
Virtual Execution Platforms for Mixed-Time-Criticality
Systems: The CompSOC Architecture and Design Flow∗

Kees Goossens,1 Arnaldo Azevedo,2 Karthik Chandrasekar,2 Manil Dev Gomony,1
Sven Goossens,1 Martijn Koedam,1 Yonghui Li,1 Davit Mirzoyan,2

Anca Molnos,2 Ashkan Beyranvand Nejad,2 Andrew Nelson,2 Shubhendu Sinha1

1 Eindhoven University of Technology 2 Delft University of Technology

ABSTRACT
Systems on chip (SOC) contain multiple concurrent appli-
cations with different time criticality (firm, soft, non real-
time). As a result, they are often developed by different
teams or companies, with different models of computation
(MOC) such as dataflow, Kahn process networks (KPN),
or time-triggered (TT). SOC functionality and (real-time)
performance is verified after all applications have been inte-
grated.

In this paper we propose the CompSOC platform and de-
sign flows that offers a virtual execution platform per appli-
cation, to allow independent design, verification, and execu-
tion. We introduce the composability and predictability con-
cepts, why they help, and how they are implemented in the
different resources of the CompSOC architecture. We de-
fine a design flow that allows real-time cyclo-static dataflow
(CSDF) applications to be automatically mapped, verified,
and executed. Mapping and analysis of KPN and TT ap-
plications is not automated but they do run composably in
their allocated virtual platforms.

Although most of the techniques used here have been pub-
lished in isolation, this paper is the first comprehensive overview
of the CompSOC approach. Moreover, three new case stud-
ies illustrate all claimed benefits: 1) An example firm-real-
time CSDF H.263 decoder is automatically mapped and ver-
ified. 2) Applications with different models of computation
(CSDF and TT) run composably. 3) Adaptive soft-real-time
applications execute composably and can hence be verified
independently by simulation.

1. INTRODUCTION
Systems-on-chip (SOC) complexity grows as more applica-
tions are integrated in the same system. Often applications
are dynamically started and stopped, leading to many use
cases, i.e. sets of concurrently executing applications. Ap-

∗Copyright is held by the authors.

plications have specific characteristics, such as being control-
or data-oriented, being more or less time critical (firm FRT,
soft SRT, or non real-time NRT), and the extent to which
they are adaptive or scalable. The system as a whole may
have average or peak power or energy requirements depend-
ing on whether it is powered by battery, tethered, or energy-
scavenging.

In a SOC applications are usually implemented with mul-
tiple communicating tasks, and are executed on an often
heterogeneous set of processors and accelerators, memory
hierarchy, and advanced on-chip interconnect such as a net-
work on a chip (NOC). Since SOCs are always constrained
in terms of area, the processors, interconnect, and memory
resources must be shared between applications.

1.1 Problem Statement
Integrating a set of applications with different characteris-
tics and requirements on a multi-core SOC is challenging
for a number of reasons. First, resource sharing causes in-
terference between applications, making their temporal be-
haviours inter-dependent. In case of an adaptive applica-
tion the functional behaviour may change too. For exam-
ple, when decoding H263 video, a B frame instead of an
I frame may lead to a shorter computation, fewer mem-
ory accesses, lower interconnect throughput, and a differ-
ent processor task schedule. This affects the performance
of other applications (e.g. the audio processing) either pos-
itively (e.g. by finishing earlier) or negatively (e.g. in the
presence of scheduling anomalies).

Second, SOCs applications are developed by different groups
in a company, or even by different companies. Often ex-
ecutables are delivered and integrated, since source code is
proprietary and not shared for intellectual property reasons.
Individual applications are verified on a system that is dif-
ferent from the final system, since other applications are
usually absent. When all applications have been delivered
and integrated, the system as a whole is verified. Unfor-
tunately each application may fail at this point, since in-
terference from other applications often leads to previously
untested conditions. Use-case verification then becomes a
circular process that must be repeated if an application is
added, removed, or modified [19].

Third, applications are designed and programmed using dif-
ferent methodologies, models of computation (MOC) or pro-
gramming models, and design flows. FRT applications could

be programmed and analysed using dataflow, time-triggered,
or event-based models of computation. Performance verifi-
cation would be based on worst-case behaviour and formal
analysis. NRT applications, on the other hand, could be
programmed using threads or tasks using distributed shared
memory to communicate. Verification could focus on func-
tional correctness, and be based on average-case simulation.
SRT applications occupy the middle of the spectrum and
could use techniques of both.

The performance verification of adaptive applications is yet
another case. For example, the quality of a SRT adap-
tive video decoder is measured with the signal-to-noise ratio
(SNR) and deadline misses. The SNR depends on how much
work (computation cycles at a certain frequency) and time
(before a display deadline) the decoder allocated to decode
a compressed video frame. If there is interference from other
applications in terms of actual number of computation cy-
cles or scheduling times, then the SNR will change. Hence,
while FRT applications and SRT applications are verified on
the basis of their worst-case and average-case behaviours,
SRT adaptive applications are verified on the basis of their
actual-case behaviour.

Finally, different application characteristics and MOCs re-
quire different resource-management policies. For example,
different scheduling policies (preemptive vs. non-preemptive,
work conserving or not, with jitter constraints and fair-
ness properties, etc.) lead to different worst-case, average-
case, and actual-case latency and throughput, but also affect
buffer requirements. Regarding power/energy management,
FRT applications must use conservative policies, where S/NRT
policies can be speculative. It is challenging to map the dif-
ferent scheduling requirements of all applications on a few
common schedulers (such as static priority or round robin)
that many SOCs offer.

1.2 Composable and Predictable
Virtual Platforms

The CompSOC platform [17] addresses these problems by of-
fering a virtual execution platform per application, to allow
independent design, verification, and execution. An auto-
matic design flow is available for FRT dataflow applications,
and S/NRT dataflow and Kahn process network (KPN) ap-
plications. Time-triggered applications are supported but
not yet automated. CompSOC relies on two complexity-
reducing concepts: composability and predictability. Com-
posable virtual platforms are completely isolated (partitioned)
and cannot affect each other by even a single clock cycle.
They are hence virtualised in terms of actual execution time,
which enables independent verification of S/NRT applica-
tions. Our use of composability extends [19] to multiple ap-
plications. Each virtual platform is also predictable, which
means that it can be virtualised in terms of performance
bounds such as worst-case execution time. This enables in-
dependent formal analysis of FRT applications.

In the next section we describe in more detail how com-
posability and predictability solve or mitigate the problems
introduced. Following this, we define the platform architec-
ture (Section 3), describe how resource sharing is dealt with
(Sections 4-5) and elaborate the design flow (Section 6). In
Section 7 we illustrate our approach with a H.263 video de-

coder implemented as a FRT dataflow application, a FRT
time-triggered application, and as a SRT adaptive dataflow
application. In all cases, it runs together with other appli-
cations, each in their own virtual platform. After discussing
related work in Section 8 we conclude.

2. COMPSOC CONCEPTS
In essence a virtual execution platform is a set of resource
budgets; intuitively, a percentage of the resource capacity,
enforced by a budget scheduler. Resources include proces-
sors, NOC, distributed on-chip SRAMs, and off-chip DRAM
memory. In other words, each physical resource is divided
in smaller virtual resources that are handed out to different
applications. Resource budgets are computed at design time
(see Section 6), and programmed at run time. Conceptually,
composability is ensured on each resource by using preemp-
tive time-division multiplexing (TDM) between applications,
avoiding all interference between applications. Within a
virtual platform, each application can further budget and
schedule each virtual resource using whatever scheduling
policy is appropriate for the application and resource. Comp-
SOC therefore employs two-level scheduling on (selected)
resources: composable and predictable between applications,
and application-specific within an application. However, sev-
eral different techniques are used to implement these con-
cepts in a concrete platform, as discussed in Sections 3-4.
First we discuss how our concepts address the problems
raised in the introduction.

2.1 How Composability and Predictability
Address The Problems

Composability, i.e. virtualisation in terms of actual execu-
tion time, has several important consequences. First, the
behaviour of an application depends only on its own virtual
platform. From the application writer’s perspective, shar-
ing with and interference from other applications have dis-
appeared. Verification no longer depends on others, and has
become a non-circular process. An application is designed
and verified in isolation, and no reverification is required
after integration in a larger system.

Second, each application may have its own performance ver-
ification methods. Since the actual-case behaviour is inde-
pendent of other applications that may or may not be run-
ning at the same time, so is the average-case performance
of an (adaptive) S/NRT application. Clearly, the worst-case
behaviour of FRT applications is independent too. As a
result, the verification of an application, of whatever criti-
cality, depends only on its own virtual platform.

Third, application-specific scheduling policies are supported
through CompSOC’s two-level scheduling. Each virtual plat-
form is composable and predictable, and within it, each ap-
plication defines its own scheduler. Specifically, on a proces-
sor, the first-level TDM scheduler multiplexes applications,
and a second-level application-specific scheduler multiplexes
actors/processes/tasks of an application in a way that fits its
characteristics and MOC. For example, a FRT application
can use cooperative non-preemptive priority-based schedul-
ing between dataflow actors, a SRT application could use
preemptive earliest deadline first (EDF) between tasks, and
a NRT application preemptive round robin between KPN

routers & network interfaces

network on chip

virtual NOC

proc DMEM DMA

shell

IMEM CMEM

shell

proc. tile

vprocesssor DMA CMEM

DRAM

virtualised memory

mem.
tile

CCSP

R
R

Compose RTOS (TDM)

proc DMEM DMA

shell

IMEM CMEM

shell

proc. tile

vprocesssor DMA CMEM

R
R

Compose RTOS (TDM)

shell shell

delay

atom.

delay

atom.

Figure 1: Example instance of the CompSOC archi-
tecture template.

processes. Similarly, each virtual processor has its own vir-
tual battery, managed by each application’s power/energy
manager.

Each virtual platform, i.e. a set of resource budgets, is
predictable, which means it can be characterised by per-
formance bounds on throughput and latency. For FRT ap-
plications, these bounds may be combined with the bounds
given by its own predictable intra-application scheduler. In
our FRT dataflow design flow, described in Section 6, an
actor budget (intuitively, a percentage of the resource ca-
pacity) is the product of the virtual-platform budget and
the actor budget within the virtual platform.

We conclude that composability and predictability are com-
plementary concepts that both solve important parts of the
verification problem for mixed time-criticality systems, and
provide a complete solution when combined.

3. NON-SHARED PLATFORM
It is essential that the platform architecture is designed with
composability and predictability in mind, as it is not pos-
sible to graft these qualities on later. We first explain our
user-resource model, and the consequences of composability
and predictability on it. We then describe the platform com-
ponents, and how they are combined into a larger system,
and used at run time. A CompSOC platform consists of
resources that are used by users, according to an allocated
budget. Specifically, a resource is one of (cf. Figure 1):

1. A processor with its local instruction memory (IMEM)
and data memory (DMEM), used by one or more com-
putation tasks.

2. A direct memory access unit (DMA), used by a single
DMA task.

3. A communication memory (CMEM), used by one or
more storage tasks.

4. A network on a chip (NOC), used by one or more com-
munication tasks.

5. An on-chip SRAM memory, used by one or more stor-
age tasks.

6. An off-chip DRAM memory, used by one or more stor-
age tasks.

As described in more detail in Section 6, for mapping and
performance analysis purposes, users represent the resource
usage of a “real” application tasks and channels. Appli-

cation tasks are split in computation, DMA, and storage
tasks, and channels are split in communication and storage
tasks. A processor tile contains a single processor resource
including its IMEM and DMEM, and one or more DMAs
with their CMEMs. A S/DRAM tile contains the S/DRAM
memory. To share the resource between multiple users each
tile also contains additional hardware/software, e.g. buffer-
ing, multiplexing and scheduling. A platform instance con-
tains any number of processor, SRAM, and DRAM tiles,
and a single NOC connecting them all. For physical scala-
bility, CompSOC uses GALS (globally asynchronous locally
synchronous), i.e. each tile can operate on its own (scal-
able) clock frequency, and the NOC has its own single clock.
Since tiles operate asynchronously, there is no shared global
notion of time, and each resource scheduler operates asyn-
chronously.

For simplicity, we first show how an application executes on
a platform, where none of the resources are shared. Each
computation task of the application uses a single proces-
sor, and its instructions and data must fit in the IMEM
and DMEM, respectively, and be loaded before the task ex-
ecutes. The processor has no caches, and the application
tasks cannot use interrupts (although its scheduler can). A
task communicates with other tasks using distributed shared
memory. To communicate with another task on the same
tile it uses local DMEM, for another tile it uses the CMEM
on the remote tile. A third alternative is to use a remote
shared memory, either SRAM or DRAM. A single global
address space is used for all memories, except that remote
IMEMs and DMEMs are not visible to a processor. The
CMEM and DMA are used to access a memory outside of
the tile. To write to a remote memory, a task writes the data
in its CMEM and then uses a communication library to in-
struct the DMA to copy the data from the local CMEM to
the remote memory. Reading is similar, and copies remote
data into the local CMEM. A task and its DMA(s) operate
in parallel. The read and write requests of the DMA are
transported by a NOC to the remote memories, where they
are executed, after which requested responses return over
the NOC.

4. SHARING IN THE
COMPSOC PLATFORM

For composability and predictability, each user is statically
bound to one resource. Multiple users can be bound to a
single resource, except for DMAs that are not shared. A
user cannot use multiple resources, and resources cannot
use each other; we discuss this further in Section 6. As a re-
sult, we can discuss the sharing of each resource in isolation.
Composable sharing requires that the service an application
receives is independent of others, and predictable sharing
requires a bound on the minimum service an application re-
ceives. For each resource, predictable and/or composable
scheduling require at least some of the following ingredients:
4.1) bounded scheduling interval, 4.2) fixed scheduling inter-
val, 4.3) a neutral resource state between scheduling inter-
vals, and 4.4/4.5) an appropriate scheduler. The concepts
behind these ingredients are detailed in [6]. Next, we discuss
each of these in turn.

4.1 Bounded Scheduling Interval
Service is given out in service units, such as real-time operat-
ing system (RTOS) slots or NOC flits, that take a bounded
scheduling interval to execute. (For simplicity we ignore
pipelining here; see [6] for details.) A bounded scheduling
interval is ensured either when each user of the resource has
a bounded execution time, or each resource can be preempted
in a bounded time. In the former case, cooperative (non-
preeemptive) scheduling may be used, and the scheduling
interval is the worst-case execution time of any user. How-
ever, note that in a mixed-criticality system the worst-case
execution time for some users may not exist. A NRT task
on a processor may never finish (perhaps intentionally), or
memory transactions may be infinitely long (as allowed by,
e.g., DTL and AHB protocols). This effectively locks up the
resource for a single user, which breaks predictability and
composability.

In the case of preemption, the scheduling interval is inde-
pendent of the (worst-case) execution time of users, which
is advantageous. However, it may not be possible to preempt
a user in a bounded time. Many processors, such as Xilinx
Microblaze and simpler ARM processors do not serve inter-
rupts when there is an outstanding read or write transaction
to a non-local memory. In the context of CompSOC, IMEM,
DMEM, and CMEMs are local (on a local memory bus with-
out handshake / flow control), and serve read/write trans-
actions in a single cycle. Other remote CMEM or S/DRAM
memories on the NOC are accessed via a handshaked PLB
bus, and this may take an arbitrarily long (possibly infinite)
time, depending on the scheduling on the NOC and remote
memory. Hence CompSOC uses a DMA with a CMEM to
communicate to remote memories, with the processor polling
DMA for completion. This results in a bounded scheduling
interval because the DMA works in parallel with the proces-
sor, and polling to the DMA is local and interruptible.

4.2 Fixed Scheduling Interval
Regarding the duration of a scheduling interval, most often
it is actually not fixed. On a processor, although the in-
terrupt timer may be cycle accurate, the interrupt service
latency (in seconds) depends on the instruction that is being
executed, and on the frequency the processor runs at. Simi-
larly, reading or writing to a DRAM take a different number
of cycles. There are two ways of dealing with this. Either
all scheduling intervals are made the same length by padding
with idle cycles or by disabling the clock of the resource to
make each scheduling interval to be as long as the worst-
case scheduling interval. In CompSOC, NOC time slots are
padded, whereas the processor RTOS time slots are made
longer with clock gating. Alternatively, the scheduling in-
terval is left variable, and the interference arising from the
variable scheduling interval and from variations in timing
due to scheduling are removed by delaying to the worst-case
interference. This approach is taken for the DRAM. Similar
approaches are used in [19,21,25]. We introduce the details
when discussing the individual resources.

4.3 Neutral State
Often resources have internal state that persists between the
execution of successive service units. This state often influ-
ences the (timing of) execution. When scheduling a resource
it is advantageous to return it to a neutral state between two

service units. Composability requires that the execution of
a user on a resource is independent of others. In particu-
lar, when a user starts or resumes execution the state of the
resource must be independent of others. Often this is not
the case, such as for processor pipeline, branch predictor,
and caches, the state of which depends on the instructions
of the application(s) that were executed before. The timing
behaviour thus depends on other applications. Similarly, for
DRAMmemories, the open/closed status of pages at the end
of a scheduling interval strongly affect the execution time of
the following scheduling interval. Since all CompSOC re-
sources are shared composably, we therefore reset or restore
the resource state between scheduling intervals. In particu-
lar, for processors, branch prediction is turned off, and the
pipeline timing and operating frequency are restored to the
state when the user was previously interrupted and swapped
out, and no caches are used. The DRAM uses close-page
policy to enforce a neutral state.

4.4 Predictable Scheduling
A predictable scheduler must provide a bound on the ser-
vice that is delivered to each user of a resource. For this,
the scheduling interval must be bounded but not necessarily
be fixed. Similarly, a neutral state is not required, as long
as the interference of previous users of the resource can be
bounded. However, since all resources are shared both com-
posably and predictably, CompSOC returns every resource
to a neutral state between scheduling intervals (except the
DMA and CMEM, see below). In terms of scheduling pol-
icy, for predictability any budget scheduler will do. A budget
scheduler guarantees a user a minimum number of service
units in a given time frame. Essentially, any scheduler that
is free of starvation suffices. In CompSOC we use latency-
rate arbiters, such as as TDM, credit-controller static pri-
ority (CCSP) [38], round-robin (RR), and static-order (SO)
scheduling, depending on the resource.

4.5 Composable Scheduling
Finally, the resource scheduler determines in what order
the bounded scheduling intervals are given to applications.
For composability, this must be done such that the be-
haviour of an application is not affected by other applica-
tions. Scheduling cannot, therefore, take information that
depends on (other) applications, such as availability of data
or task readiness, into account. The obvious solution, which
we use on the processor and NOC, is to use time-division
multiplexing (TDM), which is static and not work-conserving.
For the same reasons, TTA [19], MERASA [45], and [35] use
TDM.

However, TDM inversely couples latency and rate, and cou-
ples the scheduling interval and frame size to the latency.
A user that requires low-latency service must be overallo-
cated in terms of bandwidth. Overallocation is not accept-
able for scarce resources, since a composable, i.e. non-work-
conserving, scheduler cannot give unused capacity to other
applications that may want it. For this reason, a second
technique is also used. Any predictable scheduler can be
made composable by delaying the result of the execution
of a user on a resource until its worst-case interference [4].
In particular, in the case of DRAM, the response of a read
transaction is delayed as if it had experienced its worst-case
interference from other users whether they are present or

not. Since the worst-case interference of others is constant,
the nett result is a composable behaviour.

4.6 Mixed-Time-Criticality
Multi-MOC Applications

Given that each resource can be shared, it is useful to see
how different applications, with different time criticality
(F/S/NRT) and different models of computation (MOC),
are mapped on it and run concurrently. In fact, the Comp-
SOC platform is independent of the MOC of the applications
that run on it [9]: a single platform execution model sup-
ports multiple models of computation. Processors execute
generic tasks, and DMAs and NOC transport generic data.

To run a (FRT) cyclo-static dataflow (CSDF) application on
CompSOC, its actors are automatically converted to tasks
by adding a wrapper that receives tokens before firing and
sends them after firing, using the C-HEAP FIFO communi-
cation library [34] that uses the DMAs. The user can chose
a given (F/S/NRT) scheduler that implements actor firing
rules (e.g. preeemptive round robin, non-preemptive static
order), or supply his/her own. Similarly, a conservative FRT
power management policy is provided [30]. As described
in Section 6, CSDF applications are automatically mapped
on the platform, and are FRT, (given, of course, appropri-
ate scheduler and power manager, and worst-case execution
times for actors).

The processes of (SRT) Kahn process network (KPN) ap-
plications, are normal CompOSe RTOS [16] tasks that use
a blocking read/write API on FIFO channels, also imple-
mented with [34]. A mapping of processes and tasks on
the platform is automatically generated, along with default
schedulers, but without real-time guarantees. The user can
use a built-in speculative SRT power manager, or supply
another.

Since dataflow and KPN applications work on the basis
on availability of data/space in their channels, the entire
CompSOC platform uses flow control / backpressure. All
resources (processors, NOC, DMA, memories) use hand-
shakes to transfer data, avoiding channel overflow or un-
derflow. Equally important this enables work conserving
behaviour within an application, unlike time-triggered ar-
chitectures [19]: if data arrives early (when there is slack in
the virtual platform), the application can work ahead. Con-
versely if data arrives later than expected, the consumer
waits until it arrives.

Hence, dataflow actors and KPN processes tend to be sched-
uled on the basis of data availability (using firing rules and
information regarding blocking on channels) rather than on
the basis of time. Tasks of time-triggered applications, on the
other hand, use a (often static periodic) schedule in time, or
use a schedule based on task deadlines. (Non)-preemptive
time-triggered task scheduling within an application is sup-
ported. Mapping is like for KPN applications.

5. SHARING PER RESOURCE TYPE
To recapitulate, predictable sharing requires 4.1) a bounded
scheduling interval, and 4.4) a predictable scheduler. Com-
posable sharing is additionally either achieved with a 4.2)

fixed scheduling interval, and 4.3) neutral state, with a 4.5)
TDM scheduler, or by 4.5) converting predictable scheduler
to be composable. In the following (see Table 1), we de-
scribe for each resource what its users are, what its service
unit is, and how its scheduling interval is (made) bounded,
whether its scheduling interval is fixed, and how its neutral
state is enforced. The composable and predictable inter-
application scheduling and (optionally predictable) intra-
application scheduling policies are also discussed. As we
shall see, different resource characteristics (service unit size,
size of state, abundant or not) lead to the use of different
combinations of techniques.

5.1 Processor
A processor serves computation tasks. The CompOSe RTOS [16]
runs on Microblaze and ARM processors and multiplexes
multiple tasks on the same hardware using preemptive schedul-
ing since tasks may have an unbounded or infinite execution
time. Preemption is implemented using an interrupt gen-
erated by a timer that runs at the maximum frequency of
the tile. Although the interrupt is generated at fixed points
in time, the interrupt service routine (ISR) takes a variable
number of cycles (e.g. depending on the currently execut-
ing instruction). Moreover, the time (rather than cycles) to
serve the interrupt varies too, since each task can run at
its own frequency. On receiving an interrupt, the ISR first
sets the frequency to the maximum, saves the stack, records
the ISR service delay due to the processor pipeline emptying,
and jumps to the RTOS. Scheduling and housekeeping of the
RTOS take a variable amount of time too. Therefore, to en-
force a fixed scheduling interval, the processor gates its clock
and instructs its clock generator to re-enable the clock at a
fixed time at the end of the scheduling interval. In this way,
a complete RTOS slot comprising task execution, interrupt
handling, and RTOS scheduling, each of which may take a
variable amount of time, is served with a constant schedul-
ing interval. In Table 1 this is indicated by the worst-case
scheduling interval (WCSI) delay. The next task slot length
is reduced by the cycles that it took to empty the pipeline
when the interrupt arrived, otherwise the task would receive
more cycles than budgeted. The neutral state at the start
of a scheduling interval is enforced by restoring the stack,
and by enabling the clock at the task’s frequency. Since the
frequency may be changed several times in each RTOS slot,
it must be quite fast (in the order of tens of clock cycles).
Technology such as [26, 42] offers this capability for ASIC
implementation. The CompSOC FPGA prototype models
frequency scaling by clock subsampling [30].

A fixed scheduling interval coupled with a TDM scheduler
results in composable scheduling. Since a processor is an ex-
pensive resource, its utilisation is important. As we saw be-
fore, composable scheduling cannot be work-conserving, and
any slack is therefore lost. However, by offering two levels
of scheduling, first between applications and then between
tasks within the application, only slack between applications
is lost. In fact, during unused slots the processor can be
switched off, reducing energy/power. Within a single appli-
cation any application-specific (non)-work-conserving sched-
uler can be used. The cost of using two levels of schedul-
ing implemented in software is amortised over the relatively
large scheduling interval (at least 10,000 cycles at maximum
tile frequency). Similarly, each application can have its own

Table 1: Service units and scheduling levels per resource. si is scheduling interval.
resource user service bounded si fixed si si neutral state inter-app. sched. intra-app.

unit through size (by) (comp. & pred.) sched.

processor proc. task os slot interrupt wcsi-delay pipel. delay & tdm any
restore freq.

dma dma task transaction comm. lib. no no state — —
cmem storage task transaction dma no — — rr
noc comm. task flit shell padding no state tdm —
sram storage task word atomiser yes no state tdm —
sram storage task word atomiser yes no state any pred. & wci-delay —
dram storage task pattern atomiser no closed pages any pred. & wci-delay —

power manager that computes and sets its frequency, as part
of the scheduler or its tasks. Both intra-application schedul-
ing and power management are user-supplied code and run
in user time, i.e. a misbehaving scheduler or power manager
cannot affect the RTOS or other applications.

5.2 DMA and CMEM
ADMA serves DMA tasks. When a computation task wishes
to communicate with a remote memory it uses a DMA com-
munication library to instruct the DMA to copy (a finite
amount of) data to/from the corresponding local CMEM.
A computation task and its DMA task(s) run in parallel,
and do not affect each other because they use distinct ports
on the CMEM. When needed, the computation task polls
for DMA completion, which ensures that a computation
task can always be interrupted in a short time, as described
previously. The DMA service unit is a single DMA trans-
action, which results in a variable, but bounded, number
of read/write transactions to the NOC, and then a remote
memory. When a remote DMA accesses a local CMEM to
read or write (synchronisation) data, it uses the same port
on the CMEM as the local DMA. Since only tasks from the
same application communicate, this sharing needs to be at
most predictable and not composable. For this reason, a
round-robin scheduler is used here. The DMA has no state
after completion, and the round-robin scheduler does not
need to have a neutral state.

5.3 Network on Chip
The Æthereal NOC [14] serves communication tasks. A com-
munication task (usually called a connection) is a virtual
wire over which the NOC transports requests from master
(DMA) to slave (memory), and optional responses from slave
to master. Requests are received from the master using a
DTL handshaked protocol. In theory, a transaction may
be infinitely long, or may not arrive in a finite amount of
time (since each word of the transaction is separately hand-
shaked). A “shell” hardware block serialises the command
and data groups of the request to a stream of words. The
NOC executes a global TDM schedule of flit service units,
with a scheduling interval of 3 cycles. Whenever a network
interface port can inject a flit in the NOC, it consumes 3
words from the shell, or else pads with dummy words. This
guarantees a fixed service unit. When flits arrive in the
receiving network interface over their allocated connection,
dummy words are removed, and the result deserialised to a
DTL request. Responses are handled similarly.

From a scheduling perspective the NOC behaves as a sin-
gle deeply-pipelined resource, even though it is made up of
many routers and network interfaces. Logically it executes a
global static TDM schedule. Flits are injected such that they
never wait in the NOC to minimise buffering since this is the
main contributor to the area cost. Introducing a second level
of intra-application arbitration would require an additional
level of buffering (per-application virtual circuits), which is
prohibitively expensive. Additionally, two-level scheduling
at wire-speed is hard, and in any case, NOC bandwidth
is essentially relatively cheap. For these reasons, all NOC
communication tasks (connections), whether they belong to
the same application or not are scheduled composably (and
predictably).

5.4 SRAM
SRAM memory is the simplest resource, and serves trans-
actions that are generated by storage tasks (or requestors).
Transactions are chopped in single-word transactions; e.g.
a 8-word write is converted in 8 single-word writes. The
service unit is a single-word transaction, and the scheduling
interval one cycle. Regarding atomicity of transactions, note
that this chopping may interleave execution of multi-word
transactions. While perhaps unexpected for software engi-
neers, on-chip communication protocols, such as DTL and
AXI, explicitly allow this, as they only require byte-level
atomicity. Higher-level software synchronisation, such as C-
HEAP, must be used to avoid unexpected results. In our
current CompSOC platform, a single-level TDM arbiter is
used most frequently, since bandwidth overallocation tends
not to be a problem. However, all the techniques of the
DRAM can also be used for the SRAM.

5.5 DRAM
ADRAMmemory serves transactions of storage tasks. Comp-
SOC uses the Predator real-time DRAMmemory controller [3].
Like for the SRAM, incoming transactions are chopped into
fixed-size transactions. However, DRAMs are only efficient
with large access granularity, of at least 64 or 128 bytes. We
refer to [5] for more information on how to select an appro-
priate access granularity, and corresponding DRAM config-
uration. The time to serve a read or write transaction on a
DRAM varies greatly depending on the current state of the
DRAM, i.e. whether the requested page is open or not, and
whether the previous transaction was also a read or write. A
simple worst-case approach would yield a maximum guaran-
teeable bandwidth of about 20%, which is unacceptably low:
at least 80% utilisation is required. For this reason, Predator

uses service units based on patterns, which are precomputed
sequences of memory commands corresponding to a read,
write, or read/write or write/read switch. These patterns
leave the DRAM in a neutral state (all pages are closed),
and a tight scheduling interval can be computed. Like the
NOC, the DRAM is pipelined, and the scheduling interval
is less than the service time.

TDM is not an acceptable scheduler for the DRAM for two
reasons. First, the service units do not have the same length,
since that would reduce utilisation of each service unit too
much. Using TDM with variable scheduling intervals is
not composable. Second, TDM couples latency and rate,
which means that low-latency requestors require overallo-
cation, which when unused cannot be given to other appli-
cations through work-conserving scheduling. We therefore
use the credit-controller static priority (CCSP) [38] sched-
uler, which does not have these defects. However, as CCSP
is only predictable, we convert it in a composable arbiter
by delaying each response until the time it would have had
with worst-case interference [4]. In Table 1 this is indicated
with WCI-delay. In essence, by simulating that each request
always encounters worst-case interference, its behaviour is
independent of other requestors whether they are present or
not. As a result, without overallocation the DRAM is effi-
ciently used. For S/NRT applications, the actual/average-
case DRAM performance has degraded to the worst-case
performance. But there are no drawbacks for FRT applica-
tions, since the worst-case performance is unaffected.

6. MIXED-CRITICALITY DESIGN FLOW
Programming a multi-processor SOC is hard at the best of
times, but additionally guaranteeing real-time performance
is even more challenging. For this reason, given a FRT cyclo-
static dataflow (CSDF) [10] application with worst-case ex-
ecution time and memory usage per actor, the CompSOC
design flow automatically computes the mapping of users to
resources and the scheduling budgets of each user on each
resource, such that required end-to-end, i.e. first to last ac-
tor, throughput and latency are guaranteed. All required
C wrappers for actors, drivers that configure the resources
and their schedulers at run time, as well as boot code to
load the application(s) at run time are automatically gener-
ated. As mentioned before, KPN, time-triggered, and appli-
cations without a specific MOC must be mapped and com-
piled by the user, but are loaded automatically at run time.
In the remainder of this section we focus on the FRT de-
sign flow, since it is the hardest, and is a superset of what
is required for other applications. Lacking space for a full
formal description, we aim to convey the intuition, and refer
to [17,29,39] for technical details.

At the basis of the FRT design flow are the notions of user,
resource, mapping, and budget. Each user (i.e. computa-
tion, DMA, communication, or storage task) is bound to
a single resource (i.e. processor, DMA, NOC, or CMEM/-
SRAM/DRAM, respectively). Multiple users can be bound
to a single resource, except for DMAs that are not shared.
A user cannot use multiple resources, and resources cannot
use each other. The essence of these restrictions is that the
performance of a user (e.g. computation or storage task)
depends only on the one resource (a processor or memory,
respectively) it is bound to. This is essential for composi-

tional performance analysis, as we discuss below. Each user
has a budget on the resource it is bound to; a budget is a
percentage of the resource. A budget is expressed as a min-
imum number of cycles of service during a given finite time
duration. Equivalently it may be stated in terms of service
units and scheduling intervals.

The cyclo-static dataflow (CSDF) paradigm is used both as
a programming model and as a model of computation for
performance analysis. To disambiguate, we talk about ap-
plication actors and application channels versus actors and
channels in the CSDF model. As shown in Figure 2(a), a
CSDF application is written as a set of application actors
that communicate using application channels. Each appli-
cation actor is implemented by a computation task (bound
to a processor), and as many DMA tasks (bound to DMAs),
communication tasks (bound to the NOC) and storage tasks
(bound to CMEMs) as it has outgoing application channels.
In other words, the implementation of an application chan-
nel involves DMA, NOC, and CMEM, which must be mod-
elled as three separate resources to comply with the map-
ping restrictions outlined above. (The distributed SRAM
and DRAM memories are not used in the automated bind-
ing, but can be analysed when bound manually.)

A CSDF application graph is converted into its correspond-
ing CSDF model for performance analysis in four steps. In
Step 1 the application is expanded into its users, as explained
above. In Step 2 users are bound to resources, i.e. receive re-
source budgets. At this point the application has its virtual
platform, as shown in Figure 2(b). Steps 1 and 2 are per-
formed for all applications, i.e. including those not written
in the CSDF MOC. Later steps are for CSDF applications
only. Step 3 adds the worst-case execution time (WCET)
of each user on its non-shared resource, i.e. when it has
a budget of 100%. Our flow computes the WCET of all
users, except computation tasks, which it assumes as given.
Step 4 translates each user with its budget on a resource
to its corresponding CSDF model. Shared resources con-
tain a scheduler, which is also part of the model. Different
resources and schedulers result in different CSDF models.

For example, in Figure 2(c), the first two computation tasks
are bound to the same processor 1, which uses a static-order
(SO) scheduler. The rates Ri capture the effect of the bud-
gets (2/5 and 1/5) on the WCETs of the tasks. (Intuitively,
R1 = 150/(2/5) and R2 = 100/(1/5).) Note that the third
task, which is bound to processor 2 with TDM has a differ-
ent model [22]. The DMA task is bound to the DMA that
is not shared. The NOC model uses a latency-rate (LR) ab-
straction of the communication performance [17]. CMEM is
scheduled with CCSP, which has another model [38]. The
self-edge on an actor ensures that the actor cannot restart
before it finished.

The resulting CSDF graph with WCETs is used to compute
end-to-end throughput and latency of the mapped applica-
tion using standard dataflow maximum-cycle-mean analysis
or similar. Note that this performance analysis is composi-
tional in several senses. First, the WCET of a user bound
to a resource is independent of other users and resources
(since the resource is not yet shared, users can only use one
resource, and resources cannot use each other). This is very

CSDF
application

programming
model

application
actor

application channel
with infinite capacity

100 200

users

processing
task

DMA
task

communication
task

storage
task

processing
task

5 4 1

application
actor

1.  expand application to users
2.  bind users to resources, with budgets
3.  add worst-case execution times (WCET)

4.  translate each user-resource-budget
to its corresponding CSDF model

CSDF model
for

performance
analysis R1 R2

...
R L R

. .
L R

W

.

.

proc 1 DMA NOC CMEM proc 2

b = 1/5 b = 1/1 b = 1/10 b = 1/3 b = 4/16 budget
on

resource

(a)

(b)

(c)

application
actor

150

processing
task

.

proc 1

b = 2/5

...

...

L R

W

.

SO on processor TDM
on proc.

LR on NOC CCSP
on MC

DMA

Figure 2: (a) Application written in a dataflow programming model; (b) its user-resource representation; and
(c) its dataflow performance analysis model.

advantageous in computing e.g. WCET of application ac-
tors on processors: DMA, NOC, and memories do not need
to be taken into account. Second, sharing is modelled with
budgets that only depend on the user and the resource. An
actor that receives e.g. a 3/10 budget does not care if the
remaining 7/10 of the resource are used (or not) by other
users belonging to the same, or indeed different applications.
Finally, a virtual platform, i.e. a set of resource budgets for
an application, can be defined and given to an application
designer. Each resource budget can be subdivided when
multiple users of the application share the resource. How-
ever, nowhere is there any dependency on other applications
that may or may not co-exist on the same physical platform.

The FRT CSDF design flow is based on SDF3 [40, 41]. It
analyses the trade-off between the storage space assigned
to the channels (i.e. size of CMEMs) and the throughput
of the graph, binds users to resources, and generate static-
order schedules for processors. All application C code, and
system configurations, drivers and boot code are generated.

7. CASE STUDIES
This section contains three case studies illustrating: 1) auto-
matically mapping a FRT CSDF application on a platform
instance, using formal performance analysis; 2) running ap-
plications with different MOCs and intra-application sched-
ulers at the same time; 3) running multiple SRT adaptive
applications at the same time, and using simulation-based
performance verification. The CompSOC platform is proto-
typed on a Xilinx ML605 FPGA board.

In the first case study, a FRT H.263 decoder is implemented
as a CSDF graph, and worst-case execution times for all
application actors were obtained manually. After this, our
design flow automatically finds a mapping on the given two-
tile platform instance that satisfies resource (e.g. memory)
and timing constraints. Non-preemptive static-order sched-
ulers are used for intra-application task scheduling on the
Microblaze processors. The CompSOC instance with the
generated C code (application actors with CSDF wrappers)
and C drivers and boot code were mapped on FPGA using
standard synthesis tools. Experiments on the FPGA board
confirmed that our platform provides a composable and pre-
dictable behaviour when running the H.263 decoder.

The second case study uses the same decoder, but with a
different manual mapping, shown in Figure 3. A second
synthetic application with three tasks also runs on tile 1,
and uses preemptive time-triggered static-priority schedul-
ing. Figure 4 is a trace measured on the FPGA, and illus-
trates CompSOC’s two-level scheduling on processor tiles.
Each composable RTOS slot is delineated by gray lines. In

processor tile 1 processor tile 2

VLD UPS dQ iDCT AB

H.263 decoder virtual platform

Figure 3: Binding of a FRT H.263 decoder.

Figure 4: Schedule traces of the synthetic application (App 1) and the H.263 decoder (App 2).

particular, we observe 1) the preemptive TDM schedule be-
tween virtual platforms, and 2) the preemptive fixed-priority
schedule within the synthetic application’s virtual platform
(App 1), and 3) the non-preemptive static-order schedule
within the H.263 application’s virtual platform (App 2). Al-
though the exact clock cycles are not shown for legibility,
each RTOS slot is exactly the same duration.

The final case study uses an adaptive SRT CSDF dataflow
implementation of H.263. At run time it trades the image
quality (peak signal to noise ratio) for lower energy usage,
depending on the available energy in the application’s vir-
tual battery, i.e. energy budget on each processor. In fact,
two H263 decoders run in different virtual platforms. Both
decoders use the same manual mapping as before. The four
curves of Figure 5 illustrate that four runs of one the de-
coders are identical. Situation 1, run 1 & 2 are two succes-
sive runs of one decoder, when it runs alone on the platform.
In situation 2, run 1 & 2 are two successive runs, when the
other decoder runs too. All runs are identical in terms of
energy (as shown) and cycles (not shown). Figure 6 shows
a screen shot of the system. Each decoder sends it output
to shared memory, where it is sampled (composably) by a
picture-in-picture application running on a third processor
tile. The energy in the virtual battery of each application,
and the energy per frame on each processor (C1/C2) per
application are also shown at run time. The “%CPU” graph
displays the frequency at which each frame is decoded. De-
coder 1 decodes and upsamples to the large window, while
decoder 2 decodes and downsamples to the smaller picture-
in-picture (PIP) window, which results in a lower energy us-
age on tile 2. This case study shows that multiple adaptive
SRT applications can run composably in the same Comp-
SOC platform, and can hence be verified independently, us-
ing simulation or other means.

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 0 5 10 15 20 25

E
ne

rg
y

pe
r

fr
am

e
[m

J]

Frame number

Situation 1, run 1
Situation 1, run 2
Situation 2, run 1
Situation 2, run 2

Figure 5: Comparison of energy usage of a H263
decoder in its virtual platform

Figure 6: Screenshot of PIP with two adaptive H263
decoders.

In addition, the CompSOC FPGA prototype has been used
for several years in to Master lab courses at the TU Eind-
hoven [15] and TU Delft [31], where students parallelise and
map a (motion) JPEG decoder, fractal, and instagram ap-
plications.

8. RELATED WORK
Specific related work was cited when we discussed particu-
lar techniques. Therefore, here we focus on general related
work. Wilhelm et al. [43] give an overview on methods to
predict the temporal behaviour and the implications of var-
ious hardware architecture details on predictability. More-
over, several approaches [23, 44, 45] propose to discard the
modern architectural features that aim to improve average
performance, but are, however, unpredictable. From this
body of work we learn how to achieve predictable hardware.

Conventional real-time systems rely on priority-based schedul-
ing, on top of predictable hardware, and are temporally ver-
ified using formal analysis [36]. RTOSs that follow this ap-
proach include. μC/OS-II [20], RTEMS (www.rtems.com),
eCOS [24], QNX Neutrino (www.qnx.com), ERIKA
(www.erika.tuxfamily.org), and FreeRTOS (www.freertos.org).
Since priority-based scheduling is used across applications,
these approaches are not composable, and often not suitable
for a mix of F/S/NRT applications.

In the RTOS domain, the techniques that aim at temporal

isolation, but not yet composability, are resource reserva-
tion, partitioning, and two-level scheduling. Resource reser-
vation simplifies temporal verification by isolating applica-
tions, and ensuring independent temporal bounds. Few ex-
amples of such approaches are timing isolation [12,13,27,32,
37], and real-time virtual resources [28]. Other approaches
focus only on the interference in the most congested points
of a system, such as a central bus [7], or combine reserva-
tions and priority-based techniques [1, 2] to reduce, instead
of eliminate, the inter-application interference.

[11,29,33] are noteworthy because their approaches consider
the entire system, with different resources, like our work.
In particular, [29] uses the same CSDF approach for real-
time performance analysis as advocated here, but for FRT
applications only. All these techniques provide the isolation
(compositionality) of temporal bounds, but not of actual-
case temporal behaviour, which is required for our strict
notion of composability.

A resource is partitioned when each user has allocated a
(fixed) fraction of the resource (in time and/or space). In
two-level scheduling the processor time is first split between
applications, and second within an application between its
tasks. The RTOSs that implement partitioning are TTA [19]
and VxWorks (www.windriver.com). Two-level scheduling
is implemented in OKL4 [18] and hypervisors, in general.
Only PikeOS (www.sysgo.com), INTEGRITY (www.ghs.com),
and LynxOS-178 (www.lynuxworks.com) implement both.
PikeOs and INTEGRITY have multi-core versions. PikeOs
and LynxOS-178 do not provide any power management
mechanisms, while INTEGRITY has a user-mode power man-
agement support. All the three RTOSs conform to the AR-
INC standard [8], which is a specification for time and space
partitioning in safety-critical avionics real-time operating
systems. According to ARINC, processing time is divided
into number of time slices known as the partitions. Every
partition is assigned an application, however none of the
three provide cycle-accurate isolation between partitions,
and subsequently, between the applications. Furthermore,
none of them implement virtual interrupts for preemptive
two-level scheduling.

To the best of our knowledge, CompSOC is the only platform
that implements application independence down to the cycle
level, power management per application, mixed-criticality
and multi-MOC applications, with an automatic design flow
for FRT CSDF applications.

9. CONCLUSIONS
This overview paper presented the CompSOC platform ar-
chitecture and its accompanying real-time design flow. By
offering a virtual execution platform to each application, it
is possible to simultaneously execute applications that have
different requirements in terms of timing (firm/soft/non real-
time), different models of computation (dataflow, Kahn pro-
cess networks, time triggered, and C), and different imple-
mentations (e.g. task scheduler, power management). Since
each application experiences no interference from other ap-
plications in its virtual platform, it can be designed, verified,
and executed in isolation. This composability reduces the
cost and complexity of integrating multiple applications in a
single platform. Additionally, since each virtual platform is

predictable, any mix of firm/soft/non-real-time applications
can be supported. The CompSOC design flow automatically
maps and verifies cyclo-static dataflow applications on the
platform.

Acknowledgements
We thank Benny Akesson for his contribution to CompSOC.
This work was partially funded by projects EU FP7 288008
T-CREST and 288248 Flextiles, Catrene CA104 Cobra, and
NL STW 10346 NEST.

10. REFERENCES
[1] L. Abeni and G. Buttazzo. Integrating multimedia

applications in hard real-time systems. In Proc. of the
IEEE Real-Time Systems Symposium, 1998.

[2] L. Abeni, L. Palopoli, C. Scordino, and G. Lipari.
Resource reservations for general purpose applications.
IEEE Trans. Industrial Informatics, 5(1):12–21, 2009.

[3] B. Akesson, K. Goossens, and M. Ringhofer. Predator:
A predictable SDRAM memory controller. In Int’l.
Conf. on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pages 251–256, Oct. 2007.

[4] B. Akesson, A. Hansson, and K. Goossens.
Composable resource sharing based on latency-rate
servers. In Proc. Euromicro Symposium on Digital
System Design (DSD), pages 547–555, Aug. 2009.

[5] B. Akesson, W. Hayes Jr., and K. Goossens.
Automatic generation of efficient predictable memory
patterns. In Proc. Int’l. Conf. on Embedded and
Real-Time Computing Systems and Applications
(RTCSA), volume 1, pages 177–184. Aug. 2011.

[6] B. Akesson, A. Molnos, A. Hansson,
J. Ambrose Angelo, and K. Goossens. Composability
and predictability for independent application
development, verification, and execution. In
M. Hübner and J. Becker, editors, Multiprocessor
System-on-Chip — Hardware Design and Tool
Integration, Circuits and Systems, chapter 2, pages
25–56. Springer, Nov. 2010.

[7] A. Andrei, P. Eles, Z. Peng, and J. Rosen. Predictable
implementation of real-time applications on
multiprocessor systems-on-chip. In Proc. Int’l. Conf.
on VLSI Design, pages 103–110. 2008.

[8] Avionics Application Software Standard Interface.
ARINC Specification 653, Jan. 1997.

[9] A. Beyranvand Nejad, A. Molnos, and K. Goossens. A
unified execution model for data-driven applications
on a composable MPSoC. In Proc. Euromicro
Symposium on Digital System Design (DSD), pages
818–822, Aug. 2011.

[10] G. Bilsen, M. Engels, R. Lauwereins, and
J. PeperStaete. Cyclo-static data flow. In Int’l. Conf.
on Acoustics, Speech, and Signal Processing
(ICASSP), volume 5, pages 3255–3258, 1995.

[11] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra,
G. Fohler, K.-E. Arzen, V. Romero Segovia, and
C. Scordino. Resource management on multicore
systems: The ACTORS approach. Proc.
Microarchitecture (MICRO), 31(1):72–81, May-June
2011.

[12] R. Bril. Towards pragmatic solutions for two-level
hierarchical scheduling: A basic approach for

independent applications. CS-report 07/19, Technische
Universiteit Eindhoven, The Netherlands, 2007.

[13] G. C. Buttazzo, E. Bini, and Y. Wu. Partitioning
real-time applications over multicore reservations.
IEEE Trans. Industrial Informatics, 7(2):302–315,
2011.

[14] K. Goossens and A. Hansson. The Aethereal network
on chip after ten years: Goals, evolution, lessons, and
future. In Proc. Design Automation Conf. (DAC),
pages 306–311, June 2010.

[15] A. Hansson, B. Akesson, and J. van Meerbergen.
Multi-Processor Programming in the Embedded
System Curriculum. In Workshop on Embedded
Systems Education (WESE), Oct. 2008.

[16] A. Hansson, M. Ekerhult, A. Molnos, A. Milutinovic,
A. Nelson, J. Ambrose, and K. Goossens. Design and
implementation of an operating system for composable
processor sharing. Microprocessors and Microsystems
(MICPRO), 35(2):246–260, Mar. 2011. Special issue
on Network-on-Chip Architectures and Design
Methodologies.

[17] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken.
CoMPSoC: A template for composable and
predictable multi-processor system on chips. ACM
Trans. on Design Automation of Electronic Systems
(TODAES), 14(1):1–24, 2009.

[18] G. Heiser and B. Leslie. The OKL4 Microvisor:
Convergence point of microkernels and hypervisors. In
Proc. Asia-Pacific Workshop on Systems, pages 19–24,
Aug 2010.

[19] H. Kopetz. Real-Time Systems: Design Principles for
Distributed Embedded Applications. Springer, 2011.

[20] J. J. Labrosse. Microc/OS-II. R & D Books, 2nd
edition, 1998.

[21] J. W. Lee and K. Asanovic. Meterg:
Measurement-based end-to-end performance
estimation technique in qos-capable multiprocessors.
Proc. IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 135–147, 2006.

[22] A. Lele, O. Moreira, and P. Cuijpers. Dataflow based
temporal analysis for TDM. In Proc. ACM Int’l. Conf.
on Embedded software (EMSOFT), 2012.

[23] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards,
and E. A. Lee. Predictable programming on a
precision timed architecture. In Proc. Int’l. Conf. on
Compilers, architectures and synthesis for embedded
systems (CASES), pages 137–146, 2008.

[24] A. Massa. Embedded Software Development with eCos.
Prentice Hall Professional Technical Reference, 2002.

[25] S. Matic and T. A. Henzinger. Trading end-to-end
latency for composability. Proc. of the IEEE Int’l.
Real-Time Systems Symposium (RTSS), 0:99–110,
2005.

[26] J. Maurice Meijer, de Gyvez and R. Otten. On-chip
digital power supply control for system-on-chip
applications. In Proc. Int’l. Symposium on Low Power
Electronics and Design (ISLPED), Nov. 2005.

[27] C. W. Mercer, S. Savage, and H. Tokuda. Processor
capacity reserves for multimedia operating systems. In
Proc. IEEE Int’l. Conf. on multimedia computing and
systems, May 1994.

[28] A. K. Mok and A. X. Feng. Real-time virtual resource:
A timely abstraction for embedded systems. In Proc.
Int’l. Conf. on Embedded Software (EMSOFT), pages
182–196, 2002.

[29] O. Moreira. Temporal Analysis of Hard Real-Time
Radios on a Multi-Processor. PhD thesis, Eindhoven
university of technology, Jan. 2012.

[30] A. Nelson, A. Molnos, and K. Goossens. Composable
power management with energy and power budgets
per application. In Proc. Int’l. Conf. on Embedded
Computer Systems: Architectures, MOdeling and
Simulation (SAMOS), pages 396–403, July 2011.

[31] A. Nelson, A. Molnos, A. B. Nejad, D. Mirzoyan,
S. Cotofana, and K. Goossens. Embedded computer
architecture laboratory: A hands-on experience
programming embedded systems with resource and
energy constraints. In Workshop on Embedded Systems
Education (WESE), Oct. 2012.

[32] F. Nemati, M. Behnam, and T. Nolte.
Independently-developed real-time systems on
multi-cores with shared resources. In Proc. Euromicro
Conf. on Real-Time Systems (ECRTS), 2011.

[33] K. J. Nesbit, J. E. Smith, M. Moreto, F. J. Cazorla,
A. Ramirez, and M. Valero. Multicore resource
management. Proc. Microarchitecture (MICRO),
28(3):6–16, May-June 2008.

[34] A. Nieuwland, J. Kang, O. P. Gangwal,
R. Sethuraman, N. Busá, K. Goossens,
R. Peset Llopis, and P. Lippens. C-HEAP: A
heterogeneous multi-processor architecture template
and scalable and flexible protocol for the design of
embedded signal processing systems. ACM
Transactions on Design Automation for Embedded
Systems, 7(3):233–270, 2002.

[35] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele,
and M. Caccamo. Worst-case response time analysis of
resource access models in multi-core systems. In Proc.
Design Automation Conf. (DAC), pages 332–337,
2010.

[36] L. Sha, T. Abdelzaher, K.-E. Arzén, A. Cervin,
T. Baker, A. Burns, G. Buttazzo, M. Caccamo,
J. Lehoczky, and A. K. Mok. Real time scheduling
theory: A historical perspective. Real-Time Systems,
28:101–155, November 2004.

[37] I. Shin et al. Periodic resource model for compositional
real-time guarantees. In Proc. of the IEEE Int’l.
Real-Time Systems Symposium (RTSS), 2003.

[38] F. Siyoum, B. Akesson, S. Stuijk, K. Goossens, and
H. Corporaal. Resource-efficient real-time scheduling
using credit-controlled static-priority arbitration. In
Proc. Int’l. Conf. on Embedded and Real-Time
Computing Systems and Applications (RTCSA),
volume 1, pages 309–318. Aug. 2011.

[39] S. Stuijk, T. Basten, M. Geilen, and H. Corporaal.
Multiprocessor resource allocation for
throughput-constrained synchronous dataflow graphs.
In Proc. Design Automation Conf. (DAC), pages
777–782, 2007.

[40] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF For
Free. In Proc. Int’l. Conf. on Application of
Concurrency to System Design (ACSD), pages
276–278, 2006.

[41] S. Stuijk, M. Geilen, and T. Basten. A predictable
multiprocessor design flow for streaming applications
with dynamic behaviour. In Proc. Euromicro
Symposium on Digital System Design (DSD), 2010.

[42] P. Vivet, E. Beigne, H. Lebreton, and N.-E.
Zergainoh. On line power optimization of data flow
multi-core architecture based on vdd-hopping for local
DVFS. In Integrated Circuit and System Design.
Power and Timing Modeling, Optimization, and
Simulation. Springer, 2011.

[43] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The
worst-case execution-time problem - Overview of
methods and survey of tools. ACM Trans. Embed.
Comput. Sys., 7:36:1–36:53, May 2008.

[44] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling,
M. Pister, and C. Ferdinand. Memory hierarchies,
pipelines, and buses for future architectures in
time-critical embedded systems. IEEE Journal of
Computer Aided Design, 28(7):966–978, 2009.

[45] J. Wolf, M. Gerdes, F. Kluge, S. Uhrig, J. Mische,
S. Metzlaff, C. Rochange, H. Cassé, P. Sainrat, and
T. Ungerer. Rtos support for parallel execution of
hard real-time applications on the merasa multi-core
processor. In Proc. IEEE Int’l. Symposium on
Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), pages 193–201, 2010.

