
Heterothread: Hybrid Thread Level Parallelism on Hetero-
geneous Multicore Architectures

Chao Wang
School of Computer Science
Univ. of Sci. & Tech. of China

chao.wang@ieee.org

Xi Li
School of Computer Science
Univ. of Sci. & Tech. of China

llxx@ustc.edu.cn

Xuehai Zhou
School of Computer Science
Univ. of Sci. & Tech. of China

xhzhou@ustc.edu.cn

ABSTRACT
In this paper, we introduce middleware architecture to support
hybrid thread level parallelism on heterogeneous multicore archi-
tectures, called Heterothread. Heterothread constructs a hierarchi-
cal level model for user programming and parallel task execution
dataflow. Heterothread can provide unified programming inter-
faces which allow applications remain the same when the physical
hardware (CPU, GPU, DSP and FPGA) is reconfigured or mi-
grated. Consequently it can meet the real-time demands more
efficiently than most state-of-the-art operating systems. A proto-
type has been built on FPGA to demonstrate Heterothread can
achieve significant speedups against Linux kernels.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Multiprocessing/multiprogramming/

General Terms
Performance, Design

Keywords
Architectural support; middleware; dynamic reconfiguration;

1. INTRODUCTION
Heterogeneous architecture is dominating [1]. However, it still
poses a significant challenge to build a moderate operating system
or middleware to manipulate threads running on different archi-
tectures efficiently (e.g. CPU, GPU, DSP, and FPGA). Current
ongoing projects like fos [2] and barrelfish [3] is still pursuing a
fine approach. With respect to the real time demand on heteroge-
neous architectures, how to obtain sufficient timing predictability
is still posing significant challenge. In order to tackle this problem,
the major contribution of this paper is to propose a middleware
hierarchical model to support hybrid MPSoC reconfigurations.
Heterothread provides acceleration engines to diverse applications
by substituting IP cores dynamically. After hardware is reconfig-
ured, Heterothread will reorganize the task partitioning, mapping
and scheduling strategies, which keep the APIs unchanged to
users. The entire architectural model consists of both software and
hardware thread level controller modules.

First, to provide an execution environment for tasks, Het-
erothread employs run-time libraries. These user libraries along
with other kernel libraries provide well-structured application
programming interfaces (APIs). APIs show a high-level abstract
view of the internal implementations. When the APIs are defined,
the user interfaces will be kept as persistent units, even the hard-
ware (DSP, FPGA and GPU kernel) replacement is invisible to
programmers.

Task partitioning and scheduling methods play a vital role in
Heterothread. Before tasks are offloaded to acceleration engines,
Heterothread must decide which task runs on which core, and also
when the task is issued. For the sake of automatic thread level
parallelism, we use out-of-order task execution engine to solve the
inter-task data dependencies [4].

Finally, the communication interfaces layer is in charge of
data transmission between Heterothread scheduling kernel and the
diverse processing kernels. Generally there are three kinds of
primitives: the unified software interface (USI), unified hardware
interface (UHI), and unified reconfiguration interface (URI): USI
primitive is employed when the information in transferred among
microprocessors, including a series of function in libraries. UHI
primitive is introduced to model the communication between mi-
croprocessor and hardware RTL implemented IP cores or DSP
engines. Furthermore, an interrupt controller is employed to detect
interrupt requests for synchronization. Finally, URI primitive is
invoked only for IP reconfiguration to switch the pre-downloaded
partial bitstream at run-time.

We have constructed our prototype OS using with Xilinx
FPGA board. As a working-in-progress paper, we are still running
large scale Benchmarks on both a Minicore system of Het-
erothread and Linux 2.4.18 operating system kernel. At the time
of writing this paper, we have evaluated the Anubis, 10-step FIR,
and 20-step FIR applications on the Minicore OS, which achieve
the speedup from 4.5x to 170x, respectively. Preliminary results
demonstrate Heterothread provides new insights to the real time
operating system research paradigms on heterogeneous multicore
architectures.

2. ACKNOWLEDGEMENT

This work was supported by the NSFC grants (No. 61272131,
No. 61202053), Jiangsu Provincial NSF (No. SBK201240198).

2. REFERENCES
[1] S. Singh, Computing without processors [J]. Communications

of ACM, 2011. 54(8): p. 46-54. DOI= http://doi.acm.org/10.
1145/1978542.1978558.

[2] D. Wentzlaff,A. Agarwal, Factored operating systems (fos):
the case for a scalable operating system for multicores[J].
ACM SIGOPS Operating Systems Review, 2009. 43(2): p. 76-
85. DOI= http://doi.acm.org/10.1145/1531793.1531805

[3] J. C. Mogul, A. Baumann, T. Roscoe, L. Soares. Mind the gap:
reconnecting architecture and OS research. in Proceedings of
the 13th USENIX conference on Hot topics in operating sys-
tems.2011.

[4] G. Gupta,G. S. Sohi. Dataflow execution of sequential impera-
tive programs on multicore architectures. in Micro 44.
2011.59-70. DOI=
http://doi.acm.org/10.1145/2155620.2155628

Work-in-Progress (RTSS 2012) Copyright is held by the authors San Juan, Puerto Rico

