

 Model-driven development of SOA-based Driver

Assistance Systems

Marco Wagner

Heilbronn University
Heilbronn
Germany

Marco.Wagner@hs-
heilbronn.de

Dieter Zöbel
University of Koblenz-Landau

Koblenz
Germany

Zoebel@uni-koblenz.de

Ansgar Meroth
Heilbronn University

Heilbronn
Germany

Ansgar.Meroth@hs-
heilbronn.de

ABSTRACT

This paper describes an approach towards model-driven

development of SOA-based Driver Assistance Systems. In the

field of assistance systems for truck and trailer combinations

Service-oriented Architecture (SOA) is a promising approach to

handle the heterogeneity and the high degree of distribution of

these systems. Through connecting or disconnecting trailers the

system is very likely to change at runtime which sets up the

demand of runtime adaption. This paper illustrates a process

model to use SoaML for modeling the components and

architectures of these systems. Based on these models, model-

driven runtime adaption can be carried out.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]: Computer-added software

engineering – model-driven development, process model, SOMA.

D.2.11 [Software Architectures]: Service-oriented architecture

(SOA) – runtime adaption. J.7 [Computers in other systems]:

Consumer Products – Embedded Systems, Driver Assistance

Systems.

General Terms

Design, Standardization.

Keywords

Embedded Systems, Driver Assistance Systems, Runtime

Adaption, Process Model, Service-oriented Architecture (SOA),

SOMA.

1. INTRODUCTION
Modern Driver Assistance Systems (DAS) are supporting the

driver in many situations. They, for example, assist the driver

while changing lanes or influence the brakes of a car in order to

keep it on the track. A new category of DAS are systems which

support the driver backing up articulated vehicles. From an

architectural point of view these systems are quite special. This is

mainly because the components needed are distributed over at

least two separate units. The connection of these units is not

permanent and one pulling vehicle may be hooked-up to several

different trailers over time. An example of these systems is the

visual assistance as shown in Figure 1. The idea is to calculate the

trajectories of the trailer and the overall vehicle and to overlay

these on the picture of a rear view camera mounted on the trailer

[16]. In order to do so, the steering angle and the angle between

truck and trailer, the so-called bending angle, are determined to

calculate these trajectories.

The previously mentioned system is just one option. Within the

real time systems group of the University of Koblenz-Landau

several other assistance approaches have been developed. Besides

a visual human computer interface the modality used could as

well be acoustical or tactile. An approach using modified

semantics of the steering wheel has been also investigated [17].

The number of possible variations of the system is highly

increased considering the different types of trailers that could be

used. This multitude of variations combined with a high degree of

distribution of the heterogeneous subsystems and the possibility

that the system could change at runtime through disconnecting or

connecting one or more trailers cannot be handled by state-of-the-

art software architectures in the automotive domain. Therefore, we

proposed a novel approach in [1], using service-orientation

combined with software agents. In this approach, all functionality

is encapsulated in fine-grained services. These services may be

located on any device within the articulated vehicle or even on a

nomadic device like a Smartphone. In order to set up the

assistance one or more software agents discover the currently

available services, determine the possible types of assistance and

orchestrate the services. This re-configuration is done every time

the configuration of the vehicle changes, for example, by

connecting a trailer or in case an electronic control unit (ECU) or

sensor system fails to work.

In this paper, we focus on identifying a modeling language as well

as a process model to specify adaptive embedded systems. As a

case study we are using the assistance approaches introduced

earlier. With the chosen language and methodology, we aim on

collecting and formalizing the assistance approaches being

developed so far. We also want to identify the functionalities

Copyright is held by the authors

Figure 1.

Components of the steering assistance for one-axle trailers.

.

needed in each type of assistance in order to find similarities. In

the next step, these functionalities are converted into service

specifications. Using these specifications architectures can be

developed for each type of assistance. By merging the modeled

architectures a library of SOA-based assistance systems is formed.

This library along with the specifications of the services provides

the basis for deploying model-driven runtime adaption.
The remainder of this paper is organized as follows: Section 2

introduces and categorizes several process models for

developing Service-oriented Architectures. In Section 3, the

customized process model we use is presented and differences to

state-of-the-art approaches are pointed out. Section 4 concludes

the paper and provides information on the future work within this

project.

2. PROCESS MODELS FOR SERVICE-

ORIENTED ARCHITECTURES
With the paradigm of Service-orientation getting more and more

popular, the number of process models to develop such systems

went up, too. In 2009 Thomas, Leyking and Scheid identified 21

different approaches in [2]. Most of the currently available models

are built to suit for some special purpose, require a particular tool

chain or concentrate on one field of application only. However,

none of them suits to the domain of automotive SOA solutions.

Instead of developing yet another model, we decided to find a

process model that can be customized to this special scenario. In

order to do so, criteria have been developed and the available

approaches have been evaluated based on these. The following

criteria have been defined:

1. Completeness of the specification phase

2. Independence of a specific field of application

3. Variability in the scenario of development

4. Tool support

5. Acceptance of the modeling language

Our first criterion is that the modeling approach has to allow a

complete system specification which includes the specification of

the services as well as the service architectures. This also implies

that a detailed technical point of view should be assured rather

than focusing on the business domain which is very common

using SOA. Finally, concrete methods or techniques on how to

carry out the steps within the process model should be proposed.

The second criterion is that the field of application should not be

restricted. Specialized models, used for Web Services for

example, are not very promising since their focus is too narrow.

Converting these to suit embedded automotive systems would

change too many of their essential ideas if possible at all.

Another criterion is that the starting position at the very beginning

of the process should be variable. This is important because the

process model should allow new developments as well as

migrating existing systems into SOA.

The fourth criterion is that tool support should be given. Using a

tool that for example allows modeling the system graphically

reduces development time. In addition, implemented validation

functionalities decrease the probability of semantic errors.

Finally, the last criterion is that the modeling language deployed

is widely-used and hereby accepted. This demand is set up to

ensure the readability of the models in the scientific community.

Using these criteria, eleven process models are analyzed. The first

one is a model proposed by Stein and Ivanov in [3]. The model is

based on ten phases starting with a business process model ending

with the deployment of the developed system. It focuses on

business processes and the modeling languages suggested belong

to the domain of Web Services. A similar model, the Enterprise

SOA Roadmap method is presented in [4]. This model also

emphasizes on business modeling since only one of the five steps

to be executed is technical. Both of the process models violate

criteria two that they shouldn’t restrict the area of application.

Other approaches lack concrete modeling techniques. Pingel [5]

for example, introduces a technology independent five phase

model extending well-known approaches. Another approach in

this category is a proposal of Mathas [6] which extends the

software lifecycle model by adding some SOA-specific tasks and

roles while staying coarse-grained. The Service-oriented

Modeling Framework developed by Bell is quite generic, too [7].

The idea of the author is to design a concrete process model for

every case of application derived from his abstract methodology.

Bell also proposes a special design notation which violates the

criterion of using a widely-used modeling language. All these

models are rather to be seen as suggestions on how a process

model may be set up than being a concrete model itself.

Unlike the previously named ones the models “Service-oriented

design and development (SOAD)” [8] by Papazoglou and van den

Heuvel and “Creating Service-oriented Architectures (CSOA)” [9]

developed by Barry are technical in nature. Both of them are

phase-oriented and contain practical techniques to be performed

in those phases. Through basing on modeling languages like the

business-oriented “Business Process Modeling Language

(BPML)” or the “Business Process Execution Language for Web

Services (WS-BPEL)” they cannot be used for other fields of

application without major changes. This fact violates criterion

two.

Another approach is presented by Nadhan in [10]. The author

describes a seven step procedure to migrate an existing solution

into a SOA-based system focusing on technical issues. Targeting

only on the migration scenario this model cannot be used for new

developments. In doing so criterion 3 is violated.

Some highly interesting approaches are using the Service-oriented

modeling language (SoaML), a notation created to model and

design SOA-based systems. This is a promising approach because

the language itself satisfies the criteria set up in being not

restricted to one field of application and being widely used since

it is a profile of the popular Unified Modeling Language (UML).

One of these process models is presented in [11]. The authors

describe the development of a Service-based monitoring system

by identifying and specifying the needed services. Although this is

very promising, it does not allow specifying the architecture of the

overall system which violates the criterion of enabling the user to

carry out a complete system specification. Another methodology

using SoaML introduced in [12] closely follows the processes

defined in the Model-driven architecture (MDA) approach

published by the Object Management Group. Tool support is

granted by the modeling tool “Modelio”. This process model

defines several specification steps within the computational

independent model and the platform independent model of MDA.

The approach is very close to “Service-oriented Modeling and

Architecture (SOMA)” presented in [13]. This phase-oriented

lifecycle model is based on the “Rational Software Architect” and

is also free of any restrictions with respect of the area of

application. Both of the lastly named methodologies are fitting the

criteria set up earlier in this paper. The reasons why SOMA is

favored is being more focused on technical issues and offering a

more straightforward workflow.

In the next section SOMA is presented in detail and the changes

to suit it to embedded automotive systems are explained.

3. CUSTOMIZING SOMA FOR

AUTOMOTIVE EMBEDDED SYSTEMS

3.1 Introduction to SOMA
The SOMA methodology has been published by Arsanjani in

2004 [14]. The idea of this approach is to set up a phase-oriented

process model that guides through the whole development

process. The different phases of the model can be seen in Figure

2. Within the first step named “Business modeling and

transformation”, the requirements, namely the business processes

are modeled and optimized to get a semi-formal description of the

workflow. This is normally done using the Business Process

Model and Notation (BPMN). Simultaneously, the concomitant

project management processes are defined and the computation

platform to be used is selected. In SOMA this step is called

“Solution management”.

In order to achieve an architecture model, first the service

candidates are identified based on the components and flows of

the business model. Therefore, SOMA recommends a number of

identification techniques that might be used. Next, within the

specification phase, the candidates are transformed into services.

This is done by modeling the Service Interfaces, Service Contracts

and the Participants which realize the functionality of the services.

Also, the Service Architecture of the overall system is defined. In

the next phase, the so called “Realization”, the focus swaps from

functional to non-functional requirements. This includes for

example the development of the abstraction layers or the

communication model. The following step “Implementation” is

used to generate or write code that realizes the functionalities and

in addition, the code is being tested to fulfill its requirements. In

the last phase of SOMA the developed system is put into

operation. The functionalities are monitored at runtime and the

infrastructure and the network are managed to ensure stability and

performance.

In the next subsection, our approach for a Model-driven

development of SOA-based Driver Assistance Systems will be

described in detail. Focusing only on the functional issues of the

system, the business process based SOMA approach is

customized towards a methodology suitable of handling

embedded automotive applications. Therefore, the phases

“Business modeling and transformation”, “Identification” and

“Specification” are refined.

3.2 Customized phases of SOMA
In its first phase, Service-Oriented Modeling and Architecture

conducts the development of a business process model. This step

aims at identifying the tasks and parties within the workflow.

Therefore, SOMA recommends the usage of BPMN as a graphical

representation to specify business processes. This makes sense for

developing SOA solutions in a business context. BPMN is,

however, not created to describe technical systems like DAS. To

solve this issue, we propose to use an UML 2 Activity Diagram.

Similar to BPMN models, Activity Diagrams describe workflows

consisting of a number of activities. These activities are important

here because they accumulate the functionalities of the system. As

they are not restricted to the business domain, Activity Diagrams

allow modeling embedded systems without violating the

semantics of its components. Figure 3 shows the Activity Diagram

of the visual steering assistance system introduced in Section 1.

All actions that have to be done to carry out the assistance are

modeled as activities. The control flow describes how they

cooperate to represent the DAS.

The Activity Diagram itself may be modeled using any kind of

description of the system. This includes a specification as well as

a systems requirement model or a description in natural language.

Within a migration scenario, code may be analyzed to create the

diagram.

Having finished the modeling of the workflow using an Activity

Diagram, the next step is to identify the service candidates. In

SoaML they are called Capabilities [15]. These Capabilities

represent entities that offer some distinct functionality and

therefore are predestined to become services. Following the

recommendations of SOMA, one of the most straightforward ways

to identify these service candidates is to analyze the BPMN model

created in the first step. This is done by extracting the lanes of the

Figure 2. Overview of the SOMA phases [13].

.

Figure 3. Activity model of the visual steering assistance.

.

model which represent some participating party and transfer them

into Capabilities. The tasks executed by these parties are modeled

as the operations those Capabilities provide. Eventually, this leads

to a coarse-grained model with a relatively low number of

services.

In order to design a highly flexible SOA-based Driver Assistance

System, we are confident that the services identified with the

SOMA method are too coarse-grained. Within this context, the

granularity should be enlarged to a certain extend. Considering

this demand and the fact that the starting point of this step has

changed from a BPMN model to an Activity Diagram, the

identification phase has to be changed. In our modified phase, we

transfer each activity of the Activity Diagram shown in Figure 3

into a service candidate. The result of this transformation in the

case of our example system can be seen in Figure 4. For example,

the Capability “GetSteeringAngle”, which reads out the current

steering angle, may be used in other assistance scenarios as well.

A more coarse-grained modeling might prohibit such re-use.

The next phase of the SOMA methodology is the specification.

Since this phase is very extensive, it is split up into four sub-

phases; specification of the Service Interfaces, Service Contracts,

Participants and the Service Architectures.

The specification of the Service Interfaces in SOMA is done by

deriving them from the Capabilities. In order to do so, each

Capability is represented by a single Service Interface.

Furthermore SOMA recommends to specify a number of sub-

interfaces of the UML type “Interface” and to assign the

operations of the capability to one of these sub-interfaces. Beyond

that, no rules or guidelines are given on how many sub-interfaces

should be created or how the operations should be distributed

onto these.

Obtaining a common structure is essential to be able to use the

model for runtime adaption. Therefore, we have to extend SOMA

in this phase, too. This is done by defining two extra rules. At

first, any functionality that is provided by the service is mapped

into its own sub-interface. These sub-interfaces are so called

provided interfaces. The second rule is to create a sub-interface

for any functionality that is needed by the service in order to

fulfill its tasks. The interfaces modeling the need for a particular

service are called requested interfaces. The result of these

guidelines can be seen in Figure 5. As an example, the interface of

a service is shown that offers to calculate the trajectory of the

pulling vehicle. This provided service can be seen on the left

encapsulated into its own sub-interface. To be able to calculate

the trajectory, it needs the current value of the steering angle. This

necessity is expressed by the sub-interface on the right.

In a second specification step, Service Contracts are defined. For

interacting with a Service Interface the consumer needs to know

how to access it. Therefore one or more Service Contracts are

defined. Service Contracts formalize the exchange of information

between the provider and the consumer of a service [15]. SOMA

develops contracts by specifying two attributes: the roles and the

protocol of such a service call. The roles can either be “Service

Interface”, “Interface” or “Class” types according to the SoaML

specification. Describing the protocol, any adequate diagram

defined in UML may be used such as interaction or state diagram.

We decided to add several constraints to the generic SOMA

approach, in order to use the contracts for runtime adaption. One

of these constraints is the obligatory use of a Sequence Diagram

to model the protocol. This regulation helps to keep a common

structure while the Sequence Diagram is able to model further

attributes such as time limits. The second constraint is that the

messages exchanged are in Remote Procedure Call (RPC) style.

Compared to the document style exchange used for Web Services,

this method keeps the amount of data transmitted low which is

crucial for embedded computing. Figure 6 presents such a

contract created by the changed SOMA methodology using the

example of a service developed to determine the steering angle of

the vehicle. In this contract, two roles are defined: a provider

called “SteeringAngleService” and a consumer. The RPC style

protocol is defined in a dedicated Sequence Diagram pictured at

the bottom of the figure.

Step three within the specification phase of SOMA is the

introduction of Participants. In the systems domain a Participant

might be a system, application or component that offers or

consumes a service [15]. SOMA uses this type as some kind of

particular unit. Therefore, a Participant is created and assigned

with one or more ports where each port represents a Service

Interface. The idea is to map the functionalities encapsulated

Figure 4.

The Service Candidates derived from the Activity Diagram.

.

Figure 5. The Service Interface of a service to calculate the

trajectory of the drawing vehicle.

.

Figure 6. The Service Contract of a Service to determine the

steering angle of the drawing vehicle.

.

within the services to hardware units to use these units for the

Service Architecture specified in the last step of the specification

phase. The Service Architectures being developed by this

approach are rather System Architectures. This is because they do

not only illustrate the relations between the software components

but also between the hardware components hosting the software.

Since one of the goals of our approach is to allow the services to

be distributed on any ECU within the vehicle combination, we do

not want to map them onto hardware entities at this point.

Therefore, SOMA has to be modified at this step, too. In doing so

we are using the broadly framed specification of a Participant in

SoaML. Since a Participant is defined to be a unit that provides or

consumes services, it is also possible to specify it to be an

instantiated process. This process may run on any hardware

system of the vehicle. This definition avoids mapping the services

to a particular hardware device without violating the specification

of SoaML. For example, the Participant realizing the steering

angle service is shown in Figure 7.

The last step of the SOMA specification phase is to specify the

architecture of the overall system. The Service Architecture

illustrates the relationships between the participants involved

using ports and contracts. This is done by assigning the ports of

the participants to roles within the contracts. This time, we are

able to adopt the procedure recommended by SOMA. The idea of

our approach is to create a Service Architecture model for every

type of DAS for articulated vehicles developed. An example can

be seen in Figure 8.

In this figure only a small part of the architecture is shown in

order to obtain lucidity. It shows how the Participant realizing the

calculation of the trajectory of the drawing vehicle uses the

contract of the steering angle service to obtain the data needed.

Finalizing the specification phase by modeling the Service

Architectures, the phases of SOMA conducting the modeling of

functional attributes is finished. Since the development of non-

functional components is not in scope of this paper our modified

SOMA process model is completed.

3.3 Model-driven adaption
As a result, this customized process model helps to build up two

different databases that can be used for model-driven runtime

adaption. First of all, a Service Inventory and hereby a catalog of

functionalities is established. It contains a list of the services as

well as a description of what they do and how they can be

accessed. Second, a library of Service Architectures is created.

This library forms a well-defined collection of assistance types.

Using this data, the types of the services needed to represent a

specific kind of assistance can be determined. These databases

form the basis of two different adaption approaches.

The first idea is to pursue an architecture-driven approach. Using

a software agent that overlooks the whole system, the currently

available services are determined. This is followed by matching

them to the catalog of Service Architectures. In doing this the

types of assistance realizable can be detected. Additionally, the

information about the relationships between the Participants

realizing the service can be used to connect them and build up the

assistance system.

The information modeled in the Service Interfaces could be used

to execute adaption as well, using an interface-driven approach.

Since every Service Interface contains not only the services

provided but also the services consumed, it is able to explore

whether the requested services are currently available within the

system. Starting from a data sink, this could be used to determine

possible assistance types as well. In the given example, the video

out, which is able to offer visual assistance, would start looking

for an overlay service which is modeled as its requested interface.

The search for this service can be done by invoking the Service

Discovery functionality. Having found such an overlay service in

the current vehicle configuration, this service itself starts to search

for its requested partners. If the chain can be finished and every

service requested can be found, the kind of assistance is ready to

be used. If some service needed is missing, the adaption

mechanism stops.

4. CONCLUSIONS AND FUTURE WORK
By modifying SOMA, we have found an approach to model

embedded automotive systems basing on Service-oriented

Architecture. In order to evaluate the process model, several types

of assistance systems have been specified. The systems

successfully modeled so far, are the visual assistance for the one-

axle and two-axle trailer as well as the acoustical and haptic

assistance for the one-axle trailer. The assistance using modified

semantics of the steering wheel has also been specified using this

approach.

The process model presented fulfills the demands described in

Section II. We are able to collect and formalize already existing

assistance approaches as well as new developments. By finding

service candidates, the functionalities needed within the different

DAS are identified. Since theses functionalities are merged into a

common database, similarities can be detected. Going through the

Figure 7. The Participant realizing the steering angle Service.

.

Figure 8. Part of the Service Architecture for the visual steering assistance.

.

different steps of the specification phase these functionalities are

converted into service specifications as well as architecture

specifications. This data is collected within two databases and

allows to be used for model-driven runtime adaption as described

in Section III.

Having now established the process model and specified the

functional attributes of the services and Service Architectures, we

are now able to move on with the non-functional components.

The next step is the implementation of a Quality of Service (QoS)

parameter for each service. This parameter needs to reflect the

performance of each service affected by influences from inside

and outside the component. It should be easily computable and

allow a comparison between services of the same functionality.

The QoS parameter will also be taken into account when a service

selection algorithm is set up. We also aim on using the

parameterized model for online verification conducted using

formal methods. This will be done by transferring the SoaML

model into hybrid automata.

Another element of our future work is to define a communication

model. State of the art in the modern automobile has the ECUs are

connected using a mixture of automotive specific network

systems. The communication system to be developed has to be

highly flexible and independent from the kind of network used. At

the same time the overhead produced should be minimal.

Achieving this, the unique characteristics of automotive network

systems will be taken into account.

The integration of the approach into AUTOSAR will also be

discussed within the project.

The last step of the project will be to validate the architecture

using a full scale prototype.

5. ACKNOWLEDGMENT
Marco Wagner has been supported by a grant of the “Thomas

Gessmann-Stiftung”, Essen, Germany.

6. REFERENCES

[1] Wagner, M., Zöbel, D. and Meroth, A. Towards an adaptive

Software and System Architecture for Driver Assistance

Systems. In Proceedings of the 4th IEEE International

Conference on Computer Science and Information Technology

(ICCSIT 2011) (Chengdu, China, June 10-12, 2011). Wiley-

IEEE Press, Piscataway, NY, 2011, Vol. 4, 174-178.

[2] Thomas, O., Leyking, K. and Scheid, M. Serviceorientierte

Vorgehensmodelle: Überblick, Klassifikation und Vergleich.

Informatik Spektrum, 33 (4). 363-379.

[3] Stein, S., Ivanov, K. Vorgehensmodell zur Entwicklung von

Geschäftsservicen. in Fähnrich, K.-P. and Thränert M.

Integration Engineering – Motivation, Begriffe, Methoden und

Anwendungsfälle, Leipziger Informatik-Verbund, Leipzig,

2007.

[4] Hack, S. and Lindemann, M. Enterprise SOA Roadmap. SAP

Press, Bonn, 2007.

[5] Pingel, D. Der SOA-Entwicklungsprozess. in Starke, G. and

Tilkov, S. SOA-Expertenwissen, DPunkt Verlag, Heidelberg,

2007, 187-200.

[6] Mathas, C. SOA intern. Hanser Verlag, Munich, 2007.

[7] Bell, M. Service-Oriented Modeling. John Wiley & Sons,

Hoboken, NJ, 2008.

[8] Papazoglou, M. and Van Den Heuvel, W.J. Service-oriented

design and development methodology. International Journal

of Web Engineering and Technology, 2 (4/2006), 412-442.

[9] Barry, D. Web services and service-oriented architecture.

Morgan Kaufmann Publishers, San Francisco, 2003.

[10] Nadhan, E.G. Seven Steps to a Service-oriented Evolution.

Business Integration Journal, 1 (2004), 41-44.

[11] Gebhart, M., Moßgraber, J., Usländer, T. and Abeck, S.,

SoaML-basierter Entwurf eines dienstorientierten

Überwachungssystems. in 40. Jahrestagung der Gesellschaft

für Informatik, (Leipzig, 2010).

[12] Elvesæter, B., Carrez, C., Mohagheghi, P., Berre, A.-J.,

Johnsen, S. G. and Solberg, A. Model-Driven Service

Engineering with SoaML. in Dustdar, S. and Li, F. Service

Engineering, Springer-Verlag, Vienna, 2011, 25-54.

[13] Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy,

S. and Holley, K. SOMA: A method for developing service-

oriented solutions. IBM Systems Journal, 47 (3), 377-396.

[14] Arsanjani, A., Service-oriented modeling and architecture:

How to identify, specify, and realize services for your SOA,

2004. Retrieved August 12, 2011, from IBM developerWorks:

http://www.ibm.com/developerworks/library/ws-soa-design1/.

[15] The Object Management Group (OMG) Service oriented

architecture Modeling Language (SoaML) - Specification for

the UML Profile and Metamodel for Services (UPMS).

Specification Beta 2, OMG, Needham, MA, 2009.

[16] Berg, U. and Zöbel, D., Visual Steering Assistance for

Backing-Up Vehicles with One-axle Trailer. in Vision in

Vehicles 11, (Dublin, 2006), North-Holland Publishing.

[17] Berg, U. and Zöbel, D., Gestaltung der Mensch-Maschine-

Interaktion von Lenkassistenzsystemen zur Unterstützung der

Rückwärtsfahrt von Fahrzeugen mit Anhänger. in Mechatronik

2007 Innovative Produktentwicklung, (Wiesloch, 2007), VDI,

575-588.

