
Towards Runtime Adaptation in AUTOSAR

Marc Zeller, Christian Prehofer, Daniel Krefft, Gereon Weiss

Fraunhofer ESK, Munich, Germany

{marc.zeller, christian.prehofer, daniel.krefft, gereon.weiss}@esk.fraunhofer.de

Abstract—In many industrial application domains networked
embedded systems realize safety-critical applications. In such
systems, adapting the software distribution at runtime can be
used to optimize system configurations, to add new features or
to handle failure cases. The main objective of this paper is to
devise a flexible and efficient solution for runtime adaptation
in AUTOSAR, which requires minimal changes to the current
architecture. We elaborate the main challenges for extending
AUTOSAR and argue that small changes in the architecture and
design process are feasible and effective for this purpose. Our
work is validated by a proof of concept implementation.

I. INTRODUCTION

In many industrial application domains (e.g. railway, au-
tomotive, avionic, etc.), networked embedded systems realize
safety-critical applications which have high demands on de-
pendability. In such systems, adapting the software distribution
at runtime can be used to optimize system configurations, to
add new features or to handle failure cases [1].

There has been considerable work on self-adaptive systems,
which can modify their software configuration at runtime
[2], [3]. However, applying these techniques to networked,
embedded systems poses several new problems due to the
limitations and reliability requirements of embedded systems
[4]. In particular, we focus on automotive embedded systems
consisting of multiple Electronic Control Units (ECUs). These
are interconnected locally by different bus systems and system-
wide via gateways. In automotive embedded systems, runtime
adaptation can be used, for instance, to increase the availability
and reliability of software-based applications without addi-
tional hardware costs (e.g. in the area of fully electronically
implemented functions such as steer-by-wire).

Modern runtime environments for automotive software,
such as the Automotive Open System Architecture (AUTOSAR)
[5] initiative, provide a standardized software architecture for
cars and hide the heterogeneity of the underlying hardware
from the application software. Current AUTOSAR systems
consist of a layered architecture. This is shown in Fig. 1.1

Each AUTOSAR based ECU implements the AUTOSAR Basic
Software which consists of a set of the so-called Basic Software
(BSW) Modules. These standardized software components pro-
vide an abstraction from the hardware as well as the AUTOSAR
Operating System (OS) and a services for memory use and
communication. The AUTOSAR Basic Software, especially
the hardware abstraction part, is individually implemented
for each ECU platform. Based on the basic software the
so-called AUTOSAR Runtime Environment (RTE) acts as a
static middleware for the AUTOSAR Software Components
(SW-Cs). The RTE is generated for a concrete deployment of

1Note that Fig. 1 also shows new components of our proposal which are
discussed in Sec. III.

software components to ECUs during the design. Moreover,
the scheduling of the tasks by the AUTOSAR OS is defined
by Scheduling Tables which are also generated during the
development process.

With the AUTOSAR Mode Management [6], there exists
a basic concept to change between predefined configurations
of the RTE, the basic software components and the network
communication at runtime. Responsible for switching modes
is the so-called Mode Manager, which is either a SW-C or
a BSW Module. The so-called Mode Users are informed of
Mode Switches performed by a Mode Manager and may read
the currently active mode. The main limitation is that all
modes must be pre-configured in advance and changing the
deployment of a component is not considered. These two
restrictions significantly limit the adaptation to pre-planned
changes.

AUTOSAR is configured statically during design time,
including the mode concept. Within statically designed systems
most of the available resources are assigned permanently. Dy-
namic changes of this configuration (e.g. creating a new task)
during runtime are not supported. Hence, specific extensions to
the present AUTOSAR standard are needed to enable runtime
adaptation by changing the software component allocation
dynamically.

There have been different approaches for enhancing AU-
TOSAR with reconfiguration capabilities. In [7] runtime adap-
tation is realized by implementing a middleware service which
is implemented as AUTOSAR applications and results in a
significant resource overhead. [8], [9] are using the concepts
provided by AUTOSAR to enable runtime adaptation, but
all possible adaptation must be designed in advanced and
cannot be changed while the AUTOSAR system is running.
An approach for the reconfiguration of one single-threaded
AUTOSAR SW-C is presented in [10]. Thereby, an additional
reconfiguration layer is added between the basic software and
the application layer of the AUTOSAR architecture. This poses

AUTOSAR Runtime Environment (RTE)

AUTOSAR Basic Software

ECU-Hardware

Directory Service
AUTOSAR OS with
EDF* Scheduling

Fig. 1. AUTOSAR layered architecture with proposed extensions (shown in
bold)



a certain overhead during design and runtime. In [1] a concept
for enabling reallocation of software components in automotive
infotainment systems with runtime adaptation is presented.
Although this approach is strictly limited to the in-vehicle
infotainment, it serves as a basis for our approach to enhance
AUTOSAR systems by runtime adaptation.

The main objective of this paper is to devise a flexible
and efficient solution for runtime adaptation in AUTOSAR,
which requires minimal changes to the current architecture.
In contrast to prior work, we argue that small changes in
the architecture as well as design process are feasible and
effective for this purpose. We present the challenges for en-
hancing AUTOSAR systems with runtime adaptation in Sec. II.
Afterwards we present our proposed new concept and discuss
the key design decisions in Sec. III. Our concept includes an
Adaptation Service and an Adaptation Manager as well as
changes in the AUTOSAR basic Software, shown in Fig. 1
and discussed in Sec. III.

II. CHALLENGES OF RUNTIME ADAPTATION IN

AUTOSAR

In the following, we give an overview of the main chal-
lenges of runtime adaptation in AUTOSAR systems. These
will be addressed further in the next section.

The AUTOSAR development methodology is shown in
Fig. 2. For developing an AUTOSAR-based system, the soft-
ware of each ECU is generated based on information about
the software component (SW Component Description and SW
Component Code) as well as information about the ECUs
within the in-vehicle network (ECU Resource Description) and
the System Constraint Description. Using this information, a
deployment model of each ECU is generated (ECU Configu-
ration) which includes the mapping of the SW-Cs. Based on
the description of an ECU, the source code of the RTE and the
BSW Modules as well as the configuration of the AUTOSAR
OS are generated.

To realize runtime adaptation in AUTOSAR systems we re-
quire a reallocation of software components at runtime and the
computation of adaptations during runtime. In particular, the
following specific challenges must be addressed for runtime
adaptation:

Runtime Control: To apply adaptation in networked sys-
tems, a runtime control entity must supervise the system and
both decide and implement the reallocation of the software
components if necessary. Thus, a protocol is needed to co-
ordinate the adaptation throughout the networked embedded
system.

Real-time Requirements: The real-time system require-
ments of the automotive embedded system must be guaranteed
during runtime. These constraints must be satisfied for the new
allocations [11] and during the adaptation process itself [12].

Self-describing Components: Information about non-
functional properties of the software components and the
available hardware resources must be made available during
runtime, see e.g. [13]).

Scheduling: Real-time capable task scheduling with dy-
namic priorities must be provided in order to enable efficient
planning of new allocations during runtime [11].

SW Component

Description

S
W

C
o
m

p
o

n
e
n
ts

ECU 

Configuration

Description

System

Configuration

Description

ECU

Configuration

SW Component

Description

SW Component

Code

System

Configuration

Generator

ECU

Configuration

Generator

RTE 

Generator

System 

Constrain

Description

ECU

Resource

Description

ECU

Configuration

ECU

Configuration

Basic Software

Configuration

OS & COM

Configuration

RTE

Configuration

OS & COM

Generator
Basic SW

Generator

ECU

Software

...
SW Component

Description

SW Component

Code

SW Component

Code

F
in

a
l 

D
e

p
lo

y
m

e
n

t

R
T

E
, 

B
S

W
 

&
 O

S
 C

o
n

fi
g

u
ra

ti
o

n
E

C
U

 C
o

n
fi
g

u
ra

ti
o

n
S

y
s
te

m
 C

o
n

fi
g

u
ra

ti
o

n

Fig. 2. AUTOSAR development methodology

ECU-independent Addressing: Since the allocation of
software components is changed during runtime, software
components must be addressed independently from their phys-
ical location within the system’s communication network.

III. A CONCEPT FOR ENABLING RUNTIME ADAPTATION

IN AUTOSAR

In the following, we present our concept for adaptation in
AUTOSAR. The main new components are shown in Fig. 1.
We explain our architecture concept by addressing the above
challenges in the following subsections.

1) Runtime Control: In order to reallocate software com-
ponents, we must be able to manage the start and stopping
of AUTOSAR software components (SW-C) dynamically. For
this purpose, we extend the system by a runtime control
based on the so-called MAPE cycle [14]. This control loop
consists of the four stages: Monitor, Analyze, Plan, and Exe-
cute. Moreover, the existing concept of the AUTOSAR Mode
Management can be reused to implement runtime adaptation.

Fig. 1 illustrates our approach. Thereby, the runtime control
is implemented by two components: the Adaptation Service
and the Adaptation Manager. The Adaptation Service imple-
ments the monitoring and execution stage of the MAPE cycle
(see Fig. 3). It supervises the current status of the system’s
environment by monitoring the equipped sensors as well as
the status of the applications running on the ECU. Moreover,
it implements the actual activation and deactivation of specific
SW-Cs. This can be done by changing the scheduling table
which is used by the AUTOSAR OS. In order to deactivate a
software component, the corresponding entry is removed from



SW-C Runnable Client/Server PortSender/Receiver Port

Fig. 3. Runtime control for reallocating AUTOSAR SW-Cs at runtime

the scheduling table. A software component is activated by
adding a corresponding entry to the scheduling table. The
Adaptation Service extends the Mode User concept of the
AUTOSAR Mode Management and can either be implemented
as a BSW module or as SW-C.

After the monitoring stage is completed, a ModeChan-
geRequest is sent to the Mode Manager. The Adaptation
Manager implements the analyze and planning phase of the
MAPE cycle (see Fig. 3). It encapsulates the computation
intensive parts of the MAPE cycle. For our concept it would be
sufficient to have one single Adaptation Manager within the
whole automotive embedded systems. But in order to reuse
the concepts provided by the AUTOSAR Mode Management
for implementing the runtime control, there must be one
Adaptation Manager implemented on each ECU. Thereby,
the Adaptation Manager extends the Mode Manager concept
and can either be realized as a BSW module or as SW-
C. It analyses the current system state based on the data
provided by the monitoring part of the Adaptation Service and
decides whether the allocation of software components must be
modified. Based on the decision taken in the analyze stage, the
Adaptation Manager determines a new allocation of software
components which satisfies the given system requirements. The
newly determined allocation is then executed by activating or
deactivating specific software components through the Adap-
tation Service. Therefore, a ModeSwitchNotification is sent to
the Adaptation Service.

Since each ECU must provide a local Adaptation Manager,
adaptation is managed locally and a coordination mechanism is
needed. For this purpose, a new Synchronization Component is
implemented on one single ECU within the in-vehicle network.
After planning a novel allocation of software components,
the Adaptation Manager requests the current allocation from
the Synchronization Component. If the allocation stored in
the Synchronization Component is not equal to the current
allocation known to the Adaptation Manager, the Adaptation
Manager executes the adaptation described by the Synchro-
nization Component. If not, the Adaptation Manger commu-
nicates the newly planned allocation to the Synchronization
Component and starts executing this configuration. In case the
Synchronization Component receives a changed allocation of
software components, it sends this new configuration to all
Adaptation Managers within the in-vehicle network.

2) Guaranteeing Real-time Requirements: Since automo-
tive embedded systems implement safety-critical applications,
the expected system behavior must be guaranteed at any time.
Especially the non-functional system requirements (like the

real-time behavior) must be met in any system configuration.
Thus, the mechanisms used to determine a new allocation in
the planning stage of the runtime control must be based on
a representation of the non-functional system requirements
(e.g. [11]). Moreover, the correct system behavior must be
guaranteed during the actual adaptation of the system. Hence,
the sequence of activating or deactivating specific software
components on the systems’ ECUs must also be determined
w.r.t. the components’ timing requirements before executing
the newly planned allocation [12].

3) Self-describing Components: In order to enable run-
time adaptation, the control mechanisms must be aware of
the system properties. Hence, the attributes of the software
components and ECU platforms used to describe the system
during the AUTOSAR development process (see Fig. 2) must
be available for the different stages of the MAPE cycle
during runtime. Especially the non-functional requirements of
the software components which are needed to characterize
to correct, predefined system behavior must be available for
planning and executing changes of the software component
allocation without influencing the actual applications nega-
tively (cf. Sec. III-2). The attributes needed during runtime
comprise of information from the AUTOSAR SW Component
Descriptions, the ECU Resource Descriptions as well as the
System Constraint Descriptions (e.g. timing requirements, such
as end-to-end deadlines). This information must be available
to the Adaptation Service and the Adaptation Manger which
are implemented on each ECU within the in-vehicle network.
Therefore, the data necessary to enable runtime adaption can
either be stored on each ECU or in a central component located
on one single ECU within the network. While storing the
complete information on each ECU leads to a certain memory
overheard, a centralized storage leads to additional network
traffic and may result in a performance bottleneck or a single-
point-of-failure. Thus, a trade-off is needed: The information
which is needed frequently should be stored on each ECU,
while other data may be stored in a centralized way or on
an ECU within each sub-network of the automotive embedded
system.

4) Dynamic Task Scheduling: In AUTOSAR, a real-time
capable scheduling mechanism is needed to guarantee the
timing requirements of each task. Currently, it is using static
priorities, assigned to the tasks at design time. Changing the
static scheduling would lead to an overhead in planning new
allocations at runtime. This is due to the complex schedula-
bility analysis needed to guarantee correct system behavior
in new configurations [11]. Moreover, the scheduling table
of the AUTOSAR OS must be modified in order to execute
the planned adaptation. Thus, a real-time capable scheduling
mechanism based on dynamic priorities needs to be used by the
AUTOSAR OS to coordinate task execution during runtime.
Thereby, the priority of each task is calculated dynamically
during runtime more efficiently. In AUTOSAR such a mecha-
nism must be able to schedule a set of preemptive (a-)periodic
tasks with offsets. For this, the Earliest Deadline First (EDF)*
[15] algorithm can be applied to schedule tasks with real-time
requirements in an AUTOSAR system based on dynamically
calculated priorities. Although, calculating the task priorities
during runtime leads to an overhead, planning and execution
of a new allocation can be performed much more efficiently.



5) Locations-independent Addressing: Applying dynamic
reallocation of software components to different ECUs in
distributed systems means that SW-Cs change their physical
location at runtime. In order to enable the communication
between different software components, each software com-
ponent must be addressed independently from their physical
allocation within the system’s communication network. Thus,
each software component is addressed network-wide by a
unique identifier. This identifier must be translated to the
physical address of the hardware platform, where the SW-C
is currently allocated. Thus, a so-called Directory Service can
be used to map the location-independent identifier to a physical
address. Such a Directory Service can be integrated into the
AUTOSAR communication stack as a BSW module.

The actual mapping can be implemented efficiently using
a look-up table. In order to transfer data correctly at any time,
this look-up table must be modified according the adaption
of the software component allocation. Therefore, all ECUs
must be informed in case of an adaption. This is already
done by the previously introduced Synchronization Component
(see Sec. III-1). In case the Adaptation Manager receives a
notification with a new allocation, the lookup-table within the
Directory Service is adapted accordingly. Since no additional
message is needed, this can be done very efficiently.

IV. PROOF OF CONCEPT IMPLEMENTATION

In [16] the concepts described in Sec. III were implemented
using Arctic Core, an open-source implementation of the
AUTOSAR standard 3.1. A first evaluation was performed
using two prototyping ECUs based on the Freescale MPC5554
@135MHz which are interconnected using a CAN-bus. ECU
1 is hosting two applications: Lane Departure Warning System
and Parking Aid System. To elaborate the implemented con-
cepts, one of these applications is reallocated on the other ECU
on which the Synchronization Component is implemented.
The results of this evaluation shows that the runtime control
described in Sec. III-1 can be implemented very efficiently
w.r.t. to the memory overhead for the additional software
components (4%-5% of the memory requirement by the overall
system compared to the same AUTOSAR system without our
extensions). Moreover, the evaluation shows that changing the
set of SW-Cs running on an ECU can be performed very fast
using the concepts described in this paper (about 23 µs to adapt
one single ECU from the detection of a changed situation until
the planed modification was executed). However, the overall
time needed for the actual runtime adaptations mostly depends
on the time-consuming data transfer in today’s automotive
networks. This is needed in order to synchronize all ECUs
within the automotive embedded system during the adaptation
process to guarantee a consistent system state at any time.
Thus, the overall time required for the runtime adaptation of
the automotive embedded system in our case study is measured
as approximately 7.5 ms.

V. CONCLUSION AND FUTURE WORK

We have identified the main challenges of enhancing AU-
TOSAR for runtime adaptation w.r.t. the placement of the
software components, which is important for optimization and
self-repair of networked embedded systems. Based on this, we
have presented a flexible solution for runtime adaptation in

AUTOSAR, which is also efficient and minimal changes to the
current architecture. We show the needed AUTOSAR exten-
sions and argue that small changes in the architecture as well
as the design process are feasible and effective for this purpose.
Our work is validated by a proof of concept implementation,
which shows small overhead in our initial evaluation. Further
work will encompass a more detailed evaluation of the new
approach. Moreover, functional safety aspects of our approach
to enable runtime adaptation in automotive systems will be
investigated.

REFERENCES

[1] G. Weiss, M. Zeller, D. Eilers, and R. Knorr, “Towards self-organization
in automotive embedded systems,” in ATC ’09: Proceedings of the

6th International Conference on Autonomic and Trusted Computing.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 32–46.

[2] J. Kramer and J. Magee, “Dynamic configuration for distributed sys-
tems,” IEEE Transactions on Software Engineering, vol. 11, no. 4, pp.
424–436, 1985.

[3] I. Georgiadis, J. Magee, and J. Kramer, “Self-organising software ar-
chitectures for distributed systems,” in Proceedings of the 1st Workshop

on Self-healing Systems (WOSS’02), 2002, pp. 33–38.

[4] M. Zeller, G. Weiss, D. Eilers, and R. Knorr, “An approach for
providing dependable self-adaptation in distributed embedded systems,”
in Proceedings of the 2011 ACM Symposium on Applied Computing,
ser. SAC’11, 2011, pp. 236–237.

[5] AUTOSAR Consortium, “AUtomotive Open Sytem ARchitecture (AU-
TOSAR),” http://www.autosar.org/.

[6] AUTOSAR Consortium, “Guide to Modemanagement,” 2011,
http://www.autosar.org/.

[7] W. Trumler, M. Helbig, A. Pietzowski, B. Satzger, and T. Ungerer,
“Self-Configuration and Self-Healing in AUTOSAR,” in Proceedings

of the 14th Asia Pacific Automotive Engineering Conference (APAC-

14). SAE International, 2007.

[8] B. Becker, H. Giese, S. Neumann, M. Schenck, and A. Treffer, “Model-
based extension of autosar for architectural online reconfiguration,”
in Proceedings of the 2nd International Workshop on Model Based

Architecting and Construction of Embedded Systems (ACES-MB 2009),
2009, pp. 123–137.

[9] J.-C. Fabre, M.-O. Killijian, and F. Taiani, “Robustness of automotive
applications using reflective computing: lessons learnt,” in Proceedings

of the 2011 ACM Symposium on Applied Computing, ser. SAC’11, 2011,
pp. 230–235.

[10] C. Berger and M. Tichy, “Towards transactional self-adaption for autosar
on the example of a collision detection system,” in Proceedings of the

INFORMATIK 2012, 2012, pp. 853–862.

[11] M. Zeller, C. Prehofer, G. Weiss, D. Eilers, and R. Knorr, “Towards self-
adaptation in real-time, networked systems: Efficient solving of system
constraints for automotive embedded systems,” in Proceedings of the

5th IEEE Int. Conference on Self-Adaptive and Self-Organizing Systems

(SASO), 2011, pp. 79–88.

[12] M. Zeller and C. Prehofer, “Timing constraints for runtime adaptation
in real-time, networked embedded systems,” in Proceedings of the 7th

International Symposium on Software Engineering for Adaptive and

Self-Managing Systems (SEAMS ’12), 2012, pp. 73–82.

[13] G. Weiss, K. Becker, B. Kamphausen, A. Radermacher, and S. Gerard,
“Model-driven development of self-describing components for self-
adaptive distributed embedded systems,” in Proceedings of the 37th

EUROMICRO Conference on Software Engineering and Advanced

Applications (SEAA), 2011, pp. 477–484.

[14] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[15] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of real-
time tasks under precedence constraints,” Real-Time Systems, vol. 2, pp.
181–194, 1990.

[16] D. Krefft, “Konzeption und Implementierung einer Laufzeitumgebung
für Selbstadaption in automobilen E/E-Systemen,” Master’s thesis,
University of Augsburg, 2012.


