Work-in-Progress (RTSS 2012)

Copyright is held by the authors

San Juan, Puerto Rico

SPM-Aware Scheduling for Nested Loops in CMP Systems

Zhi Chen, Meikang Qiu*
Dept. of Elec. and Comp. Engr., Univ. of Kentucky, Lexington, KY 40506, USA *

1. PROBLEM AND MOTIVATION

Chip multiprocessors (CMP) computing systems are usu-
ally employed to facilitate many specific applications includ-
ing medical image processing, computer vision, and aerospace.
In these computation-intensive applications, nested loops
take the most significant section of computation cost and
greatly affect system performance in terms of latency due
to the frequent memory accesses. In order to enhance the
parallelism of a nested loop, a critical work is to strategi-
cally map the iterative loops to processors so that we can
exploit good parallelization of these loops and reduce the
execution latency of the whole application. One of the most
widely used method to do the iteration-to-processor map-
ping is pipelining, which enables each processor to perform
the operations for the iteration mapped to it.

2. BACKGROUND AND RELATED WORK

Most prior work on nested loops either focuses on loop
partitioning such as tiling, collapsing, and transformation,
etc, or focuses on scheduling loops on different processors
with hardware caches. However, hardware caches have short-
comings in size, power, and predictability and incur high
penalties in cache misses. Statistically, caches are replac-
ing the processors becoming the main energy consumer of
computing systems. SPM, a software-controllable on-chip
memory, has been widely utilized by many key manufactur-
ers, due to two major advantages over a cache memory.

First, SPM does not have the comparator and tag SRAM,
since it is accessed by direct addressing. Therefore, it does
not perform the complex decode operations to support the
runtime address mapping for references. This property of
SPM can save a large amount of energy. Second, SPM gen-
erally guarantees single-cycle access latency, while accesses
to cache may suffer capacity, compulsory, and conflict misses
that incur very long latency [2]. Given these advantages,
caches are widely used in CMP systems including Motorola
M-core MMC221, IBM CELL [1], TI TMS370CX7X, and
NVIDIA G80. Therefore, it is important to study the loop
scheduling with SPM support to reduce the latency and en-
ergy consumption of nested loops on CMP system.

Although the obvious advantages SPM offers, two ma-
jor challenges remain: 1) what is the basic granularity of
the loop scheduling? 2) how to schedule nested loops on
different SPMs of each processor in a CMP systems? Since
there are a large amount of previous work targets nested loop
partitioning, we mainly focus on the iteration-to-processor
mapping by using the partitioning results from the existing
techniques. Also, we are targeting the type of applications
that intensively consist of loops manipulating arrays.

3. APPROACH AND UNIQUENESS

Depending on the partitioning technique such as cyclic
partitioning and block partitioning, the granularity of par-
titioned loops varies. We focus on the block-based loops
which can be obtained by using tiling techniques. Based on

*Meikang Qiu (mgiu@engr.uky.edu) is the corresponding au-
thor, supported by NSF CNS-1249223.

the obtained blocks, we construct a directed graph to repre-
sent the dependencies between them. Communication over-
head between dependent blocks and the number of accesses
to each processor can be learned with the help of profiling
tools. Then, based on profiling information, a communica-
tion matrix and a processor access matrix can be built. We
also define an assignment matrix to represent the mapping
of each loop block to the SPM of each processor. The di-
mension of the assignment matrix is N x M, where N and
M represent the number of partitioned loop blocks and the
number of processors on the target system, respectively.

In this paper, we will consider three types of on-chip mem-
ory access for loop scheduling: local access, remote access,
and main memory access. Different memory access has dif-
ferent energy consumption and latency. In addition, the
communication cost between different blocks will also be fac-
tored into the total execution cost. Since the target system
is a CMP system, where each processor is attached with
an on-chip SPM and all processors share an off-chip mem-
ory, there exist totally four kinds of communication: intra-
memory communication, inter-memory communication, on-
chip/off-chip memory communication, and off-chip memory
communication. The overhead of each type of communica-
tion varies significantly. Our goal is to map all loop blocks in
an applications to the on-chip SPMs and the off-chip main
memory so that the total cost (either energy or latency) can
be minimized.

A naive method is to distribute the loop blocks across
available on-chip SPM evenly. However, this is not the best
to implement the iteration-to-processor mapping for most of
applications because different iteration blocks usually take
different number of execution cycles and different amount
of power, due to the existence of branches in loops and lo-
cality of on-chip SPMs. This paper carefully considers the
characteristics of each loop block and proposes a dynamic
programming algorithm to optimally perform the iteration-
to-processor mapping. We will formally define the cost of
memory access and communication, and use the availability
of on-chip SPM resources to constrain the allocation.

4. RESULTS

Extensive experiments will be conducted to verify our al-
gorithms on target a CMP system with 2, 4, and 8 cores. A
host of benchmarks, such as MiBench and SPEC2006, will be
used to evaluate the proposed strategies. We will also com-
pare the efficiency of our dynamic programming algorithm
with several other methods proposed in the literature. All
these algorithms will be implemented as stand-alone pro-
grams, which take memory traces as inputs. Memory pa-
rameters are obtained from CACTI tools. Since the objec-
tive for this paper is to reduce the total memory access cost
with respect to energy and latency, an array of results will
be achieved to show how much on-chip memory energy and
time (average and WCET) our dynamic algorithm can save.

5. REFERENCES

[1] C. R. Johns, et al. Introduction to the cell broadband
engine architecture. IBM Journal of Research and
Development, 51(5):503-520, 2007.

[2] P. R. Panda, et al. Efficient utilization of scratch-pad
memory in embedded processor applications. In
IEEE/ACM DATE, pages 7-11, 1997.





