
An Asymptotically Optimal Real-Time Locking Protocol for
Clustered Scheduling under Suspension-Aware Analysis

Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS)

bbb@mpi-sws.org

1. OPTIMAL LOCKING PROTOCOLS
The purpose of real-time locking protocols is to limit priority in-
versions [5], which, intuitively, occur when a high-priority task is
delayed by a lower-priority task. Such locking-related delay, also
called priority inversion blocking (pi-blocking), is problematic in
real-time systems because it can result in deadline misses. However,
some pi-blocking is unavoidable when using locks and thus must be
bounded and accounted for during schedulability analysis.

Clearly, an “optimal” locking protocol should minimize pi-blocking
to the extent possible. Formally, a locking protocol is asymptotically
optimal if it ensures that, for any task set, maximum pi-blocking
is bounded within a constant factor of the minimal pi-blocking un-
avoidable in some task set [3]. Interestingly, there exist two classes
of schedulability analysis that yield different lower bounds: un-
der suspension-oblivious (s-oblivious) analysis, Ω(m) pi-blocking
is fundamental, whereas under suspension-aware (s-aware) anal-
ysis, Ω(n) pi-blocking is unavoidable in the general case [2, 3],
where m and n denote the number of processors and tasks, respec-
tively. As the names imply, the key difference is that suspensions
are accounted for explicitly under s-aware analysis, whereas they
are (pessimistically) modeled as execution in the s-oblivious case.

For the simpler s-oblivious case, asymptotically optimal locking
protocols have been designed for partitioned, global, and clustered
job-level fixed-priority1 (JLFP) scheduling [4]. The s-aware case,
however, is much less understood: only two asymptotically optimal
protocols for partitioned JLFP scheduling are known so far [2, 3].

In contrast, the problem of optimal s-aware locking under global
and clustered JLFP scheduling has remained open to date. While it
was initially assumed [3] that Block et al.’s Flexible Multiproces-
sor Locking Protocol (FMLP) [1]—which is based on O(n) FIFO
queues—is asymptotically optimal under global scheduling, it was
later observed [2] that this holds only under some, but not all global
JLFP schedulers. In fact, it was shown that both priority inheritance
[5] and (unconditional) priority boosting [5], one of which is used in
each previously proposed s-aware protocol to expedite the comple-
tion of critical sections by temporarily raising the effective priority
of lock-holding jobs, can give rise to non-optimal Ω(Φ) pi-blocking
[2], where Φ is the ratio of the longest and the shortest period (and
unbounded in general). Finally, to the best of our knowledge, no
asymptotically optimal s-aware locking protocol for the general case
of clustered JLFP scheduling has been proposed in prior work.

1 The class of job-level fixed-priority schedulers includes both classic fixed-
priority and EDF scheduling. Clustered scheduling is a generalization of both
partitioned and global scheduling under which disjoint clusters of processors
are scheduled globally.

2. THE GENERALIZED FMLP+

We have solved the problem of asymptotically optimal s-aware
locking under clustered JLFP scheduling by devising a new progress
mechanism that circumvents the Ω(Φ) bound mentioned above.

Priority boosting/inheritance is susceptible to Ω(Φ) pi-blocking
because a high-priority job Jh can be repeatedly preempted by
critical sections that were started after Jh was already scheduled [2].
This is avoided by the following restricted boosting mechanism. Let
tr(Ji) denote the latest point in time that a job Ji either (i) was
released, (ii) resumed from a locking-unrelated self-suspension, or
(iii) requested (i.e., tried to lock) a resource. A priority-boosted,
lower-priority job Jl may preempt a higher-priority, un-boosted job
Jh only if tr(Jl) < tr(Jh). This implies that Jh is preempted only
by critical sections that were in progress when Jh became available
for scheduling, of which there are at most n− 1 = O(n) (i.e., one
per task, assuming tasks are sequential). Further, it can be shown
that lock-holder progress is guaranteed in the sense that at least
one lock-holder is always scheduled (if any exist). By scheduling
priority-boosted jobs in order of increasing tr timestamps (i.e., FIFO
w.r.t. lock request time), O(n) pi-blocking per request is achieved.

Restricted boosting generalizes the idea underlying the partitioned
FIFO Multiprocessor Locking Protocol (FMLP+) [2], namely to
order lock-holding jobs by request time. Combined with O(n) FIFO
queues, we obtain a locking protocol that is asymptotically optimal
under clustered (and hence also under global) JLFP scheduling.

3. OUTLOOK
We believe the proposed protocol offers improved schedulability, in
particular if Φ is large, and are in the process of deriving fine-grained
(i.e., non-asymptotic) pi-blocking bounds. We plan to implement
and evaluate the protocol in LITMUSRT and expect overheads to be
relatively low due to the simplicity of FIFO queuing and timestamp-
based preemption checks. Further, we will explore the potential of
an analogously designed “restricted inheritance” mechanism.

References
[1] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible

real-time locking protocol for multiprocessors. In Proc. RTCSA, 2007.
[2] B. Brandenburg. Scheduling and Locking in Multiprocessor Real-Time

Operating Systems. PhD thesis, The University of North Carolina at
Chapel Hill, 2011.

[3] B. Brandenburg and J. Anderson. Optimality results for multiprocessor
real-time locking. In Proc. RTSS, 2010.

[4] B. Brandenburg and J. Anderson. The OMLP family of optimal multi-
processor real-time locking protocols. Design Automation for Embedded
Systems, to appear, 2012.

[5] R. Rajkumar. Synchronization In Real-Time Systems—A Priority Inheri-
tance Approach. Kluwer Academic Publishers, 1991.

Work-in-Progress (RTSS 2012) Copyright is held by the authors San Juan, Puerto Rico




