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Abstract—This paper presents a novel graph representation 
that captures the transition overhead due to runtime 
configuration of underlying hardware in reconfigurable 
embedded systems resulting from various configuration 
schemes such as FPGA-like reconfiguration or dynamic 
voltage/frequency scaling (DVFS). We propose an intuitive 
heuristic to solve combined configuration selection and task 
scheduling problem on this graph. In addition, when applied to 
DVFS, our algorithm provides simultaneous task ordering and 
configuration selection of the system which outperforms the 
state-of-the-art DVFS methods applied after task ordering.  

I. INTRODUCTION 
In order to cope with time-varying input characteristics and 
demand for upgradability, embedded systems are urged to 
provide tremendous flexibility through extensive 
configurations. Such requirements along with performance, 
power, and reliability are driving embedded systems to adopt 
hardware reconfigurability and self-adaptive system 
methodologies. While hardware configurations such as 
dynamic voltage/frequency scaling are mainly aimed for 
energy-aware and battery-aware runtime adaptation of the 
system [1,2,3,4], runtime reconfiguration of programmable 
devices such as FPGA devices [5,6,7] are deployed to modify 
the functionality or the processes running on underlying 
hardware. However, runtime reconfiguration, can incur 
stringent constraints that lead to failure to meet real time 
performance requirements of applications. For example, due 
to reconfiguration, the system may fail to process the 
incoming input frame or packet. In order to provide seamless 
quality of service, runtime adaptation needs to be planned 
early in system design flow. The software layer such as 
middleware and operating system cannot ignore this overhead 
during task scheduling and resource management.  

 In this paper, we propose a novel graph representation of 
input non-preemptive tasks and underlying embedded system 
architecture and provide an efficient and intuitive algorithm to 
provide a feasible schedule of the tasks on embedded system 
with runtime reconfiguration of underlying hardware. Our 
proposed graph is generic and can be used for task scheduling 
on embedded systems with various reconfiguration schemes 
such as DVFS [1,2,3], FPGA-like partial reconfiguration [7], 
etc. The proposed graph model and algorithm combines the 
scheduling with configuration selection of the system while 
considering the delay and energy overhead due to transition 
from one state to another. 

II. TARGET ARCHITECTURE 
We target a heterogeneous embedded system platform 

consisting of several Processing Elements (PEs). Each PE can 
be an embedded processor with DVFS, a reconfigurable 
processor (soft processors), processors with reconfigurable 
coprocessors and/or memory, or a reconfigurable hardware 
(fine or coarse grained) (Figure 1). For each PE, there is a 
reconfigurable part (or circuitry) which is reconfigured/updated 
during the runtime. The reconfiguration can target functionality 
(e.g., FPGA partial reconfiguration) or physical characteristic 
of underlying hardware (e.g., dynamic voltage scaling). The 
PEs share a data memory through a shared bus. Based on the 
task scheduling timings from the scheduler, the 
reconfiguration manager forces the PEs to reconfigure 
appropriately. The inputs to this system are a set of periodic 
tasks with known period, execution time and deadline. We 
assume that we are given the information about the task input 
for a given time interval on which we solve the scheduling 
problem statically. 
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Figure 1: Target reconfigurable embedded system 

III. TRANSITION-AWARE GRAPH REPRESENTATION 
In a feasible schedule, the execution of the tasks must be 

completed by their corresponding deadlines, while only one 
task is allowed to be executed on each PE at a time. In the 
proposed graph representation, a node vi represents the 
execution of task i on one PE. In some cases, we have different 
options to execute a task on a PE. These options can include 
different hardware implementations or different operation 
modes to run the task. The graph has to capture the execution 
of tasks under different implementations/modes. In this case, a 
set of nodes represents the execution of the task on the PE, 
referred to as a super node. For example node vk

i,m represents 
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execution of task i under operation mode m on PE k. In Figure 
2, only the super nodes are shown except for node v8. The 
subset of nodes in super node v8 shows that task 8 can be 
executed on PE1 and PE2 under three different configurations. 

Each transition edge represents the overhead between two 
consecutive tasks on a PE. This overhead represents a 
reconfiguration time overhead in a reconfigurable platform or 
the delay overhead during voltage scaling in a PE. Such edges 
exist only between the nodes with the same k index (i.e. being 
mapped to the same PE) (Figure 2). The transition overhead as 
modeled in this graph does not need to be same for all PE 
configurations and can vary. For example, if reconfiguration 
overhead for the next task execution depends on the current 
configuration of the system and the current task being 
executed, the corresponding edge will carry this overhead as 
the weight. A directed path along the transition edges in this 
graph imposes an ordering on execution of the corresponding 
tasks on a PE. In case there is a data dependency between the 
tasks, the transition edges can be refined further to impose the 
partial ordering imposed by data dependency. 

There is another set of edges, called data edges, to 
represent the communication overhead for data transfer 
between the PEs (through a shared memory in this example). 
The data edges representing the communication overhead are 
only between the nodes with different k indexes (i.e. tasks 
belonging to different PEs). The weight associated to these 
edges is equal to the communication time overhead between 
the two end nodes. These edges (communication overhead 
edges) are shown as dotted edges in Figure 22. 

We insert a dummy source node in the graph to indicate the 
initial state of the system in each period and a dummy sink 
node to indicate the final state of the system at the end of each 
period. There is a directed edge from the dummy source node 
to each node in the graph (i.e. any task can be the first task on a 
PE) and a directed edge from each node to the dummy sink 
node (i.e. any task can be the last task on a PE).  
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Figure 2. Graph Representation and Detailed view of a super node 

Given the period, the execution time and the relative 
deadline of each task, we compute the time window (i.e. [ai , 
bi]) during which each task should start execution in order to 
finish execution before its deadline. For node k

miv , , the terms

],[ ,
k
mii ba k

mit , , k
mie ,  and ci,m represent execution start time 

window, execution start time, execution time, and cost of task 
execution (e.g. energy consumption), respectively. The weight 

k
njmis ,;, and cost k

njmice ,;,
represents the transition overhead 

between k
miv ,  and k

njv , , and the cost associated with this 
transition, respectively. In order to have a feasible schedule, 
two conditions should be met: 1) start time of each task should 
be inside the corresponding time window 2) time overheads 
before each task should be taken into account.  

If we find a path in this graph starting from the source node 
and ending at the sink node, along which each super node is 
visited once (or labeled with a start time) such that the 
aforementioned conditions are satisfied, a feasible schedule is 
provided for the tasks along the path on a PE. Any directed 
path in this graph corresponds to execution of a set of task on a 
PE and it must include at most one node from each super node 
corresponding to the selected tasks. All the nodes along a path 
have the same k index. On multiple PEs, we need to find 
multiple disjoint paths and cover all the super nodes in order to 
provide a feasible schedule for all the tasks. Along a path, the 
cost (e.g., energy consumption) is calculated by adding the 
weights on the edges and the nodes (e.g., energy consumption 
of the nodes and edges) along the path. For energy 
minimization purposes, the goal is to find a set of disjoint paths 
that covers all the super nodes while the total path costs 
(energy consumption of the system) are minimized (min cost). 
In addition, the disjoint paths in this graph not only represent a 
task ordering on PEs, but also determine the configuration of 
the PE for each task execution. Hence, the configuration 
selection and task ordering (or scheduling) is simultaneously 
solved. For example, if configurations refer to operating 
voltage/frequency of the processor for each task, task ordering 
and voltage/frequency selection are tackled at the same time in 
this graph as opposed to two sequential steps [2,3]. 

In our previous work, we have proposed mathematical 
programming to solve the task scheduling and configuration 
selection problem on our proposed graph to incorporate partial 
reconfiguration overhead in FPGAs [5] and energy 
minimization using DVFS [1] in embedded reconfigurable 
multiprocessors. In this paper, we provide an extended and 
generalized graph representation. While mathematical 
programming solution is optimum but it is very 
computationally expensive as a solution and its runtime is not 
affordable to be used by embedded system design exploration 
tools. Hence, we propose a heuristic algorithm to solve the 
problem more efficiently. In this work, we propose to 
formulate the problem similar to a special class of network 
flow problem referred to as Vehicle Routing Problem with 
Time Window (VRPTW) [8]. However, VRPTW problem in 
[8] does not consider multiple operation modes, other 
constraints regarding reconfigurable architectures as modeled 
on our graph representation. We propose how to adopt the 
vehicle routing algorithm to find disjoint paths in order to solve 
the min cost task scheduling problem on our graph 
representation of reconfigurable system. We present this 
algorithm with the objective of energy minimization (cost 
minimization) and apply it to DVFS problem in embedded 
systems [1]. However, the proposed heuristic is not restricted 
to DVFS and can be simply applied to task scheduling on 
FPGA-like systems with runtime reconfiguration.  

IV. OUR HEURISTIC TRANSITION-AWARE SCHEDULING  
Since schedulability is not guaranteed, we first aim for 

maximum schedulability, and then focus on energy 
minimization. Our proposed heuristic is based on a heuristic 



 

for solving VRPTW ([9,10]). However, in our problem each 
super node (representing the execution of a job) is a set of 
nodes in the graph, and our heuristic selects the best operation 
mode of the PE for each task instance referred to as a job.  

Figure 4 presents pseudo-code of our heuristic algorithm. In 
our heuristic, the first part (lines 1-13) focuses on feasibility of 
the real-time scheduling. We first relax the constraint on the 
number of the paths (i.e. number of PEs) and find a feasible 
solution such that all the super nodes are visited (i.e. all the 
jobs are executed). For this step, we use Push Forward 
Insertion Heuristic (PFIH) algorithm [10] (line 1 in Figure 4). 
Next step is to restrict the number of the paths. If the number of 
paths provided by PFIH is greater than the number of PEs, we 
will keep deleting the paths with minimum number of nodes 
until the number of paths is equal to the number of PEs. 

Next, we need to allocate the deleted super nodes on the 
remaining paths. Note that when we want to add a super node 
to the existing paths, there is no need to add the same node 
which was deleted and we can add any node from that super 
node. First, based on an insertion cost function, we find the 
best location on existing paths to insert each deleted super node 
(i.e. for each node inside the deleted super nodes we find the 
best location). If no feasible position is found, we forcefully 
insert the node with minimum insertion cost in the best 
position by removing some existing nodes from the path to 
make it feasible (line 8). Then we apply a series of 
transformational operations on scheduled nodes along the paths 
to increase the chance of inserting deleted super nodes to 
existing paths (line 9).  

 
Figure 3-Transformational Operations 

Error! Reference source not found. demonstrate the set 
of transformations used in our algorithm. The transformational 
operations are used in order to move to another neighbor in 
solution space [11]. Some transformations are performed on a 
single path and some of them are performed on a pair of paths 

among all the paths in our solution. In Error! Reference 
source not found., in each picture, the left column shows the 
considered path(s) for transformation before performing the 
action and the right column shows the same path(s) after the 
transformation. For example Error! Reference source not 
found.-a shows the paths r1 and r2 as {source, … , vi-1, vi, vi+1, 
… , sink} and {source, … , vj-1, vj, vj+1, … , sink} before 
transformation and paths r1′ and r2′ as {source, … , vi-1, vj, vi+1, 
… , sink} and {source, … , vj-1, vi, vj+1, … , sink} after 
transformation. 
Algorithm 1.  Heuristic Transition-aware Task Scheduling 
Input: Graph Representation of the input task and reconfigurable system 
[1] perform PFIH //find paths to cover maximum number of nodes 
[2] if (number of paths ≤ number of processors) then 
[3] go to energy minimization part (line 14) 
[4] else 
[5] remove the paths with minimum number of nodes until number 

of paths is equal to number of processors 
[6] end if 
[7] while (not all super nodes are visited) and (not to terminate) do 
[8] select an unvisited super node and insert in a path  
[9] explore the neighbor solutions to improve the timing 
[10] if (paths are not changed) 
[11] terminate 
[12] end if 
[13] end while 
[14] repeat //energy minimization 
[15] for (each path, p) do 
[16] while (total energy consumption p is reduced) do 
[17] apply hill-climbing with 2-opt, Or-op, Reduce and E-opt 
[18] end while 
[19] end for 
[20] for (each pair of paths, (p1,p2) ) do 
[21] while (total energy of p1 and p2 is reduced) do 
[22] apply hill-climbing with Relocate, Exchange, 2-opt* and 

cross to reduce the energy 
[23] end while 
[24] end for 
[25] if (the total energy of paths is not reduced) then 
[26] apply Generalized Ejection Chains to reduce the energy  
[27] end if 
[28] until (total energy consumption of the paths is not reduced)  
Figure 4. Heuristic Algorithm 

After each operation, a cost function is used to check if new 
solution is better than existing solution in terms of available 
free time. During these operations, we will look for the best 
node to use from each super node. These steps (line 8 and 9) 
are repeated until all the nodes are visited or no more 
improvement is possible (lines 7 and 10-13). After maximizing 
the number of nodes on the paths, we will perform the second 
part of the heuristic to minimize the cost, i.e., energy (lines 14-
31). In this step, we apply the aforementioned transformational 
operations sequentially to explore the neighbors in solution 
space. However in this part, the criterion to accept the 
transformation and move to the next neighboring solution is 
energy (cost) saving without reducing the schedulability. In 
this part, in addition to previous transformation, we have a new 
operation named Reduce(vi) which tries to find the lowest cost 
(e.g., smallest operational voltage in DVFS) for vi without 
reducing the schedulability (i.e. finding the best node in the 
supernode). We repeat these operations until no cost (energy) 
saving is possible. In the second part of our procedure we use 
two local searches with classical operators, an enumeration-
based operator (E-opt) to minimize the energy of a single path 



 

and a Generalized Ejection Chain (GEC)-based operator to 
minimize the total energy of all the paths. These operations are 
explained in details in [9]. 

V. EXPERIMENTAL RESULTS 
We applied our proposed heuristic algorithm to tackle 

DVFS-based energy minimization problem in embedded 
systems. In our previous work [1], using our graph 
representation, we presented an optimal ILP-based network 
flow based solution for simultaneous static real-time 
scheduling and energy minimization (DVFS). In this work, we 
apply the proposed heuristic algorithm to allow task re-
ordering during energy minimization. We have conducted a set 
of experiments using generated benchmarks as well as 3 real-
world application task sets. We have 7 synthetic benchmarks, 
each of them with 3 tasks. The three real-world applications 
task sets are the task sets from Computerized Numerical 
Control (CNC) machine controller application (8 tasks), Video 
phone application (4 tasks) and Avionics application (18 tasks). 
Tasks do not have data dependencies. Our task properties are 
presented in details in [1]. 

We considered three operation modes (processors used in 
[3]) for each processor in the system. We indicate each 
operation mode with a pair of supply and body bias voltage

),(
mm bsddm VVmode � . The processor has 3 modes (1.8,0), (1.5,-

0.4), and (1.2,-0.6). In the real-world applications only 1 
processor was enough for scheduling all the tasks, but in 
synthetic benchmarks we need 2 processors to be able to run all 
the tasks. We used the data from [1] for delay and energy 
overhead due to switching from one operation mode. 

We implemented our heuristic in C#. The execution time of 
this heuristic in our simulation was less than 3 minutes on a 
computer with CPU Intel P4 3.4GHz and 3GB RAM. We 
compared our solutions with 3 existing voltage/frequency 
scheduling algorithms: MILP [1], VCS [2] and DVO [3]. The 
results from DVO determines the optimal solution while not 
considering ordering during voltage assignment, hence the 
difference of this algorithm from our optimal solution shows 
the importance of considering the ordering and 
voltage/frequency assignment at the same time.  

TABLE I. NORMALIZED ENERGY DISSIPATION 
 Processors with 3 operation modes 

no-DVFS VCS [2] DVO [3] Our heuristic MILP[1] 
Task set 1 100 78.95 78.89 70.93 47.52 
Task set 2 100 82.21 62.76 52.76 47.79 
Task set 3 100 69.73 60.17 57.56 48.32 
Task set 4 100 45.58 45.58 45.58 45.58 
Task set 5 100 45.47 45.47 45.47 45.47 
Task set 6 100 70.89 62.06 60.80 45.83 
Task set 7 100 83.02 75.33 65.26 62.61 
CNC 100 64.03 58.16 49.46 49.46 
Video phone 100 80.97 71.73 68.49 45.50 
Avionics 100 52.42 45.89 45.89 45.89 
Average 100 67.33 60.61 56.22 48.40 

Error! Reference source not found. show the results for 
our simulations on synthetic benchmarks and real-world 
application for the processor with 3 modes of operation, 
respectively. The first column is the energy consumption of the 
system in maximum voltage (no-DVFS). Second and third 
columns are the energy consumption while using VCS and 
DVO algorithms, respectively. Third and fourth columns are 
our solutions for DVFS/ABB in real-time scheduling. All the 

values are normalized to energy consumption of no-DVFS 
case. Our heuristic reduces the energy by 43.78%, 11.11% and 
4.39% (on average) in comparison with no-DVFS, VCS and 
DVO algorithms, respectively. In this case the difference 
between the optimal result and our heuristic is 7.82%. For 
avionics application, the results from our solutions and the 
DVO algorithm are same. This is the result of the fact that the 
time constraints in this application are very relaxed. Also there 
are two cases (Task set 3 and 6) in Table I which our heuristic 
works slightly worse than DVO and that is because DVO is an 
ILP-based optimal scheduler and our heuristic is not optimal. 
Our MILP solution which is optimal is working better than 
DVO in these cases.  

VI. CONCLUSIONS 
In this paper, we presented a novel graph representation for 
task scheduling on reconfigurable embedded systems. The 
graph can capture reconfiguration delay and cost overhead 
resulting from various configuration schemes such as DVFS 
or FPGA partial reconfiguration. Configuration selection and 
task ordering are simultaneously tackled in the proposed 
heuristic scheduling algorithm. We can benefit from 
simultaneous task ordering and DVFS as opposed to applying 
DVFS on a set of ordered tasks as commonly presented in 
related work and our results show significant energy reduction 
when applying combined task ordering and voltage/frequency 
selection using our proposed heuristic algorithm.  
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