
Fault-Tolerant Hierarchical Real-Time Scheduling
with Backup Partitions on Single Processor

Hyun-Wook Jin
Department of Computer Science and Engineering

Konkuk University
Seoul, Korea 143–701

Email: jinh@konkuk.ac.kr

Abstract—The resource partitioning has been suggested to
provide efficient composition of multi-threaded real-time appli-
cations. Partitioning can provide reliable and flexible software
upgrade as partitions are strongly isolated in terms of resources.
However, there are always possibility of experiencing software
faults while operating on a real plant. To avoid entering a
hazardous state due to a partition that is yet to be fully verified,
we can deploy a backup partition that may implement inefficient
algorithms or limited features but is verified with respect to
reliability. The backup partition performs failover to carry out
missions of the corresponding primary partition when a software
fault is detected. There have been significant researches for fault-
tolerant real-time scheduling but considerations for partitioned
systems have not been studied. In this paper, we extend the
resource model for hierarchical real-time scheduling to support
primary and backup partitions. Our model can support context-
dependent and context-independent tasks in the backup partition
efficiently. In addition, we provide the schedulability analysis for
suggested model.

I. INTRODUCTION

In vehicular Cyber-Physical Systems (CPS), software con-
trols many electronic components in real-time. For example,
an automobile is equipped with over 100 Electric Control
Units (ECUs), which manage powertrain, chassis, body, safety,
and infotainment systems. The internal system architecture
becomes very complicated as the number of electronic devices
in vehicles continues to increase, which makes difficult to
efficiently resolve issues of Size, Weight, and Power (SWaP).
To simplify the physical system architecture and address SWaP
issues, there is a growing demand for consolidating multiple in-
vehicle software applications within a single computing device
[1], [2].

The concept of partitioning has been introduced to provide
efficient composition of multi-threaded real-time applications.
Partitioning provides a framework that reserves system re-
sources, such as processor and memory, for each real-time
application. Open software platforms, such as AUTOSAR [3]
and ARINC 653 [4], also define support for partitioning.
Hierarchical real-time scheduling [5], [6], [7], [8] is the core
technology for realizing temporal partitioning. In the hierarchi-
cal scheduling, the partition scheduler (a.k.a., global scheduler)
assigns computation resources across partitions according to
their period and execution time. In the second level, the task

This work was partially supported by Defense Acquisition Program Admin-
istration and Agency for Defense Development under the contract.

scheduler (a.k.a., local scheduler) runs processes of a partition
during the time window given by the partition scheduler.

Partitioning can provide reliable and flexible software up-
grade as partitions are strongly isolated in terms of resources;
thus, a partition can be changed or newly inserted transparently
as far as schedulability test is passed. For example, a flight
control program running as a partition on a avionics system
can be changed with a new version that may implement
better control algorithms without impact on other partitions.
However, there are always possibility of experiencing software
faults while operating on a real plant, though safety and
correctness of software are rigorously verified through several
steps of development process by means of formal verification,
hardware-in-the-loop simulation, etc.

To avoid facing a hazardous state due to a new partition
that is yet to be fully verified, we can run a backup partition
that may implement inefficient algorithms or limited features
but is verified with respect to safety for a long period of time.
The backup partition performs failover to carry out missions
of the corresponding primary partition when a fault (e.g.,
deadline miss or no heartbeat) is detected. There have been
significant researches for fault-tolerant real-time scheduling
[9], [10], [11], [12], [13], [14], [15] but considerations for
partitioned systems have not been studied. Though Hyun and
Kim [16] recently introduced a fault-tolerant hierarchical real-
time scheduling, they focused on adding a recovery job into a
partition.

In this paper, we extend the resource model for hierar-
chical real-time scheduling to support primary and backup
partitions and provide schedulability analysis. We classify
tasks in a backup partition into context-dependent and context-
independent tasks based on whether the tendency of recent
computation and control results (i.e., context) affects the next
behavior of a task. In order to correctly reflect the recent
tendency in control after failover, the context-dependent tasks
have to run as background even while the primary partition
works fine. In this paper, we target single processor environ-
ment as the first step.

The rest of the paper is organized as follows: In Section II,
we present a basic system model, extend the existing resource
model, and formally state problems addressed in this paper. In
Section III, we provide schedulability analysis and an example.
Finally, we conclude this paper in Section IV.



II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Basic System Model

The basic system model in this paper is based on Shin
and Lee [17]. In the hierarchical real-time scheduling, the
scheduling unit (i.e., partition) Si is defined as S(Wi,Γi, Ai),
where Wi, Γi, and Ai represent workload, resource model, and
scheduling algorithm, respectively. The workload Wi can be
defined as a set of tasks {T1, T2, · · · , Tn}. We use the periodic
task model that defines a task Ti as T (pi, ei), where pi and
ei are the period and execution time of task Ti, respectively.
Similarly, we also use the periodic resource model Γi(Πi,Θi)
for partitions, where Πi and Θi represent the period and supply
time of resources for partition Si, respectively. We assume
the rate-monotonic scheduling algorithm for both partition and
process scheduling. The lower i value means the higher priority
for both task and partition.

The supply-bound function sbfR(t) calculates the mini-
mum resource supplies that resource Γ can provide during time
interval t as follows:

sbfΓ(t) =


t− (k + 1)(Π−Θ), if t ∈ [(k + 1)Π− 2Θ,

(k + 1)Π−Θ],

(k − 1)Θ, otherwise,

where k = max(d(t− (Π−Θ))/Πe, 1)

The demand-bound function dbfA(W, t) calculates the
maximum resource demand that workload W can request
during time interval t under the scheduling algorithm A.
Since we assume the rate-monotonic scheduling algorithm as
mentioned earlier, dbfRM (W, t) is defined as follows:

dbfRM (Wi, t) = ei +
∑

Tk∈hp(Wi)

⌈ t

pk

⌉
· ek,

where hp(Wi) represents workloads that have higher priority
than Wi.

Thus, a scheduling unit S(Wi,Γi, Ai) is schedulable if
∀t sbfΓ(t) ≥ dbfRM (Wi, t). We refer Shin and Lee [17] for
the proof.

B. Fault Model

In our model, a primary partition and its cor-
responding backup partition are indexed consecutively.
Thus, a set of scheduling units can be represented as
{S1, S2, · · · , S2k−1, S2k, · · · , Sn−1, Sn}, where S2k−1 and
S2k denote primary and backup partitions, respectively. It
is noteworthy that we assume that the primary and backup
partitions run different versions of software; therefore, S2k−1

and S2k may have different workload and resource model.

For a backup partition S2k, CDT (W2k) defines a set of
context-dependent tasks in W2k, and CIT (W2k) defines a
set of context-independent tasks in W2k. Thus CDT (W2k) ∪
CIT (W2k) = W2k. As we have mentioned earlier, context-
dependent tasks have to run all the time because these tasks
need to keep track of the tendency of recent situation (e.g.,
sensor values), while context-independent tasks become active
only if the primary partition fails.

Each pair of partitions is in either primary, recovery, or
backup mode as shown in Fig. 1. In the primary mode, W2k−1

Fig. 1. System and fault model

and CDT (W2k) are active. In the backup mode, whole W2k

is active but W2k−1 is stopped due to a fault. Once the state
becomes the backup mode, it does not switch back to the
primary mode supposing the primary partition includes an
unrecoverable software fault. We assume that only one fault
can happen for Πmax | Πmax = max(Πi), i = 1, · · · , n. In
the recovery mode, tasks in CIT (W2k) have to become active
and finish their jobs by Π2k. We assume that a fault happens
at the end of the execution of a job because this is the worst
case in the sense that the time left until Π2k becomes minimal.

We extend the resource model Γi to describe primary and
backup modes, which is denoted as Γi(Πi,Θ

p
i ,Θ

b
i ), where Θp

i
and Θb

i represent resource supply time in primary mode and
backup mode, respectively. Therefore, Θb

i = 0 for i = 2k − 1
(i.e., primary partition), and Θp

i ≤ Θb
i for i = 2k (i.e., backup

partition). In the perspective of traditional resource model,
Γ2k−1(Π2k−1,Θ

p
2k−1) and Γ2k(Π2k,Θ

p
2k) are supplied in the

primary mode. On the other hand, Γ2k(Π2k,Θ
b
2k) is supplied

in the backup mode. We assume Π2k−1 ≤ Π2k < Π2k+1.

C. Problem Statement

In this paper, we try to address following two problems:

Schedulability analysis for CIT (W2k) during a recovery
phase: As we have mentioned, tasks in CIT (W2k) have
to finish their jobs by Π2k when a fault occurs in W2k−1.
However, since the partition that has a higher priority also
can run before Π2k as shown in Fig. 1 (white rectangles
and B2k−2), we analyze the schedulability of CIT (W2k) for
recovery mode as follows:

V2k ≥
∑

Ti∈CIT (W2k)

ei, (1)

where V2k denotes the resource idle time (i.e., vacant time)
observed at the level 2k during the time interval between fault
detection point and the deadline of fault recovery.

Schedulability analysis of partitions: Workloads and re-
source requirements are changed as mode changes from
primary mode to backup mode. Thus, we need to analyze
schedulability of partitions accordingly. In addition, while a
fault recovery is performed, other partitions still have to meet
their deadline.



TABLE I. NOTATIONS

Notation Description

CDT (Wi) Context-dependent tasks in a task set Wi

CIT (Wi) Context-independent tasks in a task set Wi

V2k Vacant time observed at the level 2k during time interval
[R2k−1, Π2k)

R2k Worst-case response time of S2k in the primary mode

Up
i (t) Over-estimated worst-case work during time t for Si

in the primary mode

Ub
i (t) Over-estimated worst-case work during time t for Si

in the backup mode

B2k(R2i, te) Cumulative busy time during time interval [R2i, te)
for S1, · · · , S2k

btik(Ri, te) Refined busy time interval for Sk

III. HIERARCHICAL REAL-TIME SCHEDULING FOR
BACKUP PARTITIONS

In this section, we analyze the schedulability. Table 1
summarizes notations used throughout the paper.

A. Schedulability of CITs during a Recovery Phase

As we have discussed in Section II.C, tasks in CIT (W2k)
are schedulable during a recovery phase if they satisfy Equa-
tion (1). The vacant time V2k can be calculated as follows:

V2k = Π2k −R2k −B2k−2(R2k,Π2k), (2)

where R2k denotes the worst-case response time of partition
S2k when it is in the primary mode. B2k(R2i, te) denotes cu-
mulative busy time during time interval [R2i, te) for scheduling
units S1, · · · , S2k. Fig. 1 also shows V2k and B2k−2. Although
Fig. 1 shows a case that V2k and B2k are consecutive time
slots, they can be fragmented.

The worst-case response time R2k of S2k in the primary
mode can be calculated as follows, which is the same with
that of rate-monotonic algorithm [18], [19], [20]:

R2k =
∑
∀j|j<k

max(Up
2j−1(R2k) + Up

2j(R2k), U b
2j(R2k))

+ Up
2k−1(R2k) + Θp

2k,

where Up
i (t) and U b

i (t) represent over-estimated worst-case
work during the time interval t for partition Si in the primary
mode and backup mode, respectively. Since we do not know
which mode demands more resources, we take the maximum
value between primary and backup modes for each pair of
high-priority partitions. Up

i (t) and U b
i (t) can be calculated as

follows:

Up
i (t) =

⌈ t

Πi

⌉
·Θp

i and U b
i (t) =

⌈ t

Πi

⌉
·Θb

i .

The cumulative busy time Bi in Equation (2) is calculated
as follows:

B2k(R2i, te) =
∑
∀j|j≤k

max(Up
2j−1(bti2j−1(R2i, te))

+ Up
2j(bti2j(R2i, te)),

U b
2j(bti2j(R2i, te))),

(3)

Fig. 2. Delayed execution of lower-priority partition by a recovery phase

where btik(Ri, te) is the refined busy time interval of Sk for
[Ri, te) and is defined as follows:

btik(Ri, te) =



te −Ri, if k > i,

te −
⌈Ri

Πk

⌉
·Πk,

if te >
⌈Ri

Πk

⌉
·Πk and k ≤ i,

0, oherwise.

In order to reduce pessimism, if k ≤ i, we consider the time
interval [dRi/Πke ·Πk, te) instead of [Ri, te) because Sk has
already executed for the deadline dRi/Πke ·Πk assuming the
critical instant phasing.

B. Schedulability Test of Partitions

In order to analyze schedulability of partitions, we first
need to guarantee that supplied resources can fulfill demands
from workloads for both primary and backup modes. This
can be done easily by utilizing sbfR(t) and dbfRM (Wi, t)
described in Section II.A as follows:

sbfΓ2k−1
(t) ≥ dbfRM (W2k−1, t),

Γ2k−1 = Γ(Π2k−1,Θ
p
2k−1),

sbfΓ2k
(t) ≥ dbfRM (CDP (W2k), t),

Γ2k = Γ(Π2k,Θ
p
2k),

sbfΓ2k
(t) ≥ dbfRM (W2k, t),

Γ2k = Γ(Π2k,Θ
b
2k).

(4)

We now consider the recovery mode, where tasks in
CIT (W2k) have to run and finish their jobs until Π2k as we
have described in Section II.B. In the critical instant phasing,
partitions in a lower priority cannot begin until all the tasks
in higher priority partitions are completed. Thus, when a fault
occurs at level 2k − 1, the execution of partitions that have
a lower priority than 2k is additionally delayed as much as∑

Tj∈CIT (W2k) ej . Moreover, partitions with higher priority
can preempt the delayed execution, which delays further the
execution of lower-priority partitions as shown in Fig. 2. In



TABLE II. EXAMPLE PARTITIONS

Partitions Tasks Period Exec. Time

S1

T1 40 4
T2 80 3
T3 160 2

S2
T1 55 4
T2 80 6

S3
T1 40 1
T2 40 3

Fig. 3. Example

this figure, black rectangle represents execution time of CITs at
2k. White boxes represent B2k(R2k,Π2k+1). Therefore, when
an error occurs at level 2k − 1, lower-priority partitions are
schedulable, if ∀i | i > k,

Π2i −
(
R2k +

∑
Tj∈CIT (W2k)

ej + B2i(R2k,Π2i)
)
≥ 0. (5)

C. Example

We consider a simple example of four partitions S1, S2,
S3, and S4. Tasks for each partition are shown in Table II,
and resource models are Γ1(5, 1.5, 0), Γ2(15, 4, 5), Γ3(20,
2, 0), and Γ4(20, 0, 0). In this example we have only one
backup partition (i.e., S2), and partition S4 is a dummy. In
partition S2, T1 is a CIT while T2 is a CDT. Thus, T1 does
not run in the primary mode. When a fault occurs at S1, V2

and
∑

Ti∈CIT (W2) ei are calculated as 15− 7− 0 = 8 and 4,
respectively. Thus, these partitions satisfy Equation (1) (8 ≥ 4)
as shown in Fig. 3. That is, T1 of S2 can meet the deadline
Π2 when a fault occurs at S1. We also test schedulability of
S3 by evaluating Equation (5) as 20 − (7 + 4 + 9) = 0. It is
noteworthy that B2(7, 20) should be 5 as shown in Fig. 3 but
the value calculated by Equation (3) is 7 because this equation
always chooses the maximum value of work though S1 and
S2 are in the backup mode.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we extended the resource model for hier-
archical real-time scheduling to support primary and backup
partitions. We classified processes in the backup partition into
context-dependent tasks and context-independent tasks based
on whether a task decides its behavior according to the recent
tendency of computation and control. The context-dependent
tasks have to run even when the primary partition works
correctly in order to accurately reflect the recent tendency
in control after failover. We also analyzed schedulability with
extended resource model.

As future work, we intend to relax the assumption that a
fault can occur at most one every Πmax time unit. We also plan
to carry out simulations with various cases and to implement
the suggested model in a real partitioning operating system.

REFERENCES

[1] C. Watkins and R. Walter, Transitioning from federated avionics archi-
tectures to integrated modular avionics, In Proc. of 26th IEEE/AIAA
Digital Avionics Systems Conference, Oct. 2007.

[2] M. D. Natale and A. L. Sangiovanni-Vincentelli, Moving from Federated
to Integrated Architectures in Automotive, In Proceedings of IEEE, Vol.
98, No. 4, pp. 603620, Apr. 2010.

[3] M. Asberg, M. Behnam, F. Nemati, and T. Nolte, Towards Hierarchical
Scheduling in AUTOSAR, In Proc. of the 14th IEEE Int. Conf. Emerging
Technologies and Factory Automation, Sep. 2009.

[4] S. Han and H.-W. Jin, Kernel-Level ARINC 653 Partitioning for Linux,
In Proc. of the 27th ACM Int. Symp. Applied Computing, Mar. 2012.

[5] Z. Deng, J. W.-S. Liu, and J. Sun, A Scheme for Scheduling Hard
Real-Time Applications in Open System Environment, In Proc. the 9th
Euromicro Workshop on Real-Time Systems, Jun. 1997.

[6] T.-W. Kuo and C.-H. Li, A Fixed-Priority-Driven Open Environment
for Real-Time Applications In Proc. the 20th IEEE Real-Time Systems
Symp., pp. 256 267, Dec. 1999.

[7] S. Saewong, R. Raj, J. P. Lehoczky, and M. H. Klein, Analysis of
Hierarchical Fixed-Priority Scheduling In Proc. the 14th Euromicro
Conf., Real-Time System, Jun. 2002.

[8] R. I. Davis and A. Burns, Hierarchical Fixed Priority Preemptive
Scheduling, In Proc. the 26th IEEE Int. Symp. Real-Time Systems, pp.
388 398, Dec. 2005.

[9] A. Liestman and R. Campbell, A Fault-Tolerant Scheduling Problem,
IEEE Trans. on Software Engineering, Vol. SE-12, No. 11, Nov. 1986.

[10] A. Burns, R. Davis, and S. Punnekkat, Feasibility Analysis of Fault-
Tolerant Real-Time Task Sets, In Proc. of the 8th Euromicro Workshop
on Real-Time Systems, Jun. 1996.

[11] A. Bertossi, L. Mancini, and F. Rossini, Fault-Tolerant Rate-Monotonic
First-Fit Scheduling in Hard-Real-Time Systems, IEEE Trans. on Parallel
and Distributed Systems, Vol. 10, No. 9, Sep. 1999.

[12] C.-C. Han, K. Shin, and J. Wu, A Fault-Tolerant Scheduling Algorithm
for Real-Time Periodic Tasks with Possibe Software Faults, IEEE Trans.
on Computer, Vol. 52, No. 3, Mar. 2003.

[13] C.-H. Yang, G. Deconinck, and W.-H. Gui, Fault-Tolerant Scheduling
for Real-Time Embedded Control Systems Journal of Computer Science
and Technology, Vol. 19, No. 2, Mar. 2004.

[14] A. Bertossi, L. Mancini, and A. Menapace, Scheduling Hard-Real-Time
Tasks with Backup Phasing Delay, In Proc. of the 10th IEEE International
Symposium on Distributed Simulation and Real-Time Applications (DS-
RT), 2006.

[15] M. Cirinei, E. Bini, G. Lipari, and A. Ferrari, A Flexible Scheme for
Scheduling Fault-Tolerant Real-Time Tasks on Multiprocessors, In Proc.
of IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2007), Mar. 2007.

[16] J. Hyun and K. H. Kim Fault-Tolerant Scheduling in Hierarchical Real-
Time Scheduling Framework, In Proc. of IEEE 18th International Confer-
ence on Embedded and Real-Time Computing Systems and Applications
(RTCSA) Workshop, Aug. 2012.

[17] I. Shin and I. Lee, Compositional Real-Time Scheduling Framework
with Periodic Model, ACM Trans. on Embedded Computing Systems,
Vol. 7, No. 3, Apr. 2008.

[18] M. Joseph and P. Pandya, Finding Response Times in a Real-Time
System, The Computer Journal, Vol. 29, No. 5, 1986.

[19] J. Lehoczky, L. Sha, and Y. Ding, The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior In Proc.
of Real-Time Systems Symposium, Dec. 1989.

[20] K Tindell, A Burns, and A Wellings An Extensible Approach for
Analyzing Fixed Priority Hard Real-Time Tasks The Journal of Real-
Time Systems, Vol. 6, No. 2, Mar. 1994.


