
Applying Language-based Static Verification in an
ARM Operating System

Work-in-Progress

Matthew Danish Hongwei Xi Richard West
Boston University

Computer Science Department
111 Cummington Mall

Boston, MA 02215
{md,hwxi,richwest}@cs.bu.edu

1. EXTENDED ABSTRACT
In recent years, we have seen a proliferation of small, embed-
ded, electronic devices controlled by computer processors as
powerful as the ARM R©. These devices are now responsible
for tasks as varied as flying a plane, talking on a cellphone, or
helping to perform surgery. Some of these tasks have severe
consequences for a mistake caused by faulty programming or
missed deadlines. The best defense against these mistakes
is to prevent them from happening in the first place.

Advances in programming languages and type theory have
lead to the creation of functional programming languages
such as ATS [3] which are designed to combine theorem
proving with practical systems programming. This allows
programmers to bring the rigor of mathematical verification
to important properties of their programs. We believe that
the usage of languages such as ATS can lead to better as-
surance that the programs running on an embedded device
are correct, responsive, and safe.

A key feature of ATS is that it allows an incremental ap-
proach to verification, where some parts of the program are
more heavily checked than others, making it easier to make
changes and focus proof-writing efforts on the most impor-
tant portions. Also, the ATS compiler produces C code,
it uses native data-layouts, and the ATS language itself is
designed to be extremely easy to integrate with existing C
code. This makes ATS much better suited than other, sim-
ilar high-level languages, for systems programming.

Terrier [1] is a new operating system written to run on some
of the ARM-based SoC boards from Texas Instruments R©:
the OMAP3530 and the OMAP4460. These boards are
available to developers as the BeagleBoard and the Panda-
Board ES respectively. In addition, Terrier supports the
Cortex-A9 MPCore symmetric multiprocessor architecture
which is used by the OMAP4460. The focus of Terrier is
to be a small (currently about 5000 lines of source) and
lightweight operating system for real time applications, by
using some statically verified algorithms for scheduling and
resource management.

Terrier includes an implementation of a Liu and Layland-
based [2] rate-monotonic fixed priority scheduler, written in
the functional programming style of ATS. The code is an-
notated with static, dependent and linear types to describe

several of the invariants associated with the algorithm. The
scheduler written in ATS integrates directly with the rest
of the kernel which is written mostly in C. Performance of
the scheduler implementation in ATS is essentially equiva-
lent to an implementation in C because the output of the
ATS compiler is C code that does not need any additional
runtime support.

We are working on extending the rate-monotonic scheduler
with stronger proofs and more features. One goal is to show
that the algorithm respects some form of temporal isolation.
Another goal is to adopt some more modern scheduling algo-
rithms and prove useful properties for them. And finally, we
are working on some applications which would potentially
test the scheduling capabilities of the system while also de-
manding strong correctness guarantees.

2. REFERENCES
[1] Matthew Danish. Terrier Homepage.

http://www.github.com/mrd/terrier.

[2] C. L. Liu and James W. Layland. Scheduling
Algorithms for Multiprogramming in a Hard-Real-Time
Environment. J. ACM, 20(1):46–61, January 1973.

[3] Hongwei Xi. ATS Homepage.
http://www.ats-lang.org.

Work-in-Progress (RTSS 2012) Copyright is held by the authors San Juan, Puerto Rico




