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ABSTRACT

The growing demand for both safety and comfort functionality in
modern vehicles is rapidly increasing the complexity of automotive
Electrical/Electronic (E/E) architectures. This makes it necessary
to use specific design tools for modeling, implementing, and testing
such systems. Although many tool vendors offer products covering
different design and development phases, it is still cumbersome for
car manufacturers to find the most appropriate tools that support
their particular E/E architecture design process. And even with the
proper set of tools, it remains an essential challenge to combine
them into a consistent and flexible tool-chain, covering all design
and development phases. This work is a first attempt to develop
systematic approaches towards building such tool-chains. To this
end, we provide an overview of the design process of E/E auto-
motive architectures, its shortcomings and challenges, and study
22 possible tools currently available on the market. Based on this
study, we quantify various usability and functionality aspects of the
tools and use the outcome to evaluate their compatibility in terms
of forming a tool-chain.
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1. DESIGNING AUTOMOTIVE E/E ARCHI-
TECTURES

Nowadays, the major part of innovations in modern cars are in-
troduced by Electrical/Electronic (E/E) architectures and the appli-
cations implemented upon them. Although, notable developments
and new technologies in terms of batteries and engines are strongly
pursued in the context of hybrid and electric vehicles, it is still ex-
pected that E/E architectures here become the main driver of in-
novation [1] [2]. Modern E/E architectures consist of more than
100 Electronic Control Units (ECUs) [3] and various bus systems
like Controller Area Network (CAN), Local Interconnect Network
(LIN), and FlexRay, operating in different domains and connected
via one or more gateways [4]. This system complexity mainly
stems from the increasing demand for driver assistance functions,
providing both improved safety and more comfort for occupants. In
this context, the Anti-lock Braking System (ABS), Electronic Sta-
bility Control (ESC) or Adaptive Cruise Control (ACC) represent

some of the most common functions. It is anticipated that imple-
mentation of novel drive-by-wire systems particularly in electric
vehicles and enhanced Human Machine Interaction (HMI) appli-
cations will additionally increase the complexity of E/E architec-
tures. Hence, the design of such architectures cannot be covered
by a manual workflow anymore but rather requires a sophisticated
tool-chain, for modeling, early-stage verification and validation,
and testing of the system [5].

As aresult, automotive companies and suppliers are showing an
increasing interest in system-level modeling tools that cope with a
growing complexity and harder requirements and, at the same time,
simplify and improve the design process. In the past few years, a
large number of design tools have emerged which are progressively
being adopted in industry. However, with the growing requirements
on E/E architectures on the one hand and the increasing number of
possible design tools on the other hand, the selection of suitable
tools is becoming a major challenge for car manufacturers (both,
the Original Equipment Manufacturers (OEMs) and Tier 1 suppli-
ers). It is not possible to choose one single tool for the entire de-
sign process since such a versatile tool simply does not exist. The
complexity of E/E architectures rather requires the combined use
of diverse model-based tools from various vendors, covering dif-
ferent development stages. However, while each tool might work
well within its own scope of functionality, a tool integration into a
flexible and consistent tool-chain is still a major challenge. Among
others, problems arise from insufficient interfaces and error-prone
manual, rather than automatic, input of essential design data [6].

This paper provides an overview of available tools and guide-
lines to help researchers, developers, and engineers in the automo-
tive domain in the selection of a proper tool-chain. We describe
how to narrow down from a high number of design tools, how to
create a good summary of their most essential properties and, fi-
nally, how to choose the most appropriate ones in order to build
a tool-chain. As a case study, we have surveyed 22 established
and emerging tools that are commonly encountered in the automo-
tive domain. Furthermore, based on several graphs and metrics, we
quantitatively evaluate their utility at different design and develop-
ment phases. However, since a particular composition of metrics
strongly depends on companies’ requirements a company-internal



evaluation of the tools is still necessary. The presented method al-
lows significantly reducing the number of candidate tools and sav-
ing time and costs during the decision making process. To the best
of our knowledge, this is the first systematic effort to evaluate such
design tools. Although we specifically focus on the automotive do-
main, the basic principles proposed in this work are helpful in other
domains as well (e.g., in the electronic design automation), where
this is also a common problem.

1.1 State-of-the-Art in E/E Architecture De-
sign

Usually, specific vehicle components like ECUs or bus systems
are designed and provided by suppliers like Continental, Bosch, or
Delphi rather than by OEMs themselves. These suppliers, on their
part, rely on chip manufacturers, for example Freescale or Infineon.
In this context, the main task of OEMs, like Volkswagen, BMW,
GM, Ford or Toyota, is the specification and engineering of re-
quirements. OEMs are also responsible for the integration of ECUs
and bus systems into their specific car models and for performing
extensive testing of the whole set-up. In a nutshell, the different
roles of manufacturers and suppliers in the automotive industry are
distributed among three groups. The first and closest to the end
product are the OEMs whose tasks are the requirements specifica-
tion and engineering, integration of systems and functions as well
as validation of the whole E/E architecture [7]. The second group
are the Tier I suppliers, who are responsible for the development of
ECUs and application software. Finally, the Tier 2 suppliers deliver
the necessary hardware (e.g., microcontrollers and memory chips)
as well as basic software such as operating systems.

In this supply chain, besides OEMs, particularly the Tier 1 sup-
pliers are involved in the system-level design of E/E architectures.
This process embraces different development stages or phases for
which various tools exist. We first classify these tools into five
categories with each category covering a different design phase.
Table 1 gives an overview of these design phases and the corre-
sponding tool categories. Note, that this comparison provides only
arough overview.

For ease of exposition, the design phases in Table 1 can be trans-
fered to a V-model [8] which is commonly used in software and
systems development to describe the consecutive steps in a devel-
opment life cycle. Named after its V-formed shape, the model de-
picts the chronological evolution of a system beginning with its
general specification and modeling on the left-hand branch down
to the implementation and up again to test, verification, and val-

Table 1: Tool categories in different design phases

Stage Design phase Tool category
1 (@ - blue) High-level Modeling High-Level Design
. Infrastructure
2 (@-green)  Network Modeling and Configuration
. Simulation

3 (19-yellow)  Synthesis and Code Generation
4 (@- orange) Verification Testing .

and Validation and Integration
5(@-red) Management Test and Project
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Figure 1: System development life cycle within the V-model.
The five design phases are highlighted by their colors according
to Table 1.

idation on the right-hand branch. In this respect, the amount of
system detail increases on both branches towards the bottom of the
V-model. Figure 1 illustrates a V-model describing the develop-
ment process of an automotive system in nine steps reflecting the
design phases from Table 1 in different colors. For practical rea-
sons, this allocation is fuzzy and, hence, the design phases might
exceed the boundaries of single V-model steps.

For more complex projects, the V-models allows the insertion
of horizontal connections between development steps at the same
level (e.g., system architecture design and system testing). They
represent an early-stage verification of the three lower V-model lev-
els and an early-stage validation for the topmost level. Although,
there exist more than a single possible representation of the V-
model which may differ in the number and naming of used steps,
all of them follow a very similar development cycle.

1.2 Design Phases and Tools

In the following list the main purpose of each design phase is
explained together with the resulting challenges for the dedicated
tools. Knowledge about these phases is necessary to understand
and properly interpret the evaluation of tools in Section 2.

1) High-level modeling describes the E/E architecture develop-
ment, beginning with the definition of system requirements, fol-
lowed by the modeling of the entire system and partly also encom-
passing the ECU and network modeling. Consequently, tools oper-
ating in this phase should be versatile to allow defining the system
requirements and providing an extensive modeling environment to
sketch the system in a graphical manner. Besides, additional model
analysis mechanisms for early-stage system verification and vali-
dation can improve the high-level design process.

2) Network modeling focuses on the design and configuration of
the network architecture, its components, and the associated data
communication. Here, the tools must first provide a comprehen-
sive development environment for designing an overall architecture
of the system’s network considering all buses and protocols being
used. Second, they should offer component configuration function-



ality, for example, in order to specify the timing constrains for the
buses and ECUs.

3) Synthesis represents the implementation of the actual system
functionality and should support the application design by a model-
based environment. In order to deploy the application code onto
real hardware, efficient code generators supporting a broad variety
of microcontroller architectures for different ECUs become neces-
sary. However, since often ECUs may not be available during this
development phase, it is important for synthesis tools to provide
efficient simulation and emulation functionality to enable an early
debugging and verification of the generated code.

4) Verification and validation ensures the error-free and require-
ments compliant operation for both the single components and the
entire system architecture. Corresponding tools should provide
mechanisms for signal measurement and diagnosis as well as bus
and ECU calibration. Furthermore, efficient static and dynamic
timing analysis and simulation functionality is necessary to calcu-
late the worst case execution and response times (WCET, WCRT),
respectively, for both tasks and messages. These are to ensure that
the real-time behavior of the system is reliably verified.

5) In the management phase, an acceptance validation of the en-
tire system is performed. In contrast to the verification and vali-
dation steps before, here the emphasis is more on legal and safety
issues such as compliance with the automotive function safety stan-
dards ISO 26262 and IEC 61508. To the best of our knowledge,
there is no software used merely for this purpose. Rather, this task
is taken over by suitable requirement, test, and project management
tools. With respect to the classification within the V-model, these
can cover a big part of the right branch and even the requirement
analysis stage.

The development of an entire E/E architecture is a highly com-
plex task with many interdependencies. Hence, in order to ensure
an efficient and faultless development flow, it is important for the
design tools to exchange information between each other, i.e., rel-
evant model-data from one design phase must be passed on to the
next one. This data exchange requires suitable interfaces and ex-
change standards and ideally enables the tools to be combined to
a consistent tool-chain. However, as for each design phase already
multiple tools exist which, in addition, often lack appropriate in-
terfaces, the selection of proper tools is difficult. To overcome this
problem, in this paper we describe a systematic approach for tool
selection.

1.3 Challenges in the Near Future

Without influencing the general purpose of the tools as intro-
duced, future E/E architectures, particularly in the area of hybrid
and electric vehicles, will demand some essential paradigm shifts
concerning the functionality of design tools. Current E/E architec-
tures are mainly event-driven and rely on event-triggered commu-
nication and operating systems like CAN buses and OSEK/VDX!,
respectively. The inherent non-determinism of event-triggered ar-
chitectures leads to time-consuming simulation and testing during
the design process. Although important simulation techniques, like
software in the loop (SiL) and hardware in the loop (HiL), allow
us to emulate the input and output of a system, its testing remains
very time and cost intensive. To prevent expensive re-testing after
changing system design parameters, an incremental design flow is

IOffene: Systeme und deren Schnittstellen fiir die Elektronik in Kraftfahrzeugen
(English: Open Systems and their Interfaces for the Electronics in Motor Vehicles) is
a specification for an embedded operating system.

required where tools support formal methods, automatic test case
generation, and verification of single design steps.

However, as the complexity of information and communication
and the number of safety-critical functions in next-generation cars
will increase, time-triggered control and communication buses will
become inevitable. A prominent example for this paradigm change
is FlexRay [9] which, besides a time-triggered communication, pro-
vides a high data rate and fault-tolerance characteristics to meet the
latest requirements on safety and performance particularly in the
context of drive-by-wire systems [10]. Furthermore, current au-
tomotive software already exceeds 100 million lines of code and
it is expectable that this number will double or triple in the near
future [11]. Thus, the growing complexity in terms of software,
hardware, and the associated wiring harness, component weight,
and manufacturing costs will necessarily lead to a general re-design
of today’s E/E architectures. This change can be achieved either
by an extension of existing architectures through Domain Control
Units (DCUs) that provide the main functional software for each
specific vehicle domain [12] or by the more fundamental consoli-
dation of ECUs. The latter will combine the functionality of mul-
tiple single-core ECUs on one multi-core ECU and, in turn, results
in a reduction of the entire E/E architecture complexity in terms
of hardware and wiring [13] [14]. This approach is often referred
to as a transition from federated to integrated automotive architec-
tures [15].

To support this development, two basic requirements must be
fulfilled. First, system-level tools must enable abstracting func-
tionality into models from which code is automatically generated
and provide powerful connectivity to other tools for simulation
and testing. Such a model-based design offers the possibility to
partly perform the verification and validation at an early design
stage [16] as illustrated in Figure 1. Second, to enable design op-
timization for systems from different suppliers, the generated code
must be based on non-proprietary, open software design standards
which allow a hardware-independent development and distribution
of functions. In this context, the Automotive Open System Archi-
tecture (AUTOSAR) plays a major role in providing an abstraction
layer separating open software standards for the integration of sub-
systems from proprietary applications provided by Tier 1 suppliers
and OEMs [17].

2. EVALUATING AND SELECTING AR-
CHITECTURE DESIGN TOOLS

So far, we presented the design process for E/E architectures and
its challenges, highlighting the importance of appropriate design
tools and tool-chains. This section begins with the description of
an overall approach which should lead to an appropriate choice of
the design tools and the corresponding tool-chain. To illustrate the
proposed procedure, we have chosen 22 available design tools in
order to qualitatively investigate their properties and suitability, see
Section 2.2. This investigation serves as a basis for a detailed quan-
titative evaluation that is described in Sections 2.3 to 2.5. So as not
to impede the reading flow, all referenced figures and tables are
located at the end of the paper.

2.1 An Approach For a Proper Design Tools
Selection

An investigation of the model-based design and optimization of

E/E architectures by applying several keyfigures (i.e. metrics) to

them was presented in [6]. This was done in an abstract manner,

i.e., without considering any available tools, and supported only by



one case study. In our opinion, such an analysis is much more use-
ful for the automotive industry, if a number of existing architecture
design tools are taken into account. In fact, OEMs are mainly inter-
ested in having a selection of available software products combined
into a consistent tool-chain, accompanying the entire E/E architec-
ture design life-cycle.

We believe that the selection process of design and development
tools must be carried out in a systematic manner and should be-
gin with obtaining a detailed overview of all possible tools. That
includes an investigation of the required tool coverage for given de-
sign phases according to the V-model as well as their support for
specific automotive standards. This step may already rule out tools
with insufficient coverage of initial requirements. Furthermore, a
detailed metric-based evaluation of the remaining tools will leave
a manageable selection of products which ideally should be fol-
lowed by a real-world testing by architecture designers and engi-
neers. Here, metrics define the measures of selected tool properties
in terms of functionality, quality or availability and, hence, facili-
tate a quantitative assessment. The latter step serves both gaining
practical experience with some products and analyzing the neces-
sary interfaces for connecting different tools from different ven-
dors. Finally, an additional chart visualizing the possible tool inter-
connectivity will help selecting the most appropriate products from
the OEM’s perspective. As the metrics can be chosen according
to the particular application domain, the presented selection strat-
egy can be adopted for the general E/E architecture development as
well as for specialized E/E design tasks.

2.2 Qualitative Survey of E/E Architecture
Design Tools

As mentioned above, we investigated 22 design tools for all five
design stages, considering different evaluation criteria. Table 2
lists these tools together with their corresponding vendor name (in
brackets) and gives a brief description of the main functionality of
each product. The survey was partly based on publicly available in-
formation (e.g., data that are freely accessible on the Internet) and
partly on our own experience with several of these tools. Due to
the, in some cases, only incomplete information provided by tool
vendors and the continuous and fast changes in the automotive do-
main, this paper does not claim to cover all features and properties
of the presented products. Nonetheless, this is not a drawback for
our selection approach as we do not simply provide a comparison
and rating of a number of selected products. The main goal of this
work is rather to present a reliable strategy for choosing the most
suitable tools in order to create an E/E architecture design tool-
chain.

2.3 Tool Coverage and Compatibility

Following the steps described in Section 2.1, before performing
the actual metric-based analysis of the tools, it is necessary to de-
termine the following two aspects:

e coverage of the V-model steps, and
e compatibility with standards and protocols.

The first aspect is concerned with the tools’ scope according to the
nine design steps of the V-model, whereas the second aspect refers
to their compliance with important automotive standards.

For the coverage aspect, we have extracted the information about
the application area of the tools and visualized their position within
the V-model. The result is depicted in the Coverage Graph in Fig-
ure 2 where each column represents one design step. By covering
some of these columns, the horizontal bars illustrate the tools’ be-
longing to different design steps. More precisely, a dark color shade

signifies that the particular design step is fully supported and a light
color shade signifies a partial or a not fully determinable support.
Each design step needs specific functionality (e.g., requirements
definition in step one, code generation in step five or bus calibra-
tion in step seven), hence, the degree of coverage of a particular
design step has been extracted from both the tools’ specification or
manual and our own experience with some tools. When analyz-
ing the graph in Figure 2 we can recognize that the four high-level
tools and three network tools have a good coverage within the left
branch, which renders them eligible for the first two design phases.
The same applies to the synthesis tools in the third design phase lo-
cated at the bottom of the V-model. However, looking at the fourth
and fifth design phases, the gaps in the particular columns as well
as the light shaded bars give us a hint on insufficient verification
and validation functionality within the investigated tools. Note that
RPLAN e3 is represented by a full-length white bar to emphasize
its exceptional role as, a more or less, pure project management
tool providing secondary functionality for all design steps. Based
on this analysis, a possible tool-chain could contain PREEVvision,
Network Architect, SIMTOOLS, CANx and DOORS. However, as
we are considering the coverage of design phases only and the last
two design steps are not fully supported these example selection is
not ideal.

As listed above, the second aspect which has to be determined
is the tools’ ability to deal with specific automotive software stan-
dards, bus protocols, and data exchange formats. This knowledge
helps us to identify and optimize the degree of compatibility be-
tween design tools. In this context, the Compliance Information in
Table 3 lists the tools’ support of essential automotive standards.
Here, for example, we can see that a broad use of AUTOSAR is
mitigated by the lack of bus protocol and exchange format imple-
mentations particularly for the high-level and synthesis tools.

2.4 Tool Metrics

The next step towards the selection of design tools is a thorough
evaluation, enabling a significant quantitative comparison of the
tools’ essential functionality and their general properties. There-
fore, we have defined a number of criteria and assigned weighted
multi-level metrics to them. The development of these metrics is
described below. First, let us note the outcome of the quantitative
analysis of our specific tool investigation which is depicted as a
Feature Metrics Matrix in Figure 3. On the top of the chart we can
see four categories that represent the general metrics of automotive
design tools:

e Functionality, comprising the most essential functional prop-
erties,

e Compatibility, comprising the main interconnection and com-
pliance features,

e Usability, comprising the user experience,

o Distribution and Actuality, comprising the market penetra-
tion and product release information.

The importance of the proper Functionality of a design tool is
self-evident whereas Compatibility was already discussed in Sec-
tion 2.3. By adding Usability as well as Distribution and Actuality
to the evaluation, we can characterize the most essential aspects of
the design tools. These four categories are refined into different
criteria, which are listed on the horizontal axis below. We have
decided to choose six features for the Functionality segment, as it



has the highest impact on the tool selection process. The remaining
three categories have been split into three criteria each. Within a
row, the support of a particular tool for a specific metric is visu-
alized by a small pie-chart. As the degree of support might be an
insufficient measure for some criteria (e.g., market penetration, lat-
est release, etc.), in addition to the support level, each pie-chart is
given an alternative interpretation, as listed below.

° - The support for a given feature is very strong or it is one
of the tool’s main features. Alternatively, a feature indicates
a good penetration or a short time range.

( . . .

3 - The support for a given feature is sufficient but may
contain gaps and weaknesses. Alternatively, a feature indi-
cates a moderate penetration or a moderate time range.

(3 - The support for a given feature is only rudimentary and
it’s implementation will most probably not fulfill the user’s
needs. Alternatively, a feature indicates a poor penetration or
a long time range.

)
\2) - The feature is not provided by the tool or does not fall
within the tool’s scope.

° - The support for a given feature could not be deter-
mined.

The last column in each category depicts the weighted average
of its preceding values and the same applies to the overall average
in the rightmost column. In contrast to the specific metrics with
four different values, the more fine-grained average results are ad-
ditionally shown in their numerical representation between 0 and
1. It should be mentioned, that in case of data which cannot be
interpreted unambiguously (represented by gray circles) the worst
case is considered which equals a value of 0. Additionally, weight
factors assigned to each metric allow a more specific distribution of
their relative significance and are reflected in the average values. To
highlight more important functions, in the Functionality category
we have chosen the metric weights for system modeling (30%), bus
support (20%), and simulation (20%) with higher weight factors
than for model analysis (10%), code generation (10%), and timing
analysis (10%). The criteria for Compatibility and Functionality
are approximately equally weighted, whereas the Distribution cat-
egory puts a higher emphasis on market penetration (50%) than on
the last release (20%) and the release interval (30%).

Considering the average values for each category as well as the
overall average, we can gain a rough estimate of which tools are
more applicable compared to others within the same design phase.
For instance, for high-level modeling, SystemDesk has the best
overall average value, whereas Vehicle System Architect seems to
outperform it when considering functionality only. Obviously, it
is important to take a more accurate look at the single evaluated
criteria which are weighted according to their importance given by
designers. Thus, we can filter out tools with a strong average rating
but lacking properties or functionality which are paramount for a
particular development process defined by the OEM.

As some features are more tailored to some design phases than
to others, comparing average values from different design phases
might be misleading. This is particularly the case when looking
at the overall average values that combine data from all four cate-
gories. To overcome this problem, it is recommendable to compare
tools within particular tool categories, as depicted in the Feature
Metrics Matrix (Figure 3). However, as some tools can cover more

than one category and, hence, contain functionality from other de-
sign phases, one should also take the Coverage Graph (Figure 2)
into account when comparing tools by means of their overall aver-
age values.

When analyzing the results presented Figure 3, the lowest scat-
tering of average values can be seen in the High-Level Modeling
phase. This indicates a general similarity between the correspond-
ing tools in terms of their features. For the other phases the dif-
ference in the average value seems to be more significant, thus,
simplifying the tool selection process. According to the Feature
Metrics Matrix the five most suitable tools are SystemDesk, EB tre-
sos Inspector, MATLAB/Simulink, CANx and DOORS.

It is important to bear in mind that metrics strongly depend on
the specific needs and requirements of the OEM. Thus, our selec-
tion of metrics as well as the choice of weight factors are a special
case and the Feature Metrics Matrix shall support a previous qual-
itative tool analysis. Additionally, in this work it also shall give
an idea of how to apply and visualize customized metrics during
the selection and evaluation of design tools. In the end, car manu-
facturers can hardly avoid testing some of the tools to verify their
functionality and the actual usability. Nevertheless, applying the
quantitative metric-based evaluation can reduce the initial number
of tools to be regarded in a significant manner.

2.5 Tool Interfacing

Finally, knowing the tools’ coverage of the design phases and
their functionality, features and shortcomings according to the dif-
ferent metrics, we can investigate the possibility of building a con-
sistent tool-chain. As it may be the case, designers might possess
practical experience with some of the selected tools which can be
used for the interface investigation. The information about the con-
nectivity between single tools can be visualized by links inside a
Interface Graph, as depicted in Figure 4.

The results show an overview of possible interfaces between
tools without describing their technical details, orientation, and
quality, which means that the links might constitute natively sup-
ported interfaces, open exchange formats as well as in-house or
third-party plug-ins. Besides showing the bare interfaces, this graph
can also be used to visualize additional quality information by graph-
ically emphasizing tools and links that have more suitable inter-
faces and a higher overall rating from the metric-based evaluation.

Regarding the results in Figure 4, the tight net of connections
suggests an overall good interoperability. However, by taking a
closer look, we can recognize that apart from the high-level de-
sign domains, many tools are not linked at all. And even when
disregarding some less important interconnection groups (for ex-
ample, the management tools), obtaining a flexible and consistent
tool-chain seems to be a difficult task at the moment.

The results of the Interface Graph are mainly based on the com-
munication and data exchange standards as described in Section 2.3
and listed in Table 3. Beyond the evaluation of provided tool in-
terfaces, a thorough analysis of the general compatibility between
tools is necessary. This analysis is important for tools that belong
to different design phases, since this might reveal additional valu-
able information for the Interface Graph and help both obtaining a
proper tool-chain and performing detailed pairwise tests to evaluate
mutual compatibility between the tools. However, such an analysis
is very time-consuming and goes beyond the scope of this work.

Eventually, it shall be mentioned, that the methodological as-
pects of our work do not depend on any specific selection of tools.
In this paper we applied it to a set of 22 tools only for the sake of
illustration; of course it can be applied to a different set of tools,
which will lead to a different outcome.



3. CONCLUDING REMARKS AND OUT-
LOOK

Regardless of the functionality a single tool can provide, it will
not be able to unfold its full potential for the E/E architecture de-
sign when lacking appropriate interfaces to tools from other design
phases. Moreover, generally, the tools do not allow an intuitive
learning and thus make it necessary to attend time-consuming and
expensive seminars which, together with the high license costs, can
already become a criterion for exclusion. Along with this, the doc-
umentation and tutorials are often not sufficient enough to fulfill
the needs of customers.

Taking all our findings into account, we can conclude that due
to strong competition in the automotive domain, there is a lack
of appropriate interfaces between tools from different vendors. In
spite of a few, more or less, proficient exceptions, for example, pro-
vided by tools from dSpace or Mathworks, there is almost no native
tool connectivity between the high-level design and the synthesis
or verification and validation tools. And although AUTOSAR finds
its way into more and more automotive software products, there is
still a need for strong interconnection mechanisms beyond the es-
tablished data exchange formats, like Data Base Container (DBC),
Field Bus Exchange (FIBEX), Kabelbaumliste (KBL-Harness De-
scription List), or AUTOSAR XML.

Nevertheless, it must be mentioned, that there are also good rea-
sons to assume that tool vendors are interested in enhancing the
functionality of their products towards a better tool interfacing.
This development is supported by recent vendor partnerships, like
the cooperation between INCHRON and Vector or IBM, respec-
tively, as well as the announcement of interface plug-ins such as
the one between PREEvision and ChronSIM/ChronVAL. Further-
more, it can be expected that some of the surveyed tools in this
paper will establish themselves as a standard in the development of
E/E architectures. Especially, products from /BM and dSpace seem
to be well accepted by both OEMs and Tier 1 suppliers. In addi-
tion, MATLAB/Simulink is becoming a de-facto standard for code
generation which extends to tools directly based on it, such as Tar-
getLink or SIMTOOLS. With the study at hand as groundwork, we
are furthermore interested in the research on universal information
exchange mechanisms for E/E architecture design tools. Together
with the analysis of the mutual compatibility between the tools, as
mentioned in Section 2.5, this is part of a future work.
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Table 2: Investigated architecture design tools and their functionality

Design Tool Functionality
PREEyvision Multi-layer architecture development supporting a model-based specification, design and
(Vector) evaluation of components; Provides signal routing and model consistency checks;
_ Rhapsody Designer Model design based on the Unified Modeling Language (UML); Offers requirements analysis,
% IBM simulation framework, traceability and code generation mechanisms;
g (IBM) y g
= .
& Volc.'Vehlcle System Design and management of automotive software and hardware systems; Contains mappin
=) g g g
Architect . functionality to connect software components with ECUs and system signals;
(Mentor Graphics) &
entor Graphics
System Desk Modeling of software architectures and functional networks; Verification and off-line simulation
(dSpace) for software functions and component diagrams;
Network Designer Building of bus architectures, schedules and communication matrices for CAN, LIN, and
g g
(Vector) FlexRay; Offers bus-specific consistency checks and visualization of gateway relationships;
é | K Archi Design of communication systems based on imported vehicle functions and electrical
% Volc. Networ ; rchitect architectures; Enables the definition of communication matrices and schedules as well as their
z (Mentor Graphics) verification;
EB tresos Designer Planning complex signal communication among distributed ECUs; Contains an extended
(Elektrobit) support for FlexRay through simplified configuration functions and wizards;
High-level language and numerical computing environment; Provides a platform for
Matlab/SIMULINK model-based design and simulation of dynamic and embedded systems supporting a number of
g
(MathWorks) t0ol boxes:
SIMTOOLS/SIMTARGET  Matlab/SIMULINK toolbox for the development of distributed systems based on CAN and
2 (SIMTOOLS) FlexRay. Allows a user-friendly configuration of timing and bus properties;
é; ASCET Model-based software development targeting the automotive domain; Allows the specification
#  (ETAS) of executable real-time functions, graphical design mechanisms and automated code generation;
TargetLink Development of distributed systems based on SIMULINK models; Provides built-in simulation
(dSpace) and testing mechanisms and enables an incremental code generation and code optimization;
. Series of tools for the design, configuration and simulation of AUTOSAR based systems;
Artop/AUTOSAR Builder Supports the development and validation of software components and system descriptions on
(Geensoft) application level;
Graphical validation and simulation of the systems’s timing requirements; Analyzes and
ChronSIM/ChronVAL validates the dynamic behavior of a distributed architecture and provides real-time simulation
(INCHRON) and optimization;
.§ SymTA/S Timing and scheduling analysis of distributed embedded architectures; Allows to plan and
ﬁ (Symtavision) optimize the system and its integration concepts and determine its reliability and safety;
f ControlDesk NG Flexible and modular development platform for automotive systems; Offers modules for ECU
5 (dSace) calibration, measurement and validation as well as bus configuration for FlexRay, CAN and LIN;
-§ INCA Base product for measurement and calibration of automotive systems; Provides extensions for
_f:é (ETAS) diagnosis, monitoring and data acquisition and visualization for FlexRay and LIN buses;
= CANXx Measurement, calibration and diagnosis of ECUs and ECU-based networks; Consists of several
(Vector) interconnected stand-alone tools: CANape, CANalyzer, CANoe, CANdela;
EB tresos Inspector Monitoring and analyzing traffic on automotive buses; Enables precise measurements on
(Elektrobit) FlexRay, CAN and LIN bus systems with enhanced data visualization features;
DOORS Capturing, analyzing and managing system requirements; Offers optimization, traceability and
(IBM) verification mechanisms and allows the creation of automated and manual test cases;
£ Quality Center Definition and management of system requirements; Provides version control, report generation
£ (Hewlett-Packard) and defect management to support different strategies for automated and manual test scenarios;
é” ECU-Test Test automation for ECUs-based systems; Supports the testing process by graphical test scenario
§ (TraceTronics) definition, multi-staged test case execution and automated log-file generation;
RPLAN e3 Collaborative project management; Enables managing and outsourcing parallel processes as

(Actano)

well as workflow synchronization across project and company borders;
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Figure 2: In the Coverage Graph, design tools are listed according to their belonging to the five design phases and nine V-model
design steps, respectively. A dark shaded bar denotes a strong support of the particular stage, a light shaded bar denotes a partial
or not fully determinable support. Ideally, a consistent tool-chain should be built up by tools containing dark shaded bars altogether
over the entire length of the graph. Considering solely the design phases, a good (yet not ideal) tool selection would be PREEvision,
Network Architect, SIMTOOLS, CANx, and DOORS.

Table 3: Compliance of the surveyed tools with essential automotive software, communication and data exchange standards

High-Level Network Synthesis Verif. / Validation Management
-
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AUTOSAR X X X X X X X X X X X X X
OSEK/VDX X X X
FlexRay X X X X X X XX X
CAN X X X X X X XX XX
LIN X X X X XX x X
MOST X
FIBEX X X X X X X X X
DBC X X X X
KBL X
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Figure 3: The Feature Metrics Matrix depicts the quantitative evaluation of E/E architecture design tools according to 15 criteria
from four categories. The pie charts denote the support for each criterion by a particular tool (empty: no or unknown, 1/3: weak,
2/3: sufficient, 3/3: strong) and provide the corresponding average values.
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Figure 4: The Interface Graph illustrates interfaces between particular tools. The tools are colored according to their design phase
and connections between them are represented by gray lines. The illustration does not show any information about the quality or

direction of the interfaces.



