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ABSTRACT
Traditionally, Wireless Sensor and Actuator Networks or
(WSANs) have been used as a standalone technology for
a specific application purpose such as heating control. The
current growth in embedded ICT infrastructure is leading to
the deployment of a wide range of embedded systems in our
environment, which motivates System of Systems [5] archi-
tectures and ultimately, with deployment of IP technologies
into this space, the Internet of Things [10] paradigm. How-
ever, to simplify system operation and maintenance as well
as to reduce costs, WSANs must become an infrastructure
that is capable of providing services to multiple end users
concurrently rather than requiring a new infrastructure for
a new purpose. Here, we present the concept of a WSAN
infrastructure as a WSAN Cloud, which provides services to
multiple application and data collection systems following
the cloud computing paradigm. Each instance of the WSAN
cloud (i.e. a specific set of services configured by a particular
end user/system) utilises the WSAN infrastructure as if it
was a unique network provisioned for specific requirements.
A realisation of the WSAN Cloud in the form of Network
as a Service or NaaS requires a WSAN to support a service
orientated software architecture allowing other systems to
provision the WSAN infrastructure for their specific needs
and allowing multiple systems to use the WSAN uniquely
and concurrently. The WSAN-Service Orchestration Archi-
tecture ”WSAN-SOrA” presented here, is a novel approach
to service provisioning of embedded networked systems and
enables WSANs to act as cloud ready infrastructures that
facilitate on-demand provisioning for potentially multiple in-
dividual backend systems.

1. INTRODUCTION
While research in the areas of routing, channel access, duty
cycle adaption, power control and such like are relatively
mature in the WSAN space, approaches to virtualisation,
shared sensor network infrastructure access and the sub-
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sequent operations, administration and maintenance (Op-
erations, administration and management (OAM)) systems
necessary to manage such networks are still in their infancy.
Traditionally WSANs are designed around specific applica-
tions and as such are seen as fit for purpose deployments.
This tight coupling between the application and the WSAN
is suited to short terms and small scale deployments but be-
yond that the utility of the WSAN is minimised. For next
generation WSANs the likes of which are envisioned by con-
cepts like internet of things which in turn is driving future
WSN application spaces such as Smart Cities [14], [7] will
see large scale and potentially massively distributed sensor
networks[9]. The fit for purpose WSAN design and deploy-
ment common nowadays will not be sustainable in next gen-
eration WSANs networks, where multiple applications and
end users are expected to act on a single infrastructure har-
moniously. Smart cities is a view to the future for cities
where novel services will be offered based on the digital in-
tegration of city infrastructures through computing systems
that enable on-demand service delivery. Smart cities will
revolutionise the way in which organisations will communi-
cate in future urban environments, which will be based on
the paradigm of integration and on-demand service delivery.
While WSANs are seen as an enabling technologies for next
generation networks a shift away from the single application
serving a single end user is needed. WSANs are a rapidly
evolving technology but in their current form will not be
able to fully support the Smart Cities vision due to the cost
associated with equipment, deployment, and operations and
maintenance of such an extended embedded systems infras-
tructure. One way of reducing cost is for WSANs to be
able to make its infrastructure available on-demand simul-
taneously to multiple users. In the context of this paper we
view these users as enterprise tier systems based on cloud
computing concepts that aim at virtualising the underly-
ing hardware infrastructure down to the WSAN tier. Cloud
computing [13], [8] is a mechanism that offers end users a
platform where dynamically scalable resources are accessible
virtually as services over the Internet. With WSANs being
seen a promising enabler of smart cities applications and
the like, the widely held belief is that the synergies between
WSANs and cloud computing will offer a potential solution
to managing next generation networks [9] in the form of both
data and infrastructure virtualisation. Cloud computing en-
ables WSAN infrastructure and resources to be delivered as
a service and in this paper we refer to the virtualization of
WSAN infrastructure as a WSAN Cloud. Cloud computing
follows SPI (Software, Platform and Infrastructure) model



of service delivery. In the context of this paper, we focus
on the IaaS (Infrastructure as a Service) concept for deliv-
ering the WSAN Infrastructure as a service to the end user
and providing a mechanism to provision the infrastructure.
IaaS encompasses three domains i.e. ”Compute, Storage and
Network”, and here we focus on the Network as a Service or
NaaS aspect. In order to evolve a WSAN into a cloud in-
frastructure for NaaS, all tiers of a WSAN must support the
functions associated with the Service oriented Architecture
(SoA) [3] principle. We divide the WSAN cloud infrastruc-
ture into three tiers.

• (tier 1) Node Network: This tier consists of a network
of largely wireless embedded devices which are capa-
ble of sensing and actuation. These devices are envi-
sioned to be based on IPv6/6LowPAN technology with
wireless network interfaces, such as IEEE802.15.4, to
communicate with the Gateway tier.

• (tier 2) Gateway: This is the middle tier connecting
the node network to the backend system. This tier
has enhanced computation capabilities and software
services in line with backend systems, with interfaces
to the Back-end/Enterprise Core tier being RPC, web
services or sockets.

• (tier 3) Back-End/Enterprise Core: This is the main
and computationally most powerful tier, usually run-
ning on a server suite. The core provides a platform for
implementing components such as management frame-
works and end-points for other users/systems that re-
quire data or interfacing with the WSAN domain.

The SoA principle is well established at the Enterprise and
Gateway tier, however it is a relatively new concept for de-
vices in the embedded Node Network tier. Traditionally,
embedded wireless sensor/actuator devices have had low
computational power not capable of supporting SoA con-
cepts. However, recently these devices have become power-
ful enough to support SoA [2] [11] along with the required
underlying operating systems such as SOS [4] , Lorien [12]
and Squawk [1] to provide necessary platform to implement
SoA principles at the embedded Node Network tier.

In this paper we introduce the concept of the WSAN Cloud.
This cloud is an organisational domain to which other or-
ganisation/enterpise systems connect and provision the in-
frastructure to deliver services using the NaaS paradigm.
In order for the WSAN infrastructure to support delivery
of NaaS and act as a cloud infrastructure, the ability to
support SoA is required at all tiers of the infrastructure.
Provisioning a SoA infrastructure where there are a large
number of devices at the Node Network tier is a complex
problem being faced by high-end networks as well. As man-
ual provisioning greatly increases the likelihood of errors, au-
tomated processes are required. Provisioning becomes even
more complex in cloud infrastructures where a single phys-
ical infrastructure is expected to be provisioned a number
of times for concurrent usage. In this paper we present an
orchestration architecture for automatic provisioning of the
proposed WSAN Cloud.

2. PROVISIONING FOR NAAS

2.1 Provisioning
Provisioning is an ambiguous term which is widely used in
networking. For example [6], [15] use the term provisioning
to define the configuration of a sensor network application.
Provisioning in the context of this paper refers to service
provisioning in a network to support the concept of NaaS.
Although the focus of our research presented here considers
the WSAN Cloud within building management, the software
architecture proposed is not restricted to buildings but can
be used for a wide range of smart infrastructure. As delivery
of NaaS requires provisioning, we must support provisioning
at the following tiers.

• Node Network Tier: Provisioning device services.

• Gateway Tier: Provisioning service to open end-points
and data processing logic.

• Enterprise Core Tier: Provisioning of high-end ser-
vices to manage segments of the cloud infrastructure
for each end user.

2.2 Delivering NaaS
NaaS is required to provide reusability of theWSAN in order
to maximise resource utilisation where resources here are the
WSAN hardware i.e. (network devices at the Node Network
tier). The user of a NaaS can request a service based on cer-
tain requirements e.g. a new Subnet or Humidity readings
in a specific WSAN zone. In order to facilitate user re-
quirements the WSAN Cloud needs to provision services, in
particular on the embedded devices such as a sensing service
or a routing services in a similar fashion as in a local area
network where VLAN, OSPF or trunk-port services are pro-
visioned. In a network with hundreds of devices, however, a
requirement for the following is needed:

1. Expedite the process of provisioning services on de-
vices.

2. Reduce the need for the human in the loop to mitigate
erroneous output.

3. Reusability of provisioning information for other net-
works

4. A rapid provisioning engine.

Using automation the provisioning process can be expedited
and errors can be reduced. Quantifying the benefits of au-
tomated service provisioning can be viewed in terms of time
saved, no requirement for expert personnel and reduced labour
costs. However, in order to understand how automation ex-
pedites the process of provisioning services and reduces the
errors associated with the human in the loop let us consider
an example of provisioning a WSAN. In order to provision
a service in a WSAN we need people with expert knowledge
of this type of network. A console is used to access the net-
work and the devices so that they can be configured based
on the end-user requirements. Furthermore in addition to
this being a tedious and time consuming task, human in-
tervention may also cause error as the experts have to go
through complex configuration parameters manually. Such
a manual process demands manpower and time, and this
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Figure 1: WSAN SOrA

can prove costly for large deployments. Rapid provision-
ing allows an automated provisioning process to remedy all
the forementioned disadvantages. The rapid provisioning
concept is extensively applied in the Compute and Storage
Cloud domain, i.e. VMware is an example of a tool for
rapid provisioning. However, the network cloud component
is still problematic where custom provisioning is still an is-
sue and is true for both wired and wireless networks. The
custom provisioning process is long and error prone mainly
due to manual service provisioning and the requirement for
network experts. WSANs have been traditionally seen as an
isolated, specialised domain, where the application of cloud
computing and SoA are relatively novel concepts. In order
for a WSAN to be cloud ready the following properties are
necessary:

• Need to expose the WSAN as a NaaS providing cloud
infrastructure.

• The WSAN can be used by multiple systems with dif-
ferent requirements.

• Automated and rapid provisioning.

3. SERVICEORCHESTRATIONARCHITEC-
TURE

The WSAN Service Orchestration Architecture (WSAN-SOrA)
as shown in Figure 1a is the architecture we propose and
have developed for cloud ready WSANs to deliver NaaS and
to automate service provisioning and de-provisioning in the
WSAN Cloud. The key attribute of this architecture is to
provide an orchestration engine for provisioning services at
all tiers of the WSAN Cloud. The ability to support service
provisioning in the WSAN by multiple end user systems sup-
ports reusability of the WSAN in form of NaaS.

TheWSAN-SOrA provides a comprehensive automation sys-
tem for provisioning and de-provisioning, by introducing the
concept of model based orchestration. Orchestration is a
process which enables the WSAN Cloud to be provisioned
or de-provisioned rapidly, driven by Orchestration Model for
Service Provisioning (OMSP) shown in Figure 1b. Orches-
tration allows the rapid provisioning of services in network
devices, gateway and core to fulfill end-user requirements.
In a traditional single tier WSAN network, devices are con-
figured either using a terminal to the device i.e. ”command
line”or using some sort of web interface and in most case are
hard-coded. The reason for such practice lies in the fact that
WSANs were never expected to offer cloud services, that is
providing services for multiple end users. A static interface
has been sufficient so far. Similarly, in high-end networks
there is a similar situation as most of the network devices
are provisioned using terminals and static interfaces.

3.1 Model Driven Orchestration
Models have been used for a number of purposes from simu-
lating a system to using models as a means of understanding
how a system functions. Rather than using mathematical
model, an OMSP is instead based on simple system descrip-
tive models that are used as drivers for orchestrating the
rapid provisioning of a WSAN cloud. OMSP are a generic
model for service provisioning, which can be written using
XML. The OMSP can be divided into two segments - the
OMSP template and the OMSP data. An OMSP template
contains a pointer to the network devices and a service de-
scription of the services required to be provisioned. The
OMSP data contains the device data such as the device ad-
dress corresponding to the pointer in the OMSP template.
An OMSP template provides a reusability mechanism for
provisioning as it can be reused for provisioning on num-
ber of different networks. The OMSP data is related to the
network itself and contains network dependent data. For
example Figure 1b shows a pseudo description of an OMSP
for reading light from sector 1 devices for a limited time.
The OMSP template contains logic which can be applied to
a number of different WSAN cloud infrastructures, where
the OMSP data contains the data pertaining to the devices
in all tiers of a specific WSAN cloud.

3.2 Orchestration Engine
The Orchestration Engine is a model (OMSP) driven system
which uses the OMSP for provisioning the required services
on the devices in the network (atomic service provisioning).
The Orchestration engine consists of following components:

• Core

• Element Management System (EMS)



• NaaS Endpoint or middleware

3.2.1 Core (Back-End)
The core of the orchestration engine is the CPU of the en-
gine. It contains the translating components to read the
OMSP. The core also configures the service end points for
integration between NaaS and the end-users.

3.2.2 Element Management System (Gateway)
Once the OMSP is translated, the consolidated data is sent
to the EMS. Consolidated data refers to the combination of
the data from the OMSP and the knowledge base (this is a
collection of meaningful data about the network and is de-
scribed further in section (3.3) in the orchestration engine to
enable the EMS to execute the operations necessary to com-
plete the service provisioning tasks. This is the entry point
to the WSAN Cloud. Each EMS manages a specific set of
devices i.e. an EMS for SunSPOTs, an EMS for TelosB, etc.
The EMS is an overlaying system that manages the gateways
where gateways are systems running on physical computing
devices, e.g. embedded wireless devices, specialised embed-
ded PC boards, etc., that are capable of communicating with
tier 1 devices. The EMS calls the gateway device to dissem-
inate the service provisioning data to the network devices
in the WSAN Cloud. The data for service provisioning is
simply a few bytes as it does not contain system script or
code, rather just the service id and the parameters of the
service to be instantiated. While a full service upgrade such
as updating functionality is possible, the WSAN-SOrA does
not recommend it due to the fact that devices in the WSAN
run with limited energy resources. A Service upgrade can
be compared to a full or part firmware upgrade in a high-
end network. Similarly, a WSAN service upgrade can be
used to modify the implementation of the service, however
such an operation is risk prone as this means the devices are
unavailable while the update is on-going and in battery pow-
ered wireless networks this consumes a considerable amount
of battery power. Furthermore even in high-level wired sys-
tems it is not a common practice as it causes disruption to
the network service while a service upgrade is in progress.

3.2.3 NaaS Endpoint (middleware)
This component is an output product of the orchestration
engine. Once the orchestration engine executes the OMSP
for an end-user, a service endpoint is provided usually in
the form of a web-service. The data from the network pro-
visioned for a specific end-user is provided to the end-user
through this service point.

3.3 Orchestration Flow
The design of an OMSP in the process of provisioning or
de-provisioning is the first stage. As the OMSP is passed
to the orchestration engine, the rest of the process becomes
automated. The OMSP is first decoded and translated using
the syntax knowledge base. If new syntax is required this
knowledge base acts as a repository for developers to in-
clude new syntax. The knowledge base is a comprehensive
database for the orchestration engine. It contains informa-
tion such as data related to the OMSP syntax. With the
OMSP being usually written in XML, this format acts as
a standardised way of representing a document where the

tags and attributes in the documents are meaningless un-
less there is a reference document. This data relates to the
translation that is stored in the knowledge base. The knowl-
edge base also stores the network data coming from devices
and contains data pertaining to the available services for
each device in the network and the current instance of those
services. Service descriptions are written and saved in the
knowledge base using XML based SDL (Service Descriptor
Language) document. In summary, the knowledge base is a
collection of meaningful data about the network and is used
to support orchestration and other operations. Once each
service is identified and devices are selected, a secondary
document is created by the orchestration engine, which con-
tains instructions for the execution part of the orchestration
engine. The EMS manager reads this document and calls the
appropriate EMS gateway depending on the hardware plat-
form. These gateways contain the base station device capa-
ble of communicating with network devices of the same type
in the WSAN Cloud. The instruction is then disseminated
in the WSAN Cloud and the services in the network are
provisioned. Dissemination in the WSAN Cloud is based on
the configured wireless communication interfaces and pro-
tocols such as IEEE 802.15.4/6LowPAN. The orchestration
engine needs to create an end-point (middleware) for the
newly provisioned network so that the requesting system
may extract its data. This can be done in the form of set-
ting a webservice (passive polling), raw socket (stream), or
servlets (push). De-provisioning is similar to provisioning,
but services are de-instantiated instead of being created.

4. CURRENT DEVELOPMENT STATUS
A prototype of the WSAN-SOrA implementation was devel-
oped as an experimental WSAN Cloud infrastructure and
configured using a heterogeneous mix of sensor device plat-
forms consisting of SunSPOTs (4MB Flash) running the
Squawk OS and TelosB (48KB Flash) devices running TinyOS
or the Lorien OS. This prototype has been used to analyse
the manual configuration of 30 devices for three different
end-user systems and this is compared against the WSAN-
SOrA orchestration approach. Table 1 shows the experimen-
tal results.

TinyOS running over the TelosB platform was used a base-
line in this experiment to compare against WSN-SOrA. TinyOS
is a monolithic OS and as such a complete OS image must
be deployed for sensor configuration and re-tasking. Lorien
and Squawk on the other hand are component based operat-
ing systems that support multi-threading and OOD making
them compatible with WSN-SOrA. The size of NaaS end-
point middleware code is directly effected by the program
memory available on the embedded network devices, where
the NaaS endpoint middleware code size reflects the number
of services that an implementation can hold. For example a
NaaS endpoint middleware for SunSPOTs can hold services
for temperature, light, humidity, multiple routing protocols
and other aggregation services with the TelosB device of-
fering temperature, light and humidity. The telosB devices
running tinyOS were configured to support a temperature
service and the NaaS endpoint middleware code size (in
this case the complete OS image) was 8KB. For the telosB
devices running Lorien, temperature and humidity services
were configured with an initial code size of 38KB and finally
for the SunSPOT devices temperature, light, humidity, rout-



Table 1: Quantitative Analysis

Platform TelosB TelosB Squawk

Flash Mem-
ory

48KB 48KB 4MB

OS TinyOS Lorien SunSPOT

OS Type

Monolithic, Component Multithreading,

Event
based

Multi-
threading,

SOA compati-
ble

SOA com-
patible

NaaS End-
point Mid-
dleware

8KB 38KB 1.6MB

Code-size

Initial Temp Temp, Temp,light,

Service(s) Humidity humidity,
routing

(AODV,
LQRP),

Accelerometer

Commission <1s <1s <2s

time(Serial)

Provisioning N/A, 127B* 127B

time Monolithic
image

*depends
on radio

protocol
IEEE

802.15.4
max frame

size is
127bytes

Provisioning N/A <4ms <4ms

Time(OTA)

ing and acclerometer services were configured with an initial
code size of 1.6MB. The commissioning time depends upon
the gateway program and serial connection with the device.
In a batch commissioning operation, i.e. the deployment of
the NaaS endpoint middleware, commissioning takes in the
order of seconds and here the commissioning time was 1-2s
and is dependent on the NaaS endpoint middleware code
size. During the provisioning phase (i.e. the operational
phase where the network can be reconfigured) of a WSAN-
SOrA based infrastructure the provisioning packet size de-
pends upon the communication standard in use for example
IEEE 802.15.4 support a maximum frame size of 127 bytes
and transmission rate of 250kbps and as such the provision-
ing packet maximum size is 127B. Provisioning is exclusive
to systems that can support SOA and in this case this means
that the devices running Lorien and squawk are capable of
being provisioned using a single packet that is 127B in size.
TinyOS follows a monolithic image deployment methodol-
ogy and so a provisioning operation is not applicable in this
case as deployment of the whole OS image is required each
time (this is equivalent to redeploying the NaaS endpoint

middleware repeatedly), which is analogous to performing
a commissioning operation each time an update is required.
The provisioning time depends upon the provisioning packet
size, bandwidth and any disruption or interference in the ra-
dio communication between the wireless devices. Using over
the air programming (OTA) the provisioning time was mea-
sured as being approximately 4ms. Provisioning in a device
is instant as the devices are not required to do a restart in
order to activate a new service. The need for a restart is
heavily dependent on underlying OS. The orchestration of
services in the proposed WSAN-SOrA approach allows for a
fully expedited automated process without any human inter-
vention. For WSANs configuration is typically done using
web interfaces where parameter fields are set using hyper
terminals or serial command line interfaces. These are once
off configurations, as there is no element of reusability in
that if a similar network is to be provisioned then the same
sequence of steps must be repeated, there is no saving in
terms of time or man power, whereas with WSAN-SOrA
the OMSP process logic can be reused to provision similar
systems. Configuration commands can be aggregated into a
script and these scripts can be used to repeatedly configure
the same type of device, but if the device type changes then
the scripts must be updated using device compatible syntax
whereas OMSP are device agnostic with the relevant EMS
managing the device specific translation.

5. CONCLUSION
This paper presented the concept of a WSAN infrastruc-
ture as a WSAN Cloud that provides services to multiple
application and data collection systems with an underlying
architecture in the form of WSN-SOrA. WSAN-SOrA en-
ables the rapid orchestration, commissioning and provision-
ing of services in WSANs, which can be vertically scaled
on-demand. WSAN-SOrA is an architectural model that
enables on demand access to a shared pool of configurable
WSAN resources whose primary function is the management
of the allocation and consumption of WSAN resources in or-
der to serve multiple applications and end users alike.
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