
A New Concept for System-Level Design of
Runtime Reconfigurable Real-Time Systems

Arno Luppold, Benjamin Menhorn, Heiko Falk and Frank Slomka
Institute for Embedded Systems/Real-Time Systems

Ulm University
{arno.luppold|benjamin.menhorn|heiko.falk|frank.slomka}@uni-ulm.de

Abstract—This concept paper proposes a new system-level
design methodology for runtime reconfigurable adaptive het-
erogeneous systems in a real-time environment. Today, among
those approaches dealing with runtime reconfiguration and
hardware/software co-design, compliance with hard real-time
conditions is not guaranteed. Our approach will fill this gap.
In contrast to other approaches, we apply methods of real-time
analysis to embedded reconfigurable systems. An extended com-
piler and a runtime resource manager guarantee both synthesis
and reconfiguration in a (hard) real-time environment. With this
approach, the system can adapt to changes in requirements and
operational environments during runtime.

I. INTRODUCTION

Modern embedded systems have to execute multiple tasks
while often meeting hard real-time constraints and coping
with a restricted chip size and power budget. To efficiently
fulfill their tasks, such heterogeneous systems often consist
of both software tasks and dedicated programmable hardware
logic. The Ptolemy project was one of the first projects, which
uncovered the difficulty of an early design partitioning between
hardware and software [1]. In most cases, the decision whether
a given function should be realized in software or hardware is
highly dependent on a system’s other tasks.

An additional challenge occurs with changes during run-
time. When considering safety-critical infrastructure, shutting
down a system may not be feasible. Apart from safety-
critical systems, shutting down industrial production systems
for maintenance work will often result in substantial financial
losses. This leads to the need for run-time reconfigurable
systems. However, when functions are added, resources are
changed, bugs fixed, or if the environmental conditions change,
a system’s timing behavior will vary. In this case, finding
an efficient and effective hardware/software partitioning on
the fly becomes even more complex. But even then it has
to be ensured, that operational constraints are not violated.
These considerations lead to the idea of a holistic development
process on the system level. The scope of our work covers
hardware/software co-design of embedded systems and their
runtime reconfigurability. We will accomplish two goals: first,
we will guarantee specific requirements during runtime even
after the system was reconfigured. In our case, we focus
on hard real-time systems. Second, in contrast to most other
approaches, which base their decisions for hardware/software
partitioning on simulations, we rely on analytical methods to
guarantee compliance with all requirements. This way, we

This work was partially supported by Deutsche Forschungsgesellschaft
(DFG) under grant FA 1017/1-1.

can guarantee safe upper bounds for all response times, while
simulation delivers only unsafe estimates [2].

The key contributions of this paper are:

• We propose a new concept for a methodology to design
heterogeneous embedded real-time systems on system level.
• We show how we will ensure that hard real-time constraints

are met even in runtime reconfigurable systems.
• We will base our work on analysis rather than simulations.
• We propose a future implementation of our methodology.

This paper is organized as follows: Section II gives a
brief overview of related projects in the field of reconfigurable
platforms and hardware/software co-design. Section III shows
our underlying approach. With this approach, Section IV
describes our concept for a holistic methodology. This paper
closes with a conclusion and future challenges.

II. RELATED WORK

The design of runtime reconfigurable embedded systems
has been addressed by several projects. In [3], the authors
propose a synthesis process in which the system’s hardware
capabilities are expressed in a global resource library. A
system’s functions are modeled by using acyclic task graphs.
To each graph a set of attributes is assigned. These sets contain
properties such as a task’s worst-case execution time (WCET),
deadline and period. Based on a heuristical optimization algo-
rithm, task graphs which are not executed at the same time are
then pairwise merged to common hardware resources. After a
merge, the system’s real-time deadlines are verified, and the
optimization flow is terminated when deadlines cannot be hold.

In [4], the authors propose an object-oriented method for
hardware/software co-design on reconfigurable platforms. A
so-called primitive object can be specified. It can either be
realized by hardware or software. Systems are subsequently
modeled as composite objects, containing hardware and soft-
ware primitive objects. Objects may then communicate with
each other using various communication mechanisms.

The ERA project [5] focuses on developing a platform
consisting of reconfigurable very large instruction word pro-
cessors on field programmable gate arrays (FPGA). Those
processors are connected through a network on chip to memory
subsystems. The number of processors as well as their shared
resources may be instantiated during compilation time. They
may also be configured at runtime by both software and
hardware schedulers. Software reconfiguration can be initiated
by the programmer using a given application programming

interface (API). Alternatively, a platform’s operating system
can also automatically reconfigure its system using information
like the platform’s workload or temperature.

The ANDRES project [6] provides a SystemC framework
to create an adaptive heterogeneous system consisting of
software and digital hardware components. ANDRES uses the
OSSS+R SystemC library [7] to divide a system’s hardware
in a static and a reconfigurable area. The reconfigurable area
is modeled as a polymorphic object. This can be compared
to polymorphism in object-oriented software. This allows
to switch between different implementations during runtime
when maintaining a fixed interface. Based on the SystemC
description, the ANDRES workflow automatically generates
a hardware VHDL description and embedded code in C++.
A set of hierarchically organized controllers is then used on
the embedded platforms to reconfigure the system at runtime.
Based on the ANDRES project, COMPLEX is one of the
most recent projects [8]. It develops a framework for a
platform-based design space exploration to find an optimum
between system performance and power consumption. Its
holistic approach uses UML and SystemC to design hardware
and software at an algorithmic level. Resulting systems are
then simulated in a cycle-accurate simulator to determine an
optimal hardware/software partitioning for each use case. At
runtime, a global resource manager can switch between these
configurations at dedicated switching points [9].

The iLAND project realizes a resource manager for recon-
figurable networked embedded systems [10]. Real-time guar-
antees are established by decoupling all distributed elements.
Although focussing on soft real-time purposes, iLAND sys-
tems can be runtime-reconfigured in bounded time. However,
iLAND does not focus on hardware/software partitioning but
uses general purpose CPUs and mainly focusses on problems
arising from the system’s distribution over a network [11].

[12] describes the Java based language LIME. LIME
programs are either compiled completely to java bytecode,
or can be translated into OpenCL for GPUs or VHDL for
FPGAs as target systems. OpenCL or FPGA sources are
then compiled using the target’s native tool chain. A runtime
manager implemented in Java can move application parts
from software to the FPGA or GPU at runtime. Due to
the Java approach, the runtime manager’s real-time behaviour
cannot be determined. Additionally, the LIME approach does
not integrate any real-time oriented optimization techniques.
Instead, the programmer has to manually adapt his LIME code
until the resulting output serves his needs.

Although some of the related projects consider real-time
systems, none of them uses real-time analysis to decide on a
system’s partitioning. Instead, all partitioning approaches rely
on simulations or heuristics, leading to an unsafe real-time
behaviour. Although not focusing on reconfigurable systems,
Wandeler [13] shows a possibility to efficiently analyze com-
plex real-time systems. However, Wandeler does not consider
any secondary objectives like energy consumption and pro-
vides no methods to analyze capabilities and requirements
of hardware logic. Based on his findings, our approach will
use analysis for all its decisions regarding hardware/software
partitioning. This way, we can guarantee that a system’s
partitioning will be optimized towards its worst-case behavior
both at the development stage and at runtime.

III. UNDERLYING APPROACH

Most existing research projects use SystemC [14], a C++
class library, for modeling and simulating designs at system
level. A set of possible operational scenarios is applied to
a SystemC model, and its behavior is obtained by running
SystemC simulations. SystemC code can then be transferred
to C/C++ code or to a hardware description language (HDL)
like VHDL or Verilog. Finally, the resulting code can be
compiled or synthesized and each module’s properties like its
WCET can be calculated. These results are fed back into the
SystemC model as basis for the decision which module should
be implemented in which architecture. Transforming SystemC
models to software source code and HDLs is usually automated
by tools [15], [16].

We do not base our decision for hardware/software par-
titioning on simulations or heuristic algorithms but aim at a
precise analysis with regards to minimizing modules’ WCET.
Therefore, we do not need the simulation capabilities of Sys-
temC. Instead, we will base our design flow on the relatively
new standard OpenCL [17]. OpenCL provides an open stan-
dard for programming on any heterogeneous multi-threaded
platform. Companies like Altera provide OpenCL support
for their FPGAs [18], NVIDIA for some of their graphics
chips [19], Intel and AMD for some of their CPUs [20], [21].
In [22], OpenCL is used to develop a design methodology for
application-specific processors.

In OpenCL, systems are described as a set of computing
units called kernels, similar to modules in SystemC. Each
kernel is a stand-alone unit, allowing full task and data
parallelism. Kernels can communicate with each other, e.g.
by using shared memory, and can be synchronized by using
synchronization points. Kernels are managed by a resource
manager called host. Hosts may run on external systems
or on their target systems. During runtime, they can freely
determine which and how many instances of a kernel are
created or destroyed, and on which physical resources they run.
Also, hosts are allowed to locally compile and execute new
kernels at runtime. Hosts themselves are developed as indi-
vidual programs, communicating with kernels by the OpenCL
API. Therefore, the compiler may define an initial mapping
of kernels to hardware resources, or leave it as a runtime
decision for the host. Compared to SystemC, OpenCL natively
distinguishes between kernels used for computation and su-
pervising hosts. This makes OpenCL superior when directly
designing runtime reconfigurable systems. In consideration of
the previous discussed, we will build up our approach on hosts
and kernels from OpenCL.

IV. METHODOLOGY

Our approach bases on two main approaches: An extended
compiler and a runtime resource manager (RRM). In the
following, both approaches will be further explained.

A. Extended compiler

One essential part of our proposed methodology is our
extended compiler. Its main tasks are the clustering into
modules, the generation of executable code and the evaluation
of the modules. We have illustrated our approach in Figure 1.
The input for our compiler is a given system description in
OpenCL. The main steps of our extended compiler are:

Clustering

Module XModule XModule XModule X

Software Software (GPU) Hardware (FPGA)

Optimization

Evaluation
 - Real-time properties
 - Use of resources
 - ...

Extended
compiler

Module Z
Module YModule X

CPU GPU FPGA

◦ WCET
◦ BCET
◦ Energy consumption
◦ Data Dependencies
◦ Memory use
◦ ...

a.out

runtime resource manager

1

2

3

4

Optimization Optimization

System
consists of

OpenCL kernels

Fig. 1. Extended Compiler

1© The System is realized in OpenCL. It consists of single
kernels. In the first step, our compiler decides how those
kernels will be clustered. Each module can then consist of
one or more kernels and can run on different resources such
as a CPU, FPGA or GPU.

2© Each module is compiled and optimized for various
target resources such as general purpose processors, graphics
processors and FPGAs. Here, the respective module also
undergoes an optimization. The optimization may target on en-
ergy savings, reducing chip area or cost reduction. We mainly
want to apply methods of runtime improvement as our target
is the compliance with real-time bounds. In doing so, our main
focus does not lie on the development of these optimizations.
Instead, we will make use of existing previous work here.
The modular structure of the compiler allows to integrate
real-time oriented optimizations for software on CPUs, GPUs
and programmable hardware on FPGAs from other research
groups and fields. In the field of software optimization, for
example, it would be possible to use techniques from the
WCET aware compiler WCC [23], which uses the proprietary
WCET analyzer aiT [24].

3© In the evaluation part, each compiled and optimized
module is analyzed for its properties. To correctly analyze
response times of systems’ functions and to guarantee all
real-time constraints, it will be necessary to not only ana-
lyze each module’s WCET, but also model dependencies like
mutual exclusions or resource conflicts between all modules.
However, due to the adaptive behavior of our approach, it

CPU 1 CPU 2 GPU AISIC FPGA

runtime resource manager

Module A

Module Z
CPU GPU FPGA

◦ WCET
◦ BCET
◦ Energy consumption
◦ Dependencies
◦ Memory use
◦ ...

a.out

Module Y
CPU GPU FPGA

◦ WCET
◦ BCET
◦ Energy consumption
◦ Dependencies
◦ Memory use
◦ ...

a.out

Module X
CPU GPU FPGA

◦ WCET
◦ BCET
◦ Energy consumption
◦ Dependencies
◦ Memory use
◦ ...

a.out

Fig. 2. Runtime resource manager

is not possible to compute the final worst case response
time of each module during the compilation. To solve this
problem, we are building upon the limiting event streams model
provided by [25]. In this model, calculating dependencies
between modules is orthogonal to the actual real-time analysis.
This enables us to model dependencies independently of the
specific implementation and perform significant parts of the
real-time analysis without the need to fully know how the final
system will be realized. Evaluation may also indicate that a
current clustering cannot meet certain requirements, or that a
found clustering will not allow any reconfigurations during
runtime. Then, the current set of modules will be rejected
and a new clustering into modules will be performed. This
may also be the case, if modules have certain dependencies
and clustering of several OpenCL kernels to separate modules
will not improve performance. Our iterative process will use
information gathered from modules’ optimizations to decide if
clustering the system into modules in a different manner will
result in a better reconfigurability or tighter WCETs.

4© The extended compiler outputs two items. One is
information used by the RRM, and the other is a set of
modules with meta information. The information for the RRM
comprises all information to allow the reconfiguration of the
system during runtime. Information for the RRM includes
the system’s hardware capabilities like interconnect bus speed
as well as runtime dependencies between different modules,
such as mutually excluded execution of different modules.
The second output is a set of modules with execution in-
formation. Each module contains meta information about the
WCET, its best case execution time and data dependencies
on other modules. It also contains information about other
needed resources such as chip area, program memory or energy
consumption. However, all these values differ for each single
resource. Therefore, there is separate meta information for
every resource. With every module also comes the binary
code for a CPU/GPU implementation and netlists for hardware
implementations, respectively. Those module sets are then used
by the RRM to (re-)configure the system.

B. Runtime resource manager

As Figure 2 illustrates, the main task of the RRM is
the distribution of the modules to the available resources.
Our development process is based on a timing model and
ensures that no reconfiguration will degrade the system’s
WCET performance. Therefore, the RRM has three sources of
information: one is the information generated by the extended
compiler. The second is the meta information from the set
of modules. And the last one is status information from the
system itself like sensor output or current workload. Most

of the time, several modules will share resources, especially
CPUs. Due to the number of possible combinations and the
uncertainty introduced by the runtime reconfiguration, it is
infeasible to determine all possible resource conflicts during
compilation time. The RRM has the responsibility to account
for penalties due to resource conflicts like e.g. cache misses or
limited communication between the modules to provide safe
response times. However, it is also impossible to calculate
all these data on an embedded platform, where not only
the modules themselves but also the RRM has to deal with
limited resources. Our approach conducts as much of the
response time analysis as possible in the previously described
extended compiler. All information which can be calculated
offline, e. g. the modules’ WCETs, or logical dependencies
between modules is calculated by the compiler. Based on
these data, the compiler can partially predict the modules’
behaviour regarding memory and bus accesses. At runtime,
the RRM computes safe upper bounds for modules’ worst case
response times based on these pre-generated offline data and
online data as e. g. the current workload. We will investigate
efficient analyses methods like e.g. [26], [27]. Those methods
will be adapted to integrate the pre-compiled offline data and
to generate a fast and secure online approximation of the
modules’ worst case response time, instead of focussing on
as tight as possible bounds. This way, the RRM can safely
determine, which module should be placed on which resource.

We base our RRM on the hosts concept from OpenCL. We
build upon standard hosts and will extend them by the required
functionality described above which will be in accordance with
the OpenCL Specification [17].

V. CONCLUSION AND FUTURE CHALLENGES

We presented a new concept to fill a gap in reconfigurable
embedded systems. Our concept will ensure that all real-time
bounds will always be met. In this paper, we presented our
concept in order to gather feedback on our approach.

The main challenge will be to provide a method for
computation-efficient calculation of penalties due to resource
conflicts between different modules. This part of the real-time
analysis can only be carried out at runtime by the RRM which
has limited computation power on embedded systems. Another
challenge is to provide an efficient interconnect between host
and kernels. This interconnection network must be able to
guarantee real-time constraints for communication between
kernel and host as well as between different kernels with data
dependencies between each other.

A successful implementation of our approach will allow
to design adaptive safety-critical real-time systems as runtime
reconfigurable heterogeneous systems. At the same time, it will
allow system engineers to concentrate on systems’ functions,
while leaving the concrete partitioning and optimization to our
compiler throughout the development process.

REFERENCES

[1] A. Kalavade and E. A. Lee, “A Hardware-Software Codesign Method-
ology for DSP Applications,” IEEE Des. Test, vol. 10, no. 3, 1993, pp.
16–28.

[2] S. Samii et al., “A Simulation Methodology for Worst-Case Response
Time Estimation of Distributed Real-Time Systems.” in Proceedings of
DATE, 2008, pp. 556–561.

[3] B. Dave, “CRUSADE: hardware/software co-synthesis of dynamically
reconfigurable heterogeneous real-time distributed embedded systems,”
in Proceedings of DATE, 1999, pp. 97–104.

[4] P. Green and M. Edwards, “Object oriented development method for
reconfigurable embedded systems,” IEE Proceedings Computers and
Digital Techniques, vol. 147, no. 3, 2000, pp. 153–158.

[5] S. Wong et al., “Early Results from ERA – Embedded Reconfigurable
Architectures,” in Proceedings of INDIN, 2011, pp. 816–822.

[6] A. Herrholz et al., “The Andres Project: Analysis and Design of Run-
Time Reconfigurable, Heterogeneous Systems,” in Proceedings of FPL,
2007, pp. 396–401.

[7] A. Schallenberg, W. Nebel, and F. Oppenheimer, “OSSS+R: Modelling
and Simulating Self-Reconfigurable Systems,” in Proceedings of FPL,
2006, pp. 1–6.

[8] “COMPLEX - COdesign and power Management in PLatform-based
design space EXploration.” [Online] Available: https://complex.offis.de/

[9] C. Ykman-Couvreur et al., “Run-time resource management based on
design space exploration,” in Proceedings of IFIP, ser. CODES+ISSS,
2012, pp. 557–566.

[10] M. Garcı́a-Valls, I. Lopez, and L. Villar, “iLAND: An Enhanced Mid-
dleware for Real-Time Reconfiguration of Service Oriented Distributed
Real-Time Systems,” IEEE Transactions on Industrial Informatics,
vol. 9, no. 1, feb. 2013, pp. 228–236.

[11] M. Garcı́a-Valls, P. Basanta-Val, and I. Estevez-Ayres, “A Codesign-
mponent Model for Homogeneous Implementation of Reconfigurable
Service-Based Distributed Real-Time Applications,” in In Proceedings
of NOTERE, 2010, pp. 267–272.

[12] J. Auerbach et al., “A compiler and runtime for heterogeneous
computing,” in Proceedings of the 49th Annual Design Automation
Conference, ser. DAC ’12. New York, NY, USA: ACM, 2012, pp. 271–
276. [Online] Available: http://doi.acm.org/10.1145/2228360.2228411

[13] E. Wandeler, “Modular Performance Analysis and Interface-Based
Design for Embedded Real-Time Systems,” Ph.D. dissertation, Swiss
Federal Institute of Technology Zurich, Zurich, 2006.

[14] “SystemC.” [Online] Available: http://www.accellera.org/downloads/
standards/systemc/

[15] F. Herrera et al., “Systematic embedded software generation from
SystemC,” in Proceedings of DATE, 2003, pp. 142–147.

[16] K. Grüttner, F. Oppenheimer, and W. Nebel, “OSSS methodology -
system-level design and synthesis of embedded HW/SW systems in
C++,” in Proceedings of ISABEL, 2008, pp. 1–5.

[17] A. Munshi, “The OpenCL Specification V 1.2,” Khronos OpenCL
Working Group, Tech. Rep., 2012.

[18] Altera Corp., “Implementing FPGA Design with the OpenCL Standard,”
White Paper, San Jose, CA, 2011.

[19] “NVIDIA OpenCL SDK.” [Online] Available: https://developer.nvidia.
com/opencl

[20] “The Intel SDK for OpenCL.” [Online] Available: http://software.intel.
com/en-us/vcsource/tools/opencl-sdk

[21] “Accelerated Parallel Processing (APP) SDK.” [Online]
Available: http://developer.amd.com/tools/heterogeneous-computing/
amd-accelerated-parallel-processing-app-sdk/

[22] P. Jääskeläinen et al., “OpenCL-based Design Methodology for
Application-Specific Processors,” Transactions on HiPEAC, vol. 5,
no. 4, 2011, pp. 1–20.

[23] H. Falk and P. Lokuciejewski, “A compiler framework for the reduction
of worst-case execution times,” Real-Time Systems, vol. 46, no. 2, 2010,
pp. 251–300.

[24] AbsInt Angewandte Informatik GmbH, “aiT: worst-case execution time
analyzers.” 2013. [Online] Available: http://www.absint.com/ait/

[25] S. Kollmann, “A context-sensitive real-time analysis with event
streams,” Ph.D. dissertation, Ulm University, 2012.

[26] K. Albers, “Approximative real-time analysis,” Ph.D. dissertation, Uni-
versität Ulm, 2011.

[27] N. Fisher and S. Baruah, “A fully polynomial-time approximation
scheme for feasibility analysis in static-priority systems with arbitrary
relative deadlines,” in Proceedings of the 17th ECRTS, 2005, pp. 117–
126.

