configurations for Alternating 
Configurations
In this section we show that the combination of C1a and C2 re-
sults in a more energy efficient system instead of the combination 
of the most energy efficient configurations C1c and C2. 
The vehicle may change task chains to execute different functions 
or to be more energy efficient. Nevertheless changing ECU and 
network configuration also consumes energy as discussed in 
Section 3.1. Another aspect is the length of stay within a configu-
ration and the number of changes ncc during a time period. Equa-
tions (5) and (6) show the calculation of the total energy con-
sumption including energy for configuration changes Ecc. Factors 
������	�
��
�
����������
��������������������������
�����
�

�
�
�� = 6�������,� � 7 +  �������,8 � 9: + 4�� � ���    (5)

with

��� = �
� � 4
� + ��� � 4�� + ��� � 4��    (6)

Sensor-ECU 1 Sensor-ECU 2 ECU 1 ECU 2

Network

T0 T0
T1

T1
T2 T3

Sensor-ECU 1 Sensor-ECU 2 ECU 1 ECU 2

Network

T0 T0
T1

T1 T3
T2



Combining the C1c and C2, which are individually the energy 
efficient options, results in a set of alternating configurations as 
shown in Figure 5. (Note that the two alternating task chains are 
shown in one figure, even though not executed simultaneously.) 
However, the set of configurations C1a and C2 as shown at Fig-
ure 6 is more energy efficient (2.89%), because of the bigger 
similarity of the configurations. In detail, the set “C1c+C2” has to 
(de)activate one task, change mode of sensor-ECU 1 and recon-
figure the network. (Note that communication slot of task T2 is 
not usable of task T1, because of different size/bandwidth.) Con-
figuration set “C1a+C2” has to change sensor-ECU 2 and ECU 1 
to sleep mode and back, but no task (de)activation and no network 
reconfiguration. Table 3 shows the energy consumptions of these 
two sets. In this particular case, changing the network dominates 
the additional energy consumption. The small number of tasks has 
no real influence to the energy consumption which is not the case 
for larger systems.
This shows that a combination of most energy efficient configura-
tions may lead to sub-optimal energy efficiency. The reasons are 
the energy necessary to change configurations and the usage 
profile.

Figure 5: Alternating configurations (C1c+C2)
(not active at the same time)

Figure 6: Optimal set of configuration (C1a+C2), which
alternate (not active at the same time)

Table 3: Total energy consumption [mWs] of the sets of con-
figurations
Configuration Without energy for 

configuration changes
With energy for config-

uration changes
C1c + C2 43.89 45.71
C1a + C2 44.41 44.43

4. CONCLUSION AND FURTHER STEPS
This paper has discussed and analyzed the energy consumption of 
decentralized adaptive systems. Based on examples the potentials 
of network-wide optimization and the effects of configuration to 
the total energy consumption were shown. The goal was to pre-
sent the potentials and challenges of network-wide energy optimi-
zation of adaptive systems. We have shown that different configu-
rations of a single task chain may have considerable differences in 
energy consumption of 5.78%. In case of alternating task chains, 
locally optimal configurations do not result in globally optimal 
configuration. In our model the energy consumption difference 
due to this is 2.89%. The reasons are energy consumption for 
configuration changes and the usage profile of the system. Simi-
larly, adding additional hardware may improve energy efficiency. 

This results in further research challenges and also new energy 
saving possibilities.
Our model is based on existing data on energy consumption. 
Validating our model by measurements would require highly 
detailed measurements (in terms of time and functional isolation) 
and is not covered in this paper.
Our approach and first results allow one to design the configura-
tion depending on the use of the car to be more energy efficient. 
E.g. the configuration for taxis, which are most time in cities and 
below 60 km/h, may differ from normal cars. Another possibility 
is the calculation of different valid configurations, which are only 
energy-efficient for a specific kind of usage. The decision, which 
set of configuration is used, is done during vehicle runtime, e.g. 
based on the route of the car, which is known due to the naviga-
tion system.

5. REFERENCES
[1] Dong-In Kang, S. Crago, and Jinwoo Suh, “A fast resource 

synthesis technique for energy-efficient real-time systems,” 
in Proceedings of the 23rd IEEE Real-Time Systems Sympo-
sium RTSS 2002, IEEE, Ed, 2002.

[2] Jingcao Hu and R. Marculescu, “Energy-aware communica-
tion and task scheduling for network-on-chip architectures 
under real-time constraints,” in Proceedings of the Design, 
Automation and Test in Europe Conference and Exhibition 
(DATE’04), IEEE, Ed, 2004, pp. 234–239.

[3] C. A. Rusu, R. Melhem, and D. Mosse, “Maximizing the 
system value while satisfying time and energy constraints,” 
IBM J. Res. & Dev, vol. 47, no. 5, pp. 689–702, 2003.

[4] M. Baker, Topics in power and performance optimization of 
embedded systems, Dissertation, Arizona State University, 
2011, Available: http://hdl.handle.net/2286/jq8f23vj0yh

[5] L. Benini, A. Bogliolo, and G. de Micheli, “A survey of 
design techniques for system-level dynamic power manage-
ment,” in Transactions on Very Large Scale Integration 
(VLSI) Systems, IEEE, Ed, 2000.

[6] R. Jejurikar and R. Gupta, “Dynamic voltage scaling for 
systemwide energy minimization in real-time embedded sys-
tems,” in Proceedings of the International Symposium on 
Low Power Electronics and Design (ISLPED’04), 2004, p. 
78.

[7] G. Zeng, H. Tomiyama, H. Takada, and T. Ishihara, “A 
Generalized Framework for System-Wide Energy Savings in 
Hard Real-Time Embedded Systems,” in Proceedings of the 
5th International Conference on Embedded and Ubiquitous 
Computing EUC 2008, 2008, pp. 206–213.

[8] Energy Micro, EFM32G Reference Manual. Available: 
http://cdn.energymicro.com/dl/devices/pdf/d0001_efm32g_re
ference_manual.pdf.

[9] Freescale Semiconductor, “MPC5554-Microcontroller Data 
Sheet,” 2008.

[10] Freescale Semiconductor, “MFR4310 Reference Manual: 
FlexRay Communication Controllers,” 2008.

[11] NXP Semiconductors, “TJA1080A FlexRay transceiver -
Product data sheet,” 2011.

[12] P. Heinrich, D. Eilers, R. Knorr, M. Königer, and B. Niehoff, 
“Autonomous Parameter and Schedule Configuration for 
TDMA-Based Communication Protocols Such as FlexRay,” 
in Proceedings of Int. Joint Conference of IEEE TrustCom-
11/IEEE ICESS-11/FCST-11, IEEE, Ed, 2012

Sensor-ECU 1
T0

Sensor-ECU 2 ECU 1 ECU 2

Network

T0 T0 T1 T3
T2

T0T1

Sensor-ECU 1

T0

Sensor-ECU 2 ECU 1 ECU 2

Network

T0 T0 T1 T3T2T0T1


