
Behavioural Composition
Constructively Built Server Algorithms∗

Pratyush Kumar and Lothar Thiele
Computer Engineering and Networks Laboratory

ETH Zurich, Switzerland
E-mail: {pratyush.kumar, thiele}@tik.ee.ethz.ch

ABSTRACT
Composability and compositionality are well recognised as key
enablers in rigorous design and analysis of complex systems. We
argue that existing work on these enablers, specific to real-time
systems, has exclusively focussed on design and analysis of struc-
tural composition, by which we refer to composition of either
separate software tasks or compositions thereof on a shared plat-
form such as a processor. Though structural composition is com-
mon and likely the most useful such composition, we make the
case of an altogether different kind of composition which we re-
fer to as behavioural composition. As a specific example of be-
havioural composition, we discuss how to constructively build
complex server algorithms, called Demand Bound Servers (DBS),
by composing constituent simpler server algorithms, even hier-
archically. As a result of such composition, we can build server
algorithms to more tightly match the requirements of tasks they
need to serve, which indeed is not possible with the simpler com-
ponents themselves. This is an example of how new behaviour is
emergent out of the composition. We remain curious if there are
other such examples of behavioural composition of interest to
real-time systems.

1. INTRODUCTION
Composability and compositionality are well recognised as key
enablers in the rigorous design and analysis of complex systems.
First we present the definitions of these closely related words as
we use them. By composability, we refer to the compatibility of
components to be assembled together with other components to
form more complex systems, using certain interface operations
while preserving certain properties. On the other hand, by com-
positionality, we refer to the principle that the analysis of a sys-
tem can be derived from the analysis of constituent components
along with certain interface rules. Indeed, these two principles
often co-exist: To be able to analyse systems compositionally, we
often depend on decomposing it into composable components.

Let us transpose these principles on to the systems of our in-

∗Copyright is held by the authors.

terest, namely real-time systems wherein we are primarily inter-
ested in temporal properties. There is a wealth of literature that
studies composition in real-time systems. The strongest case for
composition has been presented by Kopetz et al in their advo-
cacy of time-triggered architectures [1]. Such an architecture is
“decomposed into nearly autonomous clusters and nodes, and a
fault-tolerant global time base of known precision is generated
at every node” where “this global time is used to precisely spec-
ify the interfaces among the nodes” [1]. In [2], the authors apply
principles of time-triggered architectures to present a compre-
hensive design-flow for multi-processor system-on-chips.

The other major thrust to composable real-time systems comes
from the design of resource isolation algorithms, otherwise also
called servers [3], [4], [5]. The primary aim in using servers is
to compose multiple tasks (or task-sets) while preserving tem-
poral properties within each task, within established checks on
schedulability. The servers thus act as wrappers to tasks (or task-
sets) to enable composability and provide the interface rules nec-
essary for analysis of the composed system. In a typical use case,
a new server may be “safely” composed to an existing system if it
satisfies certain interface conditions of schedulability alone.

The third important direction of focus has been in the composi-
tional analysis of complex real-time systems. Such methods de-
compose a system into analysable components which are mod-
elled in abstractions with suitable interface operations to com-
bine (often hierarchically) such analyses. Several such abstrac-
tions have been proposed including timed automata [6], peri-
odic resource model [7], dataflow models [2], arrival and service
curves [8], period with jitter model [9] among others.

Let us establish a common thread in all the above works. A key
commonality is the composition of separate tasks or resources.
For instance, we compose two separate tasks onto a time-triggered
architecture, or two separate servers on to the same processor,
or two periodic resource models representing separate tasks into
one periodic resource model. Indeed the tasks or resources com-
posed can be related or may share a common operational objec-
tive, such as the software units of a car may together accomplish
auto-pilot mode. But such a property is not an essential require-
ment of the composition, neither a consequence thereof. In this
sense, the composition is done to build and analyse bigger sys-
tems. Differently stated, the key emergent property of such com-
position is a more developed structure. Thus, we refer to it as
structural composition.

The need for such structural composition in real-time systems



is apparent. There is the valid case of designing and optimis-
ing different applications in isolation and composing them later
with minimal information exchange while guaranteeing valid-
ity of certification. Secondly, the sheer complexity of large dis-
tributed real-time systems necessitates the presence of clearly
defined composition principles.

The ubiquity and utility of structural composition must not de-
tract us from exploring other types of composition, if any. In-
deed the nomenclature of structural composition was motivated
by the presence of another kind of composition, which we term
behavioural composition. By this we refer to a composition prin-
ciple wherein the key emergent property is a more developed be-
haviour, which was not realisable without the composition. While
structural composition is about a bigger system, behavioural com-
position is about a “better” system.

In this work, we concretise the concept of behavioural composi-
tion with a specific example, namely the design of Demand Bound
Server (DBS) presented in [10]. Starting from an elementary class
of DBS, it is shown that by proposed composition operations, the
class of DBS that can be implemented is generalised. Such a gen-
eralisation is the emergent property of the composition. The util-
ity of this emergent property is the ability to tightly serve task-
sets within serves without compromising on the schedulability.

While we provide one specific example of behavioural composi-
tion, we remain curious if there are others. For instance, can we
compose two scheduling policies to generate a new scheduling
policy with different, otherwise unrealisable, properties. Or can
we compose two different speed scaling laws to manage energy
and temperature into one speed scaling law. To reiterate, in all
of these potential ideas, we do not aim for structural multiplicity
rather we aim at behavioural speciality. For instance, the speed
scaling law that is actuated on the processor is still one law, but it
may be composed of two differently designed and appropriately
interfaced speed scaling laws.

The rest of the paper is organised as follows. We discuss the def-
inition of Demand Bound Server and present the composition
operations in the Section 2. We present the emergent behaviour
from this composition technique in the Section 3. Finally, we
compare our behavioural and structural compositions in Section 4.

2. DEMAND BOUND SERVERS
In this section, we will describe the definition of Demand Bound
Server (DBS), discuss the implementation of a specific kind of
DBS, namely Shifted Periodic Demand Bound Server (SP-DBS),
and the operations on DBS.

2.1 EDF-Servers
We refer to servers which are designed to work with EDF as the
underlying scheduling policy as EDF-servers. Examples of exist-
ing EDF-servers are Constant Bandwidth Server (CBS) [11], To-
tal Bandwidth Server (TBS) [3], Dynamic Sporadic Server [12],
among others.

Typically, the interfacing between the server and the underlying
scheduler can be generalised as follows. The server specifies at
all time instants, up to three quantities (a) a deadline d , (b) a
budget c , and (c) a re-insertion time r . The deadline is used to
compete for the resource under the EDF policy. The budget is the
maximum amount of execution the server can receive before it is

inactive, i.e., not contending for the resource. The re-insertion
time is the next time instance when the server will contend for
the resource, if it is currently non-contending. At times when
the server becomes inactive, either due to depleted budget or an
empty task queue, the scheduler sends the server a valueδwhich
is the amount of execution it has received since the last such in-
activation. Thus, the tuple (c , d , r,δ) represents the possible two-
way interactions between an EDF-server and the scheduler. The
role of the server algorithm is to appropriately modify the inter-
face variables c , d and r , by utilising server parameters and the
values of δ available from the scheduler.

2.2 Demand Bound Server: A Definition
The Demand Bound Server (DBS) was designed to generalise the
existing EDF-server [10]. Central to the definition of the server is
the concept of demand bound function [13] which is defined as
follows.

DEFINITION 1 (DEMAND BOUND FUNCTION). A task has a de-
mand bound function, dbf, if for any ∆ > 0, in an interval of
time [t , t +∆] for any t > 0, the sum of the execution times of all
jobs that arrive not earlier than t and have deadline not later that
t +∆, does not exceed dbf(∆).

A Demand Bound Server (DBS) is characterised only by a de-
mand bound function denoted as dbfs (the ’s’ subscript denotes
server parameters). The definition of the server is then given by
the following two properties based on this demand bound func-
tion. (For a more formal definition of these properties, please
refer to [10].)

DEFINITION 2 (DBS PROPERTY I). A DBS characterized by the
demand bound function dbfs must not request execution on the
resource more than that of a task with demand bound function
dbfs .

DEFINITION 3 (DBS PROPERTY II). When a task (or a task-set)
with a (cumulative) demand bound function not larger than dbfs

is served by a DBS with demand bound function dbfs , then all
jobs must meet their respective deadlines.

As a consequence of these properties, we can (a) verify schedula-
bility of a DBS on a resource, and (b) compute response times of
jobs served by the DBS [10].

Any EDF-server which satisfies the above two properties is deemed
a DBS with the characteristic demand bound function. For in-
stance, it is possible to show that the commonly used servers
such as CBS and TBS are indeed DBS. In this sense, it is a generic
definition of a large class of EDF-servers. The key result of defin-
ing such a generic class is the following result on optimality [10].

THEOREM 1 (TIGHTNESS OF DBS). If a set of tasks, each char-
acterized by a demand bound function is EDF schedulable, then if
we serve each task by a DBS characterised by the demand bound
function of that task, the servers are schedulable and real-time re-
quirements of all tasks are met.



The above result implies that it is always possible to identify a
configuration of DBS such that they can be used to serve a set of
tasks while not affecting schedulability even under the optimal
EDF policy. This implies that the cost of isolating the tasks with
servers does not affect schedulability. However, this precludes
that we are indeed able to implement server algorithms for any
given DBS. This is the topic for the rest of the section.

2.3 SP-DBS
Though DBS represents a wide class of EDF-servers, a server al-
gorithm which implements a DBS with a generic dbfs can have
a prohibitively high implementation cost. Considering that the
server algorithm is an additional overhead on the scheduling, the
choice of algorithm is sensitive to the implementation cost. We
will now discuss a Shifted-Periodic Demand Bound Server (SP-
DBS) which is a specific kind of DBS that has been shown to have
a small implementation overhead [10].

SP-DBS being a DBS has a characteristic demand bound func-
tion, which in this case is parameterised by the tuple (P, Q , D). In
terms of these parameters the demand bound function is given
as

dbfs (∆) =max

�

0,

��

∆−D

P

�

+1

�

×Q

�

. (1)

In words, the above function is periodic with period P , increas-
ing by Q every period, but with an initial offset of D. Otherwise
stated, it is the demand bound function of an explicit deadline
task with period P , execution time Q and deadline D. Note that a
SP-DBS generalises the utilisation-based server algorithms such
as the Constant Bandwidth Server (CBS). Indeed the server algo-
rithm of SP-DBS is markedly different from that of say CBS.

The server algorithm for a SP-DBS is presented in [10]. It has
been shown that the overhead of implementing the server algo-
rithm in terms of number of instructions and memory space re-
quired are both reasonable. Hence, SP-DBS can be qualified as a
DBS with a realisable server algorithm. However, we will like to
further broaden the class to include a larger set of servers. This is
the aim in the rest of the section.

2.4 Operations on DBS
We will now discuss operations that can be performed on one or
more DBS, which will later be used to demonstrate behavioural
composition in DBS. These operations are realised by adapters
which suitably modify the interface variables, namely the tuple
(c , d , r,δ).

2.4.1 Left-Shift Operation
The left-shift operation modifies a DBS to have a larger demand
bound function obtained by shifting it to the left by a parameter
τ. The left-shift operation is realised by modifying the interface
variables as described below.

DEFINITION 4 (LEFT-SHIFT). A server S is said to implement left-

shift by τ of a DBS S1, denoted as S := (
τ← S1), if the adapter of S

implements the following interface

d := d 1−τ,

c := c1,

r :=max(t , r1−τ),
δ1 :=δ, (2)

where t denotes the current time.

For the left-shift operation it can be shown that the resultant server
is indeed a DBS with the shifted demand bound function, as long
as the resultant server is schedulable.

THEOREM 2. Let S1 be a DBS with demand bound function (dbfs )1,

such that (dbfs )1(t+τ)≤ t ,∀t ≥ 0. Then, S := (
τ←S1)defines a DBS

with a demand bound function dbfs given as

dbfs (t ) = (dbfs )1(t +τ), t ≥ 0. (3)

2.4.2 Min Operation
The min-operation aggregates a set of DBS into one DBS with the
demand bound function equal to the minimum of the demand
bound functions of all the servers. The min operation is realised
by the following changes to the interface variables.

DEFINITION 5 (MIN-COMPOSITION). A set of DBS {S1,S2, . . .Sn }
is said to be min-composed to form a server S, denoted as S =S1 ∧
S2 ∧ . . . ∧ Sn , if the adapter of server S implements the following
interface

d :=max(d 1, d 2, . . . d n ),

c :=min(c1, c2, . . . , cn ),

r :=max(r1, r2, . . . , rn ),

δi :=δ, ∀i ∈ {1, 2, . . . , n}. (4)

As before, it can be shown that the aggregate server is indeed a
DBS with the desired demand bound function.

THEOREM 3. Let S :=S1∧S2∧ . . .∧Sn , then the server S is a DBS
characterized by demand bound function dbfs which is related to
(dbfs )i , the demand bound function that characterizes server Si ,
i ∈ {1, 2, . . . , n}, as follows

dbfs :=min
�

(dbfs )1, (dbfs )2, . . . , (dbfs )n
�

. (5)

Note that in both cases, the adapters required to perform the op-
erations on the interface variables are indeed simplistic, in terms
of the overhead they additionally admit. Thus, performing these
inexpensive operations will retain the releasability of the under-
lying DBS, for instance SP-DBS.

3. EMERGENT BEHAVIOUR FROM DBS COM-
POSITION

In this section, we discuss how complex server algorithms can be
constructively built by composing DBS. We will first discuss two
examples of specific problems and highlight the new emergent
behaviour and finally formalise the class of all server algorithms
that can be built using such composition.

3.1 Serving Tasks with Jitter
Consider a task-set of two periodic tasks T1 and T2. Both tasks
have a period and relative deadline of 10. The execution times
of the two tasks are 5 and 4, respectively. Task T1 in addition can
have a jitter of up to 5. It can be verified that the two tasks can
be scheduled under EDF [14]. However, using utilisation-based



0 5 10 15 20 25 30 350

10

20

30
(dbfs )1a

(dbfs )1b

(dbfs )1

S1

M
in

-c
o

m
p

o
si

ti
o

n

S1a

S1b

Figure 1: Serving tasks with jitter using operations on SP-DBS

servers, such as Constant Bandwidth Server (CBS), the two tasks
are not schedulable, as the peak utilisation of the tasks (0.67 and
0.4, respectively) add up to more than 1. Neither are these tasks
schedulable with SP-DBS, as both are implicit deadline tasks with
deadline equalling the period.

We will now use composition to constructively build the server
algorithms required to serve the considered tasks. Let task T2

be served by a SP-DBS denoted S2 with parameters (P,Q , D) =
(10, 4, 10). It is clear to see that this suffices to meet the dead-
lines of the task T2. To serve task T1 we construct the server S1

built by two servers S1a and S1b . Server S1a is a SP-DBS with pa-
rameters (P,Q , D) = (10, 5, 5) and server S1b is a SP-DBS with pa-
rameters (P,Q , D) = (5, 5, 10). To build S1 we min-compose the
two SP-DBS, namely S1a and S1b . The demand bound functions
of these servers are shown in Figure 1. As can be seen from the
figure, the dbfs of S1 exactly equals the demand bound function
of task T1. Consequently S1 can meet the deadlines of T1, and in
addition the two servers S1 and S2 are schedulable together (sum
of demand bound functions is below the constant line of slope 1
through the origin).

By the process of composing the servers, we were able to build
a server algorithm that realises an exact match of the demand
bound function requested by a task and thereby leads to a schedu-
lable system. Thus, composition generates a behaviour hitherto
not realisable by existing servers. To reiterate, the servers S1a and
S1b do not serve separate tasks, they work synergistically to re-
alise one server that behaves differently.

3.2 Serving Tasks with Burst
Now consider another task set of two tasks T3 and T4. The two
tasks have a period and relative deadline of 10. The execution
times of the tasks are 5 and 2.5, respectively. Task T3, in addi-
tion, can have a jitter of up to 5, exhibited by up to 4 consecutive
jobs. It can be verified that the two tasks can be scheduled un-
der EDF. However, using the standard servers such as Constant
Bandwidth Server (CBS) the two tasks are not schedulable, as the
peak utilisation of the tasks (0.8 and 0.25, respectively) add up to
more than 1. Neither are these tasks schedulable with SP-DBS, as
both are implicit deadline tasks with deadline equalling the pe-
riod. It can be verified that min-composing SP-DBS also does not
generate a schedulable system.

This is an example where we demonstrate the utility of opera-
tions on DBS, performed hierarchically. Let task T4 be served
by a SP-DBS denoted S4 with parameters (P,Q , D) = (10, 2.5, 10).
It is clear to see that this suffices to meet the deadlines of the
task T4. To serve task T3 we construct the server S3 built by two
servers S3a and S3b . The server S3a is a SP-DBS with parameters

−10 0 10 20 30 40 500

10

20

30

40
(dbfs )3a

(dbfs )3b

(dbfs )3

S3

M
in

-c
o

m
p

o
si

ti
o

n

S3a

S3b

Left-shift

S3c

Figure 2: Serving tasks with bursts using operations on SP-DBS

(P,Q , D) = (5, 5, 10). The server S3b is the left-shift of a server S3c

by the parameter τ= 15. In turn, the server S3c is a SP-DBS with
parameters (P,Q , D) = (10, 5, 10). The demand bound functions
of these servers are shown in Figure 2. As can be seen from the
figure the dbfs of S3 exactly matches the demand bound function
of task T3. Consequently, S3 can meet the deadlines of T3, and in
addition the two servers S3 and S4 are schedulable together (sum
of demand bound functions is below the constant line of slope 1
through the origin).

Again, this example illustrates how we constructively built the
server algorithm by hierarchical operations on multiple SP-DBS.
Again, the emergent property of the composition is a more finely
controlled behaviour.

3.3 The Class of Server Algorithms
We will now formally characterise the class of server algorithms
that can be built by hierarchically min-composing SP-DBS or left-
shifted SP-DBS. Since, the left-shift and min operations preserve
the DBS properties, we can equivalently characterise the class of
server algorithms by the class of the demand bound functions
which characterise the respective server algorithms.

Firstly, note that the need to support more complex demand bound
functions arises due to potential variability in the jobs’ arrival
pattern, such as jittery and bursty arrivals (as in pervious two ex-
amples). It is thus instructive to characterise such variable pat-
terns. To this end, we will first characterise the concept of arrival
curve from Network Calculus [15].

DEFINITION 6 (ARRIVAL CURVE). The arrival curve α of a task
is the smallest such curve where the number of jobs that can arrive
in any interval of length∆ is no more than α(∆).

Variable job arrival patterns of different types such as periodic
jobs, with and without jitters, with and without bursts, can be
compactly represented by arrival curves. A class of practically
relevant such curves is given by the curve of a cascade of leaky-
buckets. A leaky-bucket is parameterised with a rate r and fill ca-
pacity b . The curve of the leaky bucket is given byσ(u ) = dr u+b e.
It models the arrival pattern of a task with its period 1/r and a
maximum number of jobs arriving in a burst of b . Leaky-buckets
can be cascaded in series to obtain more detailed arrival pat-
terns. The curve of two leaky buckets with curvesσ1 andσ2 cas-



caded in series is given by σ = min(σ1,σ2). The physical inter-
pretation of such a cascading is that if an input stream of jobs is
passed through components serially, where each component re-
stricts the rate and maximum burst of the stream of jobs, then
the output stream has an arrival curve at most equal to the curve
of the cascaded leaky buckets of respective parameters.

In most practical scenarios, arrival curves can be considered to
be represented by the curve of a cascade of leaky buckets. If such
a stream of jobs has a fixed (across jobs) worst-case execution
time and a fixed (across jobs) relative deadline, then we show that
the resultant demand bound function can be tightly matched by
the demand bound function of a DBS constructively built in the
proposed manner.

THEOREM 4. The class of demand bound functions of servers
that can be constructively built using SP-DBS is the class of de-
mand bound functions of any task with an arrival curve as a cas-
caded leaky-bucket curve, and fixed worst-case execution time and
relative deadline.

PROOF. Given that the worst-case execution time and relative
deadline of all jobs are fixed, the demand bound function of the
task is only a scaled and right-shifted version of its arrival curve.
This curve in turn is the minimum of a set of leaky-bucket curves.
Clearly such a demand bound function can be obtained by min-
composing multiple DBS, where each DBS models a single leaky-
bucket. A SP-DBS, or a left-shift of one, can be chosen to have as
demand bound function the curve of each leaky-bucket.

Note that we have discussed the exact matching of the server and
task demand bound functions. Such a match implies that the
tasks can be isolated without any penalty in terms of schedula-
bility, i.e., Theorem 1 applies. Indeed, it is possible to use a DBS
to serve a task or a task-set with a cumulative demand bound
function smaller than that of the demand bound function of the
server. In such a scenario, we would pay for the isolation with a
certain loss of schedulability, which one may well call a schedu-
lability gap. Indeed, the endeavour of defining new server algo-
rithms has been to reduce this gap.

4. STRUCTURAL AND BEHAVIOURAL
COMPOSITIONS

Having described the constructive building of DBS, we will now
present an example system to illustrate the differences between
the two proposed kinds of compositions.

Consider a resource which uses timed-triggered architecture to
serve two applications, or equivalently task-sets, which are to be
independently developed. This is an example of structural com-
position where the main goal is modularity in the design process.

We only consider the second application A2. This application
runs on an EDF scheduling policy and supports a DBS S7 and a
task T56. This is another example of structural composition where
the main goal is isolation during composition as the jobs of task
T56 will not be affected by overruns of the jobs served by S7.

The task T56 in turn is the composition of two tasks T5 and T6 un-
der the round-robin queueing discipline. This is another exam-
ple of structural composition, where the main goal is aggregation

Time-triggered architecture

Application composition

A1 A2

Server composition

S7

T7

T56

Task composition

T5 T6

S7a

S7b

D
B

S
co

m
p

o
si

ti
o

n

Figure 3: Structural and behavioural composition

of two streams of jobs into one under the interface operation of
round-robin ordering.

Note how the three structural compositions enable separate soft-
ware units to be supported on a common platform, while ensur-
ing certain properties during the composition. In contrast, now
consider the server S7 serves a single task T7 which has an arrival
curve given as the curve of a cascade of two leaky-buckets. To
ensure optimality under schedulability (Theorem 1), the dbfs of
S7 must match the demand bound function of T7. To this end,
S7 is built using two appropriately parameterised SP-DBS under
min-composition denoted as S7a and S7b . In this example the
composition synthesis a new behaviour.

Such a construction of S7 is possible because of two properties:
(a) composability: the interface of min-composition enables to
synergistically couple multiple SP-DBS (Definition 5), and (b) com-
positionality: the analysis of S7 (in terms of its dbfs ) is modularly
derived from the analysis of S7a and S7b (Theorem 3).

5. CONCLUSIONS
We presented the case for considering behavioural composition
where the emergent property is behavioural speciality rather than
structural multiplicity. As a specific example, we highlighted the
constructive building of server algorithms with operations on De-
mand Bound Servers. The resultant class of servers was charac-
terised, and was shown to greatly enrich the class of server algo-
rithms which can be implemented while maintaining optimality
of schedulability. The open problem is to validate the utility of
defining behavioural composition by identifying other relevant
examples of it.

Acknowledgements
This work was supported by EU FP7 projects EURETILE and PRO3D,
under grant numbers 247846 and 249776, respectively.

6. REFERENCES



[1] H. Kopetz and G. Bauer, “The time-triggered architecture,”
Proceedings of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[2] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken,
“CoMPSoC: A template for composable and predictable
multi-processor system on chips,” ACM Trans. Design
Autom. Electr. Syst., vol. 14, no. 1, 2009.

[3] M. Spuri and G. C. Buttazzo, “Efficient Aperiodic Service
Under Earliest Deadline Scheduling,” in IEEE Real-Time
Systems Symposium, IEEE Computer Society, 1994.

[4] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource
kernels: A resource-centric approach to real-time and
multimedia systems,” in In Proceedings of the SPIE/ACM
Conference on Multimedia Computing and Networking,
1998.

[5] G. Lipari and S. K. Baruah, “Efficient scheduling of
real-time multi-task applications in dynamic systems,” in
IEEE Real Time Technology and Applications Symposium,
2000.

[6] R. Alur and D. L. Dill, “A theory of timed automata,” Theor.
Comput. Sci., vol. 126, no. 2, pp. 183–235, 1994.

[7] I. Shin and I. Lee, “Periodic Resource Model for
Compositional Real-Time Guarantees,” in RTSS, pp. 2–13,
IEEE Computer Society, 2003.

[8] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time
calculus for scheduling hard real-time systems,” in IEEE

International Symposium on Circuits and Systems, vol. 4,
pp. 101 –104, 2000.

[9] A. Hamann, M. Jersak, K. Richter, and R. Ernst, “Design
Space Exploration and System Optimization with
SymTA/S-Symbolic Timing Analysis for Systems,” in RTSS,
pp. 469–478, IEEE Computer Society, 2004.

[10] P. Kumar, J.-J. Chen, and L. Thiele, “Demand bound server:
generalized resource reservation for hard real-time
systems,” in EMSOFT, pp. 233–242, ACM, 2011.

[11] L. Abeni and G. C. Buttazzo, “Integrating Multimedia
Applications in Hard Real-Time Systems,” in IEEE
Real-Time Systems Symposium, 1998.

[12] T. M. Ghazalie and T. P. Baker, “Aperiodic servers in a
deadline scheduling environment,” Real-Time Systems,
vol. 9, no. 1, 1995.

[13] S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively
scheduling hard-real-time sporadic tasks on one
processor,” in IEEE Real-Time Systems Symposium, 1990.

[14] F. Zhang and A. Burns, “Analysis of Hierarchical EDF
Pre-emptive Scheduling,” in RTSS, pp. 423–434, IEEE
Computer Society, 2007.

[15] J.-Y. L. Boudec and P. Thiran, Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet, vol. 2050 of
Lecture Notes in Computer Science. Springer, 2001.


