

Transition-aware Task Scheduling and Configuration
Selection in Reconfigurable Embedded Systems

Hessam Kooti
Google Inc.

Mountain View, CA, USA
hkooti@google.com

Eli Bozorgzadeh
Computer Science Department

University of California, Irvine, CA, USA
eli@ics.uci.edu

Abstract—This paper presents a novel graph representation
that captures the transition overhead due to runtime
configuration of underlying hardware in reconfigurable
embedded systems resulting from various configuration
schemes such as FPGA-like reconfiguration or dynamic
voltage/frequency scaling (DVFS). We propose an intuitive
heuristic to solve combined configuration selection and task
scheduling problem on this graph. In addition, when applied to
DVFS, our algorithm provides simultaneous task ordering and
configuration selection of the system which outperforms the
state-of-the-art DVFS methods applied after task ordering.

I. INTRODUCTION
In order to cope with time-varying input characteristics and
demand for upgradability, embedded systems are urged to
provide tremendous flexibility through extensive
configurations. Such requirements along with performance,
power, and reliability are driving embedded systems to adopt
hardware reconfigurability and self-adaptive system
methodologies. While hardware configurations such as
dynamic voltage/frequency scaling are mainly aimed for
energy-aware and battery-aware runtime adaptation of the
system [1,2,3,4], runtime reconfiguration of programmable
devices such as FPGA devices [5,6,7] are deployed to modify
the functionality or the processes running on underlying
hardware. However, runtime reconfiguration, can incur
stringent constraints that lead to failure to meet real time
performance requirements of applications. For example, due
to reconfiguration, the system may fail to process the
incoming input frame or packet. In order to provide seamless
quality of service, runtime adaptation needs to be planned
early in system design flow. The software layer such as
middleware and operating system cannot ignore this overhead
during task scheduling and resource management.

 In this paper, we propose a novel graph representation of
input non-preemptive tasks and underlying embedded system
architecture and provide an efficient and intuitive algorithm to
provide a feasible schedule of the tasks on embedded system
with runtime reconfiguration of underlying hardware. Our
proposed graph is generic and can be used for task scheduling
on embedded systems with various reconfiguration schemes
such as DVFS [1,2,3], FPGA-like partial reconfiguration [7],
etc. The proposed graph model and algorithm combines the
scheduling with configuration selection of the system while
considering the delay and energy overhead due to transition
from one state to another.

II. TARGET ARCHITECTURE
We target a heterogeneous embedded system platform

consisting of several Processing Elements (PEs). Each PE can
be an embedded processor with DVFS, a reconfigurable
processor (soft processors), processors with reconfigurable
coprocessors and/or memory, or a reconfigurable hardware
(fine or coarse grained) (Figure 1). For each PE, there is a
reconfigurable part (or circuitry) which is reconfigured/updated
during the runtime. The reconfiguration can target functionality
(e.g., FPGA partial reconfiguration) or physical characteristic
of underlying hardware (e.g., dynamic voltage scaling). The
PEs share a data memory through a shared bus. Based on the
task scheduling timings from the scheduler, the
reconfiguration manager forces the PEs to reconfigure
appropriately. The inputs to this system are a set of periodic
tasks with known period, execution time and deadline. We
assume that we are given the information about the task input
for a given time interval on which we solve the scheduling
problem statically.

Shared Bus

Input Tasks

Reconfigurable Hardware

Reconfiguration
ManagerPE1PE2PE3

Scheduler

Shared Memory

Task 1
Task 2
Task 3

Local
Memory

Local
Memory

Local
Memory

Figure 1: Target reconfigurable embedded system

III. TRANSITION-AWARE GRAPH REPRESENTATION
In a feasible schedule, the execution of the tasks must be

completed by their corresponding deadlines, while only one
task is allowed to be executed on each PE at a time. In the
proposed graph representation, a node vi represents the
execution of task i on one PE. In some cases, we have different
options to execute a task on a PE. These options can include
different hardware implementations or different operation
modes to run the task. The graph has to capture the execution
of tasks under different implementations/modes. In this case, a
set of nodes represents the execution of the task on the PE,
referred to as a super node. For example node vk

i,m represents
*This work is funded by NSF CAREER # 0846129.

execution of task i under operation mode m on PE k. In Figure
2, only the super nodes are shown except for node v8. The
subset of nodes in super node v8 shows that task 8 can be
executed on PE1 and PE2 under three different configurations.

Each transition edge represents the overhead between two
consecutive tasks on a PE. This overhead represents a
reconfiguration time overhead in a reconfigurable platform or
the delay overhead during voltage scaling in a PE. Such edges
exist only between the nodes with the same k index (i.e. being
mapped to the same PE) (Figure 2). The transition overhead as
modeled in this graph does not need to be same for all PE
configurations and can vary. For example, if reconfiguration
overhead for the next task execution depends on the current
configuration of the system and the current task being
executed, the corresponding edge will carry this overhead as
the weight. A directed path along the transition edges in this
graph imposes an ordering on execution of the corresponding
tasks on a PE. In case there is a data dependency between the
tasks, the transition edges can be refined further to impose the
partial ordering imposed by data dependency.

There is another set of edges, called data edges, to
represent the communication overhead for data transfer
between the PEs (through a shared memory in this example).
The data edges representing the communication overhead are
only between the nodes with different k indexes (i.e. tasks
belonging to different PEs). The weight associated to these
edges is equal to the communication time overhead between
the two end nodes. These edges (communication overhead
edges) are shown as dotted edges in Figure 22.

We insert a dummy source node in the graph to indicate the
initial state of the system in each period and a dummy sink
node to indicate the final state of the system at the end of each
period. There is a directed edge from the dummy source node
to each node in the graph (i.e. any task can be the first task on a
PE) and a directed edge from each node to the dummy sink
node (i.e. any task can be the last task on a PE).

v1

v3 v4 v7v6

v2

v10

v5

v9

v8

v11

Source

Sink

D1,7

D
2,6

D
3,10

D1,4

D2,3

D 2,5

D2,8

D
3,11

D4,9

D
4,11 D5,10

D 6,1
0

D 7,1
0

D 8,1
0

D7,11
D

9,10

S 0,3 S 0,9

S
0,8

S
0,7

S0,1

S
1,10

S 1,3

S 1,9

S
1,4 S

1,5

S1,2

S1,6
S1,7

S1,8

S
1,11

S 8,1
2

S11,12

S
3,12

S
9,12

S
1,12

v8,1

v8,2

v8,1

v8,2

v8,1

v8,2

1 2 3

1 2 3

v8

Transition edge
Data edge

Figure 2. Graph Representation and Detailed view of a super node

Given the period, the execution time and the relative
deadline of each task, we compute the time window (i.e. [ai ,
bi]) during which each task should start execution in order to
finish execution before its deadline. For node k

miv , , the terms

],[,
k
mii ba k

mit , , k
mie , and ci,m represent execution start time

window, execution start time, execution time, and cost of task
execution (e.g. energy consumption), respectively. The weight

k
njmis ,;, and cost k

njmice ,;,
represents the transition overhead

between k
miv , and k

njv , , and the cost associated with this
transition, respectively. In order to have a feasible schedule,
two conditions should be met: 1) start time of each task should
be inside the corresponding time window 2) time overheads
before each task should be taken into account.

If we find a path in this graph starting from the source node
and ending at the sink node, along which each super node is
visited once (or labeled with a start time) such that the
aforementioned conditions are satisfied, a feasible schedule is
provided for the tasks along the path on a PE. Any directed
path in this graph corresponds to execution of a set of task on a
PE and it must include at most one node from each super node
corresponding to the selected tasks. All the nodes along a path
have the same k index. On multiple PEs, we need to find
multiple disjoint paths and cover all the super nodes in order to
provide a feasible schedule for all the tasks. Along a path, the
cost (e.g., energy consumption) is calculated by adding the
weights on the edges and the nodes (e.g., energy consumption
of the nodes and edges) along the path. For energy
minimization purposes, the goal is to find a set of disjoint paths
that covers all the super nodes while the total path costs
(energy consumption of the system) are minimized (min cost).
In addition, the disjoint paths in this graph not only represent a
task ordering on PEs, but also determine the configuration of
the PE for each task execution. Hence, the configuration
selection and task ordering (or scheduling) is simultaneously
solved. For example, if configurations refer to operating
voltage/frequency of the processor for each task, task ordering
and voltage/frequency selection are tackled at the same time in
this graph as opposed to two sequential steps [2,3].

In our previous work, we have proposed mathematical
programming to solve the task scheduling and configuration
selection problem on our proposed graph to incorporate partial
reconfiguration overhead in FPGAs [5] and energy
minimization using DVFS [1] in embedded reconfigurable
multiprocessors. In this paper, we provide an extended and
generalized graph representation. While mathematical
programming solution is optimum but it is very
computationally expensive as a solution and its runtime is not
affordable to be used by embedded system design exploration
tools. Hence, we propose a heuristic algorithm to solve the
problem more efficiently. In this work, we propose to
formulate the problem similar to a special class of network
flow problem referred to as Vehicle Routing Problem with
Time Window (VRPTW) [8]. However, VRPTW problem in
[8] does not consider multiple operation modes, other
constraints regarding reconfigurable architectures as modeled
on our graph representation. We propose how to adopt the
vehicle routing algorithm to find disjoint paths in order to solve
the min cost task scheduling problem on our graph
representation of reconfigurable system. We present this
algorithm with the objective of energy minimization (cost
minimization) and apply it to DVFS problem in embedded
systems [1]. However, the proposed heuristic is not restricted
to DVFS and can be simply applied to task scheduling on
FPGA-like systems with runtime reconfiguration.

IV. OUR HEURISTIC TRANSITION-AWARE SCHEDULING
Since schedulability is not guaranteed, we first aim for

maximum schedulability, and then focus on energy
minimization. Our proposed heuristic is based on a heuristic

for solving VRPTW ([9,10]). However, in our problem each
super node (representing the execution of a job) is a set of
nodes in the graph, and our heuristic selects the best operation
mode of the PE for each task instance referred to as a job.

Figure 4 presents pseudo-code of our heuristic algorithm. In
our heuristic, the first part (lines 1-13) focuses on feasibility of
the real-time scheduling. We first relax the constraint on the
number of the paths (i.e. number of PEs) and find a feasible
solution such that all the super nodes are visited (i.e. all the
jobs are executed). For this step, we use Push Forward
Insertion Heuristic (PFIH) algorithm [10] (line 1 in Figure 4).
Next step is to restrict the number of the paths. If the number of
paths provided by PFIH is greater than the number of PEs, we
will keep deleting the paths with minimum number of nodes
until the number of paths is equal to the number of PEs.

Next, we need to allocate the deleted super nodes on the
remaining paths. Note that when we want to add a super node
to the existing paths, there is no need to add the same node
which was deleted and we can add any node from that super
node. First, based on an insertion cost function, we find the
best location on existing paths to insert each deleted super node
(i.e. for each node inside the deleted super nodes we find the
best location). If no feasible position is found, we forcefully
insert the node with minimum insertion cost in the best
position by removing some existing nodes from the path to
make it feasible (line 8). Then we apply a series of
transformational operations on scheduled nodes along the paths
to increase the chance of inserting deleted super nodes to
existing paths (line 9).

Figure 3-Transformational Operations

Error! Reference source not found. demonstrate the set
of transformations used in our algorithm. The transformational
operations are used in order to move to another neighbor in
solution space [11]. Some transformations are performed on a
single path and some of them are performed on a pair of paths

among all the paths in our solution. In Error! Reference
source not found., in each picture, the left column shows the
considered path(s) for transformation before performing the
action and the right column shows the same path(s) after the
transformation. For example Error! Reference source not
found.-a shows the paths r1 and r2 as {source, … , vi-1, vi, vi+1,
… , sink} and {source, … , vj-1, vj, vj+1, … , sink} before
transformation and paths r1′ and r2′ as {source, … , vi-1, vj, vi+1,
… , sink} and {source, … , vj-1, vi, vj+1, … , sink} after
transformation.
Algorithm 1. Heuristic Transition-aware Task Scheduling
Input: Graph Representation of the input task and reconfigurable system
[1] perform PFIH //find paths to cover maximum number of nodes
[2] if (number of paths ≤ number of processors) then
[3] go to energy minimization part (line 14)
[4] else
[5] remove the paths with minimum number of nodes until number

of paths is equal to number of processors
[6] end if
[7] while (not all super nodes are visited) and (not to terminate) do
[8] select an unvisited super node and insert in a path
[9] explore the neighbor solutions to improve the timing
[10] if (paths are not changed)
[11] terminate
[12] end if
[13] end while
[14] repeat //energy minimization
[15] for (each path, p) do
[16] while (total energy consumption p is reduced) do
[17] apply hill-climbing with 2-opt, Or-op, Reduce and E-opt
[18] end while
[19] end for
[20] for (each pair of paths, (p1,p2)) do
[21] while (total energy of p1 and p2 is reduced) do
[22] apply hill-climbing with Relocate, Exchange, 2-opt* and

cross to reduce the energy
[23] end while
[24] end for
[25] if (the total energy of paths is not reduced) then
[26] apply Generalized Ejection Chains to reduce the energy
[27] end if
[28] until (total energy consumption of the paths is not reduced)
Figure 4. Heuristic Algorithm

After each operation, a cost function is used to check if new
solution is better than existing solution in terms of available
free time. During these operations, we will look for the best
node to use from each super node. These steps (line 8 and 9)
are repeated until all the nodes are visited or no more
improvement is possible (lines 7 and 10-13). After maximizing
the number of nodes on the paths, we will perform the second
part of the heuristic to minimize the cost, i.e., energy (lines 14-
31). In this step, we apply the aforementioned transformational
operations sequentially to explore the neighbors in solution
space. However in this part, the criterion to accept the
transformation and move to the next neighboring solution is
energy (cost) saving without reducing the schedulability. In
this part, in addition to previous transformation, we have a new
operation named Reduce(vi) which tries to find the lowest cost
(e.g., smallest operational voltage in DVFS) for vi without
reducing the schedulability (i.e. finding the best node in the
supernode). We repeat these operations until no cost (energy)
saving is possible. In the second part of our procedure we use
two local searches with classical operators, an enumeration-
based operator (E-opt) to minimize the energy of a single path

and a Generalized Ejection Chain (GEC)-based operator to
minimize the total energy of all the paths. These operations are
explained in details in [9].

V. EXPERIMENTAL RESULTS
We applied our proposed heuristic algorithm to tackle

DVFS-based energy minimization problem in embedded
systems. In our previous work [1], using our graph
representation, we presented an optimal ILP-based network
flow based solution for simultaneous static real-time
scheduling and energy minimization (DVFS). In this work, we
apply the proposed heuristic algorithm to allow task re-
ordering during energy minimization. We have conducted a set
of experiments using generated benchmarks as well as 3 real-
world application task sets. We have 7 synthetic benchmarks,
each of them with 3 tasks. The three real-world applications
task sets are the task sets from Computerized Numerical
Control (CNC) machine controller application (8 tasks), Video
phone application (4 tasks) and Avionics application (18 tasks).
Tasks do not have data dependencies. Our task properties are
presented in details in [1].

We considered three operation modes (processors used in
[3]) for each processor in the system. We indicate each
operation mode with a pair of supply and body bias voltage

),(
mm bsddm VVmode � . The processor has 3 modes (1.8,0), (1.5,-

0.4), and (1.2,-0.6). In the real-world applications only 1
processor was enough for scheduling all the tasks, but in
synthetic benchmarks we need 2 processors to be able to run all
the tasks. We used the data from [1] for delay and energy
overhead due to switching from one operation mode.

We implemented our heuristic in C#. The execution time of
this heuristic in our simulation was less than 3 minutes on a
computer with CPU Intel P4 3.4GHz and 3GB RAM. We
compared our solutions with 3 existing voltage/frequency
scheduling algorithms: MILP [1], VCS [2] and DVO [3]. The
results from DVO determines the optimal solution while not
considering ordering during voltage assignment, hence the
difference of this algorithm from our optimal solution shows
the importance of considering the ordering and
voltage/frequency assignment at the same time.

TABLE I. NORMALIZED ENERGY DISSIPATION
 Processors with 3 operation modes

no-DVFS VCS [2] DVO [3] Our heuristic MILP[1]
Task set 1 100 78.95 78.89 70.93 47.52
Task set 2 100 82.21 62.76 52.76 47.79
Task set 3 100 69.73 60.17 57.56 48.32
Task set 4 100 45.58 45.58 45.58 45.58
Task set 5 100 45.47 45.47 45.47 45.47
Task set 6 100 70.89 62.06 60.80 45.83
Task set 7 100 83.02 75.33 65.26 62.61
CNC 100 64.03 58.16 49.46 49.46
Video phone 100 80.97 71.73 68.49 45.50
Avionics 100 52.42 45.89 45.89 45.89
Average 100 67.33 60.61 56.22 48.40

Error! Reference source not found. show the results for
our simulations on synthetic benchmarks and real-world
application for the processor with 3 modes of operation,
respectively. The first column is the energy consumption of the
system in maximum voltage (no-DVFS). Second and third
columns are the energy consumption while using VCS and
DVO algorithms, respectively. Third and fourth columns are
our solutions for DVFS/ABB in real-time scheduling. All the

values are normalized to energy consumption of no-DVFS
case. Our heuristic reduces the energy by 43.78%, 11.11% and
4.39% (on average) in comparison with no-DVFS, VCS and
DVO algorithms, respectively. In this case the difference
between the optimal result and our heuristic is 7.82%. For
avionics application, the results from our solutions and the
DVO algorithm are same. This is the result of the fact that the
time constraints in this application are very relaxed. Also there
are two cases (Task set 3 and 6) in Table I which our heuristic
works slightly worse than DVO and that is because DVO is an
ILP-based optimal scheduler and our heuristic is not optimal.
Our MILP solution which is optimal is working better than
DVO in these cases.

VI. CONCLUSIONS
In this paper, we presented a novel graph representation for
task scheduling on reconfigurable embedded systems. The
graph can capture reconfiguration delay and cost overhead
resulting from various configuration schemes such as DVFS
or FPGA partial reconfiguration. Configuration selection and
task ordering are simultaneously tackled in the proposed
heuristic scheduling algorithm. We can benefit from
simultaneous task ordering and DVFS as opposed to applying
DVFS on a set of ordered tasks as commonly presented in
related work and our results show significant energy reduction
when applying combined task ordering and voltage/frequency
selection using our proposed heuristic algorithm.

REFERENCES
[1] H. Kooti, E. Bozorgzadeh, "Unified Theory of Real-Time Task

Scheduling and Dynamic Voltage/Frequency Scaling on MPSoCs",
in IEEE International Conference on Computer-Aided Design, 2010

[2] F. Dabiri, A. Vahdatpour, M. Potkonjak and M. Sarrafzadeh, "Energy
Minimization for Real-time Systems with Non-Convex and Discrete
Operation Modes," in IEEE Design, Automation and Test in Europe,
2009.

[3] A. Andrei, M. Schmitz, P. Eles, Z. Peng and B. M. Al-Hashimi,
"Overhead-Conscious Voltage Selection for Dynamic and Leakage
Energy Reduction of Time-Constrained Systems," in IEEE Design,
Automation and Test in Europe, 2004.

[4] P. Rong and M. Pedram, "Energy-Aware Task Scheduling and Dynamic
Voltage Scaling in a Real-Time System," Journal of Low Power
Eelectronics, vol. 4, no. 1, pp. 1-10, 2008.

[5] H. Kooti, E. Bozorgzadeh, S. Liao and L. Bao, "Transition-aware Real-
Time Task Scheduling for Reconfigurable Embedded Systems," in
Design, Automation and Test in Europe, 2010.

[6] D. B. Stewart and P. K. Khosla, "Real-Time Scheduling of Dynamically
Reconfigurable Systems," in IEEE International Conference on Systems
Engineering, 1991.

[7] O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck and B. Schmidt,
"Dynamic scheduling of tasks on partially reconfigurable FPGAs," IEE
Proceedings Computers and Digital Techniques, vol. 147, no. 3, pp.
181-188, 2000.

[8] N. Azi, M. Gendreau and J.Y. Potvin, "An exact algorithm for a single-
vehicle routing problem with time windows and multiple routes," in
European journal of operational research, 2006.

[9] A. Lim and X. Zhang, "A Two-Stage Heuristic for the Vehicle Routing
Problem with Time Windows and a Limited Number of Vehicles," in
HICSS, 2005.

[10] M. M. Solomon, "Algorithms for the vehicle routing and scheduling
problems with time window constraints," Operations Research, vol. 35,
no. 2, pp. 254-265, 1987.

[11] O. Bräysy, "Vehicle Routing Problem with Time Windows, Part I:
Route Construction and Local Search Algorithms," Transportation
Science, vol. 39, no. 1, pp. 104-118, 2005.

