
Modeling and Analysis of Adaptive Embedded Systems
using Adaptive Task Automata

Leo Hatvani
Mälardalen University

721 23, Västerås Sweden
leo.hatvani@mdh.se

Cristina Seceleanu
Mälardalen University

721 23, Västerås Sweden
cristina.seceleanu@mdh.se

Paul Pettersson
Mälardalen University

721 23, Västerås Sweden
paul.pettersson@mdh.se

ABSTRACT
Most embedded systems need to continually function in
unpredictable environments. One way to achieve high de-
pendability is to make the system adaptive to changes, if
possible, without sacrificing maintainability. To be able to
reason about adaptivity, one needs a modeling and analy-
sis framework suitable for adaptive systems. Recently, we
have introduced Adaptive Task Automata, to meet this goal.
In this paper, we overview the current functionality imple-
mented in the Adaptive Task Automata framework (ATA), as
well as some of the challenges encountered during the devel-
opment. In the end, we enumerate possible future extensions
of ATA.

Categories and Subject Descriptors
D.4.7 [Organization and Design]: Real-time systems and
embedded systems; F.2.2 [Nonnumerical Algorithms and
Problems]: Sequencing and scheduling; F.1.1 [Models of
Computation]: Automata (e.g., finite, push-down, resource-
bounded)

Keywords
task automata, schedulability verification, adaptive task au-
tomata, adaptive embedded systems

1. INTRODUCTION
Modern industrial systems are constantly facing the pos-
sibility of encountering component failure, or unexpected
situations in which the system may be forced to operate
under lower capacity. Consequently, many of such systems
are designed to provide different levels of quality of service.

Various systems that regulate quality of service in relation
to the available operational capacity already exist (e.g. a
voice compression codec can reduce bitrate if not enough
bandwidth is present), while additional research is carried
out to provide safety critical systems with adaptivity features.
Hence, in such cases, formal verification must cater not only

Copyright is held by the authors

for the temporal and functional system properties, but also
for its ability to dynamically adapt itself, as a response to
external and/or internal stimuli.

In this work, we present a high-level overview of the Adap-
tive Task Automata (ATA) framework (section 3) that we
have recently proposed [9] as a model of adaptive embedded
behavior. We have mainly focused on providing the possibil-
ity to model and verify systems where the task set can be
regulated based on the extra-functional system properties.

The currently analyzable properties are related to the schedu-
lability of the individual tasks in the system, as well as the
schedulability of the entire system. By verifying the schedula-
bility of the system at runtime, it becomes possible to model
systems that will automatically keep themselves schedulable
in all possible situations, as demonstrated by the example in
section 4.

To fully comprehend the ATA framework, a short overview
of the related framework Task Automata is first presented
in section 2.

2. OVERVIEW OF TASK AUTOMATA
The model of task automata is a model for real time sys-
tems with asynchronous tasks, first introduced with non-
preemptive scheduling by Norström et.al [12] and extended to
include preemptive scheduling and dynamic priority schedul-
ing by Fersman et.al [7, 6]. By basing our work on this
model, we are able to model and verify schedulability of the
embedded systems with task release patterns that can be
described in the model of timed automata and executed by
scheduling policies with static or dynamic priorities, such as
fixed priority scheduling, earliest deadline first, etc. Most of
the work on task automata assumes uniprocessor systems,
but supports an array of scheduling policies.

Since task automata can be encoded as timed automata [8],
they can, in principal, be analyzed using the existing tools



created for verification of timed automata, such as Uppaal1

[10], Kronos 2 [3] or others. However, Times3 [1] is a tool that
conveniently supports modeling, simulation, schedulability
analysis, formal verification and code generation in the model
of task automata.

Next, we will give an intuitive description of the task au-
tomata model. For a more formal definition, we refer the
reader to the paper by Fersman et.al [6].

A simple automaton modeling some task release pattern is
presented in Figure 1. It consists of two locations, one edge,
and a clock x. Location l1, denoted by the concentric circles,
is the starting location. An invariant (x ≤ 6) is tied to l1.
The edge between l1 and l2 is annotated by a guard x ≥ 5,
and a clock reset x := 0. The guard prevents the location
change (from l1 to l2) if the clock x is below 5, while the
invariant of l1 ensures that the location is left before x goes
over 6.

t1(C1=2, D1=5, P1=1)

l1 l2

x ≥ 5
x := 0x ≤ 6

Figure 1: A task automaton snippet

Once the edge is taken, two things happen: clock x is reset
and task t1 is released. Task t1 is denoted by a triple (C1 =
2, D1 = 5, P1 = 1) that defines the task’s computation time
C1, relative deadline D1, and priority P1, respectively.

Once the task is released it is added to the task queue. The
task queue is formed as q = [ti(ci, di), . . . , tj(cj , dj)], where
ci is the remaining computation time, and di the relative
deadline of task ti.

Task execution is modeled via a scheduler function that takes
two parameters: q and a non-negative integer δ, and returns
a new task queue q′, which models q after being executed δ
time units. Assuming the previously mentioned q, and task
ti as currently executing on the CPU, the result would be
q′ = [ti(ci − δ, di − δ), . . . , tj(cj , dj − δ)]. Task ti has been
successfully executed once ci reaches zero and di is greater
or equal to zero. If di reaches zero first, it means that the
task has missed its deadline, and the system is considered
unschedulable.

During the verification, the individual automata are con-
nected into an automata network, against which reachability
properties are evaluated. In the rest of the paper, the au-
tomata that are modeling the task release patterns are called
task release automata.

3. ADAPTIVE TASK AUTOMATA
In the task automata model, the interface between task
release automata and the rest of the automata network that

1http://www.uppaal.org/
2http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/
kronos/
3http://www.timestool.com/

simulates the execution of tasks is very limited. This means
that only task release instructions are propagated from the
task release automata to the scheduler and queue. After a
task is released, following the status of the task is not easily
feasible. One costly and complicated way to do it would be
to make a model of a scheduler and queue within the task
release automaton.

t1(2, 3), t3(1, 3), . . .

task release
queue manip.

sched()
inqueue()

FPS,EDF, . . .
(a)

(b)

(c)

(d)

Figure 2: Essential components of the ATA model:
(a) the task scheduling policy, (b) the task queue, (c)
task automata network modeling task release pat-
terns, and (d) model of the environment.

To address the above issue, our contribution, that is, the
adaptive task automata framework designed for modeling
and verification of adaptive embedded systems, provides a
mechanism to gather data from the queue and scheduler via
a set of predicates. This solution improves the potential to
dynamically manipulate the queue in more ways than just
adding tasks to it. A visual overview of the structure of ATA
is given in Figure 2.

The predicates model the schedulability of one or many tasks
in the queue. In other words, we can find out whether
the schedulability of the entire system has been already
compromised, and even check if it will be compromised in
case another task would be added to the queue.

The full formal description of the work can be found in our
recent paper [9].

t1(C1=2, D1=5, P1=1)

l1

l2

x ≥ 5 ∧ sched(t1)
x := 0

x ≤ 6

x ≥ 5 ∧ ¬sched(t1)
x := 0

t2(C2=2, D2=10, P2=1)

l2

Figure 3: An adaptive task automaton snippet

In Figure 3, we present an adaptive task automaton similar
to the task automaton from Figure 1, but extended with the
schedulability predicate sched/1, and another edge and task
that can be released in case that the original task would not
complete before its deadline. The adaptive task automata

http://www.uppaal.org/
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
http://www.timestool.com/


framework provides a set of predicates for modifying task
release patterns based on the state of the queue:

• sched/1 predicate is evaluating whether a task can be
released so that it will complete in time for a given
ready queue. However, it is still possible that another,
higher priority task will be released, in which case
the latter will preempt the original task and render it
unschedulable.

Another purpose of predicate sched/1 is to evaluate
whether an already released task can complete in time.

• inqueue/1 predicate can be used to find out whether
the task is present in the queue or not. This predicate
evaluates to true if the task is present in the queue or
currently executing on the CPU.

• sched/2, a more advanced version of the predicate
sched/1, takes two parameters, t1 and t2, as follows:
sched(t1, t2). The predicate evaluates whether the task
t1 can complete in time if the task t2 would be released
at the current moment, assuming that the predicate
inqueue(t1) holds.

By using the above presented predicates, it is possible to
create a temporary inversion of priorities. A task of higher
priority can wait before being released, in order to ensure that
a task of lower priority completes in time. When modeling
a system in our framework, one has to carefully consider
whether such behavior is wanted in the system.

Besides the basic predicates sched/1, sched/2, and inqueue/1,
we provide two additional, derived predicates:

• sched all/0 that evaluates whether all tasks in the cur-
rent queue are going to meet their respective deadlines;

• sched all/1 that evaluates whether the tasks in the
queue will meet their deadlines provided that a new
task is introduced into the queue.

While implementing the predicates for ATA framework in
timed automata,we had to overcome some issues related to
the encoding and decidability of the schedulability analysis.
One of the most noticeable issues is that the schedulability
testing predicates rely on testing whether the difference be-
tween two clocks is less than a certain constant. This causes
the entire system to be categorized as diagonally constrained
timed automata that have been proven to be decidable under
the same conditions as diagonal-free timed automata [2].

4. EXAMPLE
4.1 Robot teleoperation
As an example, let us look at a model of a hypothetical
system for teleoperating a robot. This particular robot is
equipped with a video camera that sends the image to the
user and a microphone that transmits surrounding sound to
the human operator. The human operator interfaces with the
robot via a user console. We can think of the user console as
a self-contained, battery-powered computer running a single
core CPU.

The console provides live feed of what the robot “sees” and
“hears”, while transmitting the operator’s commands back to
the robot. To keep the real-time requirements, a processing
loop has been created, being executed every 100 time units.
The processing loop first scans whether any commands from
the operator have been received, acts upon them, then pro-
cesses incoming video frame and audio packet, and displays
them to the operator.

Let us assume that one of the design goals of the system is
to extend its battery life, while maintaining the hard real-
time requirements on its functionality. To achieve that, a
CPU with three clock frequency scaling modes has been
built into the console. The full power mode provides the
maximum performance while sacrificing battery life. The
extended life mode provides more battery life with a small,
20% performance degradation. The third mode is most suit-
able for handling low battery situations, since it significantly
degrades CPU performance to half of the full performance.

The designers have chosen to keep audio and input processing
at a constant performance and have built the adaptivity
feature into the video processing task, by providing three
different versions of the task, which can be released based on
the available resources. These versions are shown in table 4
along with all the other tasks present in the system.

On the other hand, if the audio is not critical to the operator,
he/she can mute it, thus freeing the part of the processing
cycle otherwise taken up by the audio processing. This
enables the system to schedule a higher quality task for
video.

To model the reduced processing capacity, we are releasing
a high priority task (tint1 or tint2) at the start of each pro-
cessing cycle. Their computation times correspond to the
missing capacity.

A model of such system in our ATA framework consists of:

• a task release automaton that models the release pat-
tern of the input task;

• a task release automaton that models the release pat-
tern of the audio task, while providing audio muting
features;

• an automaton modeling user interaction that mutes
the audio;

• an automaton modeling the reduction in battery levels
that causes reduction of available CPU resources;

• a periodic release automaton modeling different levels of
interference corresponding to the reduction of resources;

• an adaptive automaton modeling the task release pat-
tern of the video task.

The large number of automata is due to our wish to distin-
guish between different tasks and to model external events
as separate automata. This can be reduced all the way to a
single task release automaton, while sacrificing simplicity of
the individual automata.



P T D C Description
tint1 7 100 100 20 Low interference
tint2 6 100 100 50 High interference
tinput 5 100 100 10 Input processing
taudio 4 100 100 20 Audio processing
tvideo 3 100 100 70 High quality video
t′video 2 – 100 40 Medium quality video
t′′video 1 – 100 20 Low quality video

Figure 4: Robot teleoperation user console tasks.

tvideo

t′video

t′′video

Start
x ≤ 0

Release tvideo

Release t′video

Release t′′video

x ≥ 100

sch
ed(

tvide
o)

sched(t′video)∧
¬ sched(tvideo)sched(t ′′

video )∧
¬ sched(tvideo)∧
¬ sched(t ′

video )

x ≤ 100

x ≤ 100

x ≤ 100

x := 0

Figure 5: Adaptive task automaton model for the
user console.

In Figure 5, we present the adaptive automaton for the video
task. The automaton tests whether the best priority task
can be released first, and then downgrades the quality of the
video task progressively until one task can be released. In
the general case, this automaton may deadlock due to the
lack of an edge that would be taken if no variant of the video
task fits into the task set, yet by verifying the entirety of
the system, it is possible to conclude that the entire system
never deadlocks.

An inaccurate schedulability estimation might occur in case
of multiple task releases in zero time. We address this by
defining the order in which tasks are admitted to the queue,
ensuring that the adaptable task is always admitted last.

We can see that the worst case happens when the operator
wishes to use the audio, while the battery is at its lowest
setting. In that case, the video task t′′video is released and the
video quality is low. In all the other cases, the system auto-
matically detects the possibility to release a higher quality
video task and it does so.

4.2 Scalability of the approach
Another example involves the usage of the sched all predicate.
We would like to create a scalable scheduling automaton
that would enable us to schedule job ti and its n fallback
variants with the fallback sequence ti → ti+1 → . . . →
ti+n. This can be accomplished easily in our framework by

creating a nondeterministic automaton that can jump into
the job release location if the job can be scheduled. Then,
by introducing determinism via the addition of the edge
priorities [4], we can encode the fallback sequence into the
automaton. An example of such automaton is sketched in
Figure 6.

ti

ti+n

Start
x ≤ 0

Release ti

Release ti+n

x ≥ T

sch
ed

all(
ti)

sched all(ti+n)

x ≤ T

x ≤ T

x := 0

Figure 6: A universal automaton for scheduling a
task with n fallback tasks.

5. RELATED WORK
Schedulability analysis and formal verification of adaptive
embedded system models specified in high level languages has
recently received increased attention. For instance, several
approaches on verifying adaptive embedded systems specified
as UML Statecharts are presented by Schaefer [13]. Schneider
et al. [14] have proposed a method to describe and analyze
adaptation behavior in embedded systems in which the data
flow is augmented with quality descriptions that are used by
configuration rules to determine potential adaptations. The
application of schedulability verification has already targeted
multiprocessor systems [15], or satellite systems [11], and
results on generalized frameworks for schedulability analysis
have also been provided [5]. However, in these studies the
non-schedulability of the system cannot be predicted soon
enough such that the system does not reach such a state, but
only after a task misses its deadline.

6. ONGOING AND FUTURE WORK
At the time of writing this paper, we have established de-
cidability of verifying reachability in uniprocessor ATA with
fixed priority scheduling and sched predicate. We are looking
at the boundaries of the applicability of our framework, and
at which scheduling policies can be adapted to work within
our framework considering that the sched predicate requires
significant support from the automaton implementing the
scheduling policy.

We are also planning to add several new functions that
would dynamically alter the queue of the running system,
thus simulating forceful termination of the tasks. Last but
not least, we will investigate ways of keeping the system
running even in cases when the tasks break their deadlines.



Acknowledgment
This research has been supported by the Swedish Research
Council, which is gratefully acknowledged.

7. REFERENCES
[1] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson,

and W. Yi. Times: a tool for schedulability analysis
and code generation of real-time systems. In Proc. of
International Workshop on Formal Modeling and
Analysis of Timed Systems, Lecture Notes in Computer
Science. Springer-Verlag, 2003.

[2] B. Bérard, A. Petit, V. Diekert, and P. Gastin.
Characterization of the expressive power of silent
transitions in timed automata. Fundam. Inf.,
36(2-3):145–182, Nov. 1998.

[3] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis,
and S. Yovine. Kronos: A model-checking tool for
real-time systems. In A. Hu and M. Vardi, editors,
Computer Aided Verification, volume 1427 of Lecture
Notes in Computer Science, pages 546–550. Springer
Berlin / Heidelberg, 1998. 10.1007/BFb0028779.

[4] A. David, J. H̊akansson, K. Larsen, and P. Pettersson.
Model checking timed automata with priorities using
dbm subtraction. In E. Asarin and P. Bouyer, editors,
Formal Modeling and Analysis of Timed Systems,
volume 4202 of Lecture Notes in Computer Science,
pages 128–142. Springer Berlin / Heidelberg, 2006.

[5] A. David, J. Illum, K. Larsen, and A. Skou.
Model-Based Framework for Schedulability Analysis
Using UPPAAL 4.1. CRC Press, 2011/12/27 2009.

[6] E. Fersman, P. Krcal, P. Pettersson, and W. Yi. Task
automata: Schedulability, decidability and
undecidability. Information and Computation,
205(8):1149 – 1172, 2007.

[7] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi.
Schedulability analysis of fixed-priority systems using
timed automata. Theor. Comput. Sci., 354:301–317,
March 2006.

[8] E. Fersman, P. Pettersson, and W. Yi. Timed

automata with asynchronous processes: Schedulability
and decidability. In In Proceedings of TACAS 2002,
pages 67–82. Springer-Verlag, 2002.

[9] L. Hatvani, P. Pettersson, and C. Seceleanu. Adaptive
task automata: A framework for verifying adaptive
embedded systems. In J. de Lara and A. Zisman,
editors, FASE’12: Proceedings of the 15th International
Conference on Fundamental Approaches to Software
Engineering, LNCS, pages 115–129, 2012.

[10] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a
Nutshell. Int. Journal on Software Tools for Technology
Transfer, 1(1–2):134–152, Oct. 1997.

[11] M. Mikučionis, K. Larsen, J. Rasmussen, B. Nielsen,
A. Skou, S. Palm, J. Pedersen, and P. Hougaard.
Schedulability analysis using uppaal: Herschel-planck
case study. In T. Margaria and B. Steffen, editors,
Leveraging Applications of Formal Methods,
Verification, and Validation, volume 6416 of Lecture
Notes in Computer Science, pages 175–190. Springer
Berlin / Heidelberg, 2010.

[12] C. Norström, A. Wall, and W. Yi. Timed automata as
task models for event-driven systems. In Real-Time
Computing Systems and Applications, 1999. RTCSA

’99. Sixth International Conference on, pages 182 –189,
1999.

[13] I. Schaefer. Integrating Formal Verification into the
Model-Based Development of Adaptive Embedded
Systems. PhD thesis, TU Kaiserslautern,
Kaiserslautern, Germany, Oct. 2008. ISBN
978-3-89963-862-2.

[14] K. Schneider, T. Schuele, and M. Trapp. Verifying the
adaptation behavior of embedded systems. In
Proceedings of the 2006 international workshop on
Self-adaptation and self-managing systems, SEAMS ’06,
pages 16–22, New York, NY, USA, 2006. ACM.

[15] F. Yu, G. Li, and N. Xiong. Schedulability analysis of
multi-processor real-time systems using uppaal. In
Information Science and Engineering (ICISE), 2010
2nd International Conference on, pages 1 –6, dec. 2010.


	Introduction
	Overview of Task Automata
	Adaptive Task Automata
	Example
	Robot teleoperation
	Scalability of the approach

	Related Work
	Ongoing and Future Work
	References

