
On the Conceptual Design of a Dynamic Component
Model for Reconfigurable AUTOSAR Systems

Jakob Axelsson
Swedish Institute of Computer Science (SICS)

Kista, Sweden
jakob.axelsson@sics.se

Avenir Kobetski
Swedish Institute of Computer Science (SICS)

Kista, Sweden
avenir.kobetski@sics.se

Abstract—The automotive industry has recently developed
the embedded software standard AUTOSAR, which is now being
introduced widely in production vehicles. The standard
structures the application into reusable components that can be
deployed in a specific vehicle using a configuration scheme.
However, this configuration takes place at design time, with no
provision for dynamically installing components to reconfigure
the system. In this paper, we present the conceptual design of a
dynamic component model that extends an AUTOSAR based
control unit with the possibility to add plug-in components that
execute on a virtual machine. This concept is intended to give
benefits in terms of much shorter deployment time for new
functions, even into vehicles that have already been produced.
Further, it creates opportunities for vehicles to take part in
federated embedded systems together with other products. It also
opens up a market for third-party developers, and fosters open
innovation in an ecosystem around the automotive software
business.

Keywords—component-based software; federated embedded
systems; automotive systems; AUTOSAR; reconfigurable software

I. INTRODUCTION

Over the last few decades, automotive embedded systems
have expanded rapidly in functionality and complexity. Today,
a car typically contains several dozen electronic control units
(ECUs) that are connected through communication networks.
Each ECU runs control functionality using sensors and
actuators, but there are also control functions that are
distributed over several ECUs. It is common in the vehicular
industry to rely on external suppliers for the development of
both ECU hardware and software, and with rising complexity,
it has become increasingly costly to integrate these ECUs into a
functioning system.

To cope with the increasing complexity of in-vehicle
software, the automotive industry has for the last decade been
developing the standard Automotive Open System Architecture
(AUTOSAR) [2]. It decouples the basic software that needs to
exist in all ECUs and can be standardized, from the application
software. It also provides a component model that eases reuse
of parts of the application software, and allows it to be
redistributed if the underlying distributed hardware architecture
is changed, thereby improving flexibility and scalability. It is,
according to the AUTOSAR consortium, already in use in 25
million electronic control units (ECUs) in 2011, a figure
expected to rise to 300 million in 2016.

The automotive industry is very cost sensitive, and ECU
hardware resources are traditionally kept to a minimum.
Therefore, AUTOSAR has been designed to execute with
limited resources and hence configuration of the system is done
at design time with no structural dynamics during execution.
However, more powerful hardware can be expected to be used
in the future, since there are limits to how many ECUs are
sensible to put in a vehicle. This would open up for adding
sufficient resources to introduce also the possibility for
dynamic reconfiguration of parts of the system.

The purpose of this paper is to describe the conceptual
design of a component model that makes it possible to
dynamically reconfigure parts of an AUTOSAR system by
allowing for plug-in components on top of the statically
configured software. Such a dynamic model would have
several benefits. Firstly, it would drastically decrease the time
to market since software can be added or modified very late in
the development process. Secondly, in combination with
external wireless communication, it gives the possibility for
creating federated embedded systems [5], i.e., embedded
systems in different products that cooperate with each other.
Thirdly, it would create a foundation for open innovation
where an ecosystem of third party developers can develop new
services that add to the value of the products. In the next
section, a brief overview of AUTOSAR will be given, followed
by a description of the dynamic component concept which is
the key contribution of this paper. In Section IV, related work
is presented, and the paper finishes with conclusions and
directions for future research.

II. OVERVIEW OF AUTOSAR

AUTOSAR is structured around a layered software
architecture that contains three levels: the basic software
(BSW), a middleware called the runtime environment (RTE),
and the application software (ASW).

The BSW consists of an operating system that has evolved
from the OSEK standard; system services for, e.g., memory
management; communication concepts; ECU and
microcontroller hardware abstractions; and complex device
drivers for direct access to hardware.

On top of the BSW is the RTE. It manages all
communication between ASW components, as well as their
access to the lower layers. To make the ASW components
independent of their physical allocation to different nodes, a

concept called the virtual functional bus (VFB) is used, which
allows ASW components to communicate between each other
as if they were all allocated to the same ECU. If they are in fact
on different ECUs in a particular implementation, the
communication between them has to be mapped to network
messages, and this is taken care of by the VFB. The actual
implementation of the RTE is done by generating ECU specific
software from a description of how the constituent ASW
components are allocated to ECUs and what links between the
components exist. The result is thus a C program that provides
an API to the ASW, and that in turn calls the API of the BSW.
Apart from communication, the RTE also handles other
functionality, such as events, critical sections, etc.

The ASW consists of a number of software components
(SW-C) which are in many ways similar to established
component models like Koala [6]. Each component declares a
number of ports, which can be either required ports (where the
component is expecting input) or provided ports (that the
component uses for its output). The ports can implement
different interaction schemes, including sender-receiver or
client-server. The internal functionality, or the runnable, of the
component only accesses its ports, and not any other
components. The runnables are mapped to OS tasks. SW-Cs
can also be composite, i.e., containing other SW-Cs inside.

In addition to technical concepts, AUTOSAR also provides
an outline of a development methodology which heavily relies
on different tools for software configuration. Since the intended
use is software for resource-constrained embedded systems, the
approach is to do all configuring statically at design time
instead of dynamically at run-time. This is achieved through a
number of description files (using primarily XML format) that
are processed by different tools. These description files
include, among many other things, information about how the
ports of different SW-Cs are connected to each other to form a
system, and how SW-Cs are allocated to ECUs. From these
description files, executable software is generated that
implement the BSW, RTE, and ASW for a particular ECU.

Although AUTOSAR provides a lot of flexibility in
reconfiguring a system, it is important to notice that it occurs at
design time. It does not offer any possibility to make dynamic
additions, but any changes require the software to be rebuilt
and the ECU to be reprogrammed. The key contribution of this
paper is thus to describe a reconfigurable software concept that
extends AUTOSAR.

III. A DYNAMIC COMPONENT CONCEPT

We will now describe a concept for allowing
reconfiguration of AUTOSAR based embedded systems. The
intended application area is automotive control systems, and
these are usually not only resource-constrained but also safety
critical. Since we are striving for a concept where other parties
than the OEM can develop additional software, there is no way
to avoid that software of different criticality is mixed.
Therefore, we find it wise to separate the built-in software from
the additional software, and execute the additional software as
plug-ins in a virtual machine (VM). The key idea is thus to
encapsulate a VM in an AUTOSAR SW-C, and by installing
that SW-C into an ECU, it becomes plug-in enabled. In that

way, no changes are needed to the AUTOSAR standard, and it
becomes a very easy process to make a system plug-in enabled.

Figure 1 gives an overview of how the plug-in concept
relates to the underlying AUTOSAR based software. In the
figure, dotted lines are used to show the plug-ins and their
connections, whereas solid lines are used for the AUTOSAR
SW-Cs and their links. In the following subsections, different
parts of the concept will be detailed.

Hardware

AUTOSAR run‐time environment

AUTOSAR basic software

AUTOSAR application software

SW‐C plug‐in run‐time environment
SW‐C

external
communication

manager

SW‐C

Plug‐in
component

Plug‐in
component

SW‐C

Fig. 1. The structure of an AUTOSAR based ECU with the plug-in concept.

A. Plug-In Component Concept

To make the transition between AUTOSAR ASW and
plug-ins as transparent as possible, a similar component model
is used for plug-ins, and most of the concepts available to SW-
Cs are also present in plug-in software. However, the full range
of services available to plug-in components depend on what
ports the developers of the underlying system choose to make
available to the plug-ins, which is a decision that is still made
during design of the ECU.

A difference between ordinary AUTOSAR components and
plug-in components is also that whereas the typical language
used for ASW is C, Java will primarily be used for the plug-ins
since the execution environment will be based on the Java VM.
(Technically, other VM technology could also be used, but we
have chosen Java due to its wide availability.) All ports
available to plug-ins will therefore have their direct
correspondence in a Java API that is available to plug-in
developers.

In AUTOSAR, allocation of SW-Cs to ECUs, and
connection between ports of SW-Cs, are described in
configuration files separate from the source code. However, for
plug-ins, this has to be handled dynamically on-line, and
therefore allocation and connection are included in an
initialization method of the plug-in components.

The concept also allows a plug-in to define ports that other
plug-ins can connect to. This means that the full range of
services available to a new plug-in is those of the underlying
ECU plus those of all other plug-ins already installed.

B. Plug-In Run-Time Environment

To execute the Java plug-ins, a Java VM has to be installed
in the ECU. In our concept, this VM is packaged in a generic
AUTOSAR SW-C called the plug-in run-time environment
(PIRTE). It connects to the ASW through a set of ports which
have to be defined by the user at design time. Those ports are
then replicated in a Java library which is available to the plug-
in components. Apart from the port configuration, the PIRTE is
general and can be installed into any ECU with sufficient
resources, to make it plug-in enabled.

C. External Communication Manager

In addition to PIRTE, one more generic SW-C is provided
in the concept, which is the external communication manager
(ECM). It should be installed on an ECU which has a
communication link to the outside (usually a wireless link to
the Internet). It contains the mechanisms needed to download
plug-ins, but also serves as a gateway for plug-ins to
communicate externally. The latter is important, since many
plug-ins are expected to be used for transferring information to
and from off-board services, and for building federated
embedded systems.

D. Plug-In Installation

When a new plug-in application has been downloaded into
the vehicle, different parts of the plug-in must be distributed to
the correct ECUs, and connections between its ports and the
required and provided ports of the application software have to
be put in place.

To handle this, each plug-in application is at the top level
divided into a set of plug-in software components, in such a
way that there is (at most) one component to be installed in
each ECU. In most cases, those components will in practice be
composite components, containing other plug-in software
components inside.

The following steps are performed to install and configure a
new plug-in application:

1. The user instructs the vehicle to install a certain plug-in
application in the vehicle.

2. The vehicle downloads the plug-in application over the
external connection from a pre-defined trusted server.

3. The ECM executes the allocation instructions of the
plug-in application. This will have the effect that the
plug-in packages are transferred to the ECUs where
they should be installed, and stored in FLASH
memory.

4. Each ECU that has received a package reconfigures its
PIRTE by executing the connection instructions related
to that package. This will have the effect that all ports
are connected to other ports in the PIRTE, or in other
plug-in applications. This part has to be executed every
time the application is starting, including when the
ECU is restarted.

5. When installation has completed, an acknowledgement
is sent back to the trusted server. In this way, the site
can keep track of the status of installed plug-ins,

making it possible to restore the contents of an ECU in
case of hardware replacement, etc.

E. Internal Communication

Since most automotive embedded systems are distributed, it
will often be necessary to have several ECUs plug-in enabled,
simply because the data the plug-ins need is only available in
those ECUs. This also entails that there is a need for
communicating plug-in data between ECUs. To handle this,
generic messaging ports are provided in all PIRTEs, which
allow them to connect to each other. Note that the
communication details are transparent to the plug-ins, allowing
to easily re-allocate them by simply reconfiguring appropriate
PIRTEs. Since the PIRTEs are allocated on different ECUs, the
AUTOSAR run-time environment needs to be set up to provide
appropriate network messages to implement the
communication between those ports. In a similar way, the
ECM is connected to all PIRTEs, to provide channels for
downloading plug-ins and for external data communication.

F. Safety and Security

A key issue when allowing reconfiguration of embedded
systems by installing external software is how to ensure safety
and security. One important concept is the use of a VM
embedded in an SW-C for executing the plug-ins. This means
that plug-ins can only access the underlying software and
hardware through the ports of that SW-C. It is up to the ECU
developers to decide which ports should be connected, and in
the case of provided ports of the SW-C, how data received
from the plug-in should be handled. If that data is used to
control the underlying system, it is important that (non-
reconfigurable) fallback mechanisms, that monitor safety risks
and have the authority to override the plug-in actions, are
included in the functionality of the ASW.

The PIRTE executes in its own thread and with its own
memory areas and network messages. This means that CPU,
memory, and bandwidth is pre-allocated to plug-ins, and there
will not be a competition for resources with the built-in
functionality. Plug-ins are thus executed under a best effort
scheme, whereas built-in software has predictable behavior.

A potential security threat is the installation of plug-ins. In
this concept, it is only allowed to install plug-ins from a trusted
server at a pre-defined address. In this way, much of the
firewall issues are moved from the resource-constrained
embedded system to a server, where all appropriate
mechanisms can be implemented. To change the trusted server
address requires reprogramming of the ECU’s built-in
software, which has its own security mechanisms.

G. Tools for Configuration

To enable plug-ins in an ECU is a step which can to a large
extent be automated through the use of tools. Given an ECU
with an AUTOSAR application consisting of a set of SW-C’s
and ports, the AUTOSAR configuration files contain, in XML
format, information about these ports. That configuration file
can be read into a new tool, the Plug-in configurator, which is
part of our concept. In this tool, the user manually selects
which of all the available ports should be visible for plug-in
applications on that ECU. The information entered into the tool

is stored in a separate configuration file to be able to repeat the
process. Based on the AUTOSAR configuration files and the
information about visible ports, the following files are
generated:

1. An AUTOSAR configuration file describing the ports
of the PIRTE SW-C.

2. An AUTOSAR configuration file describing how the
ports of the PIRTE SW-C are connected to the ports of
other SW-C’s in that ECU.

3. A Java source code file which contains the visible
ports described as Java objects, where the internals of
those ports are calls through the Java Native Interface
to the AUTOSAR RTE of that ECU. The source file
can be used by developers to define how their plug-ins
connect to the visible ports. A compiled version of the
source file is pre-installed in the PIRTE.

IV. RELATED WORK

Several well-established component-based frameworks
exist for embedded real-time systems, such as Koala [6] and
SaveCCM [4]. They are both similar to the AUTOSAR model
in principle, and thus only provide static configuration of the
system.

Other researchers have investigated the use of Java in
AUTOSAR based systems, such as the KESO compiler [9].
However, this solution generates native code for each ECU,
and is thus less suitable for dynamic reconfiguration.

Dynamic reconfiguration in automotive systems has been
studied in the DySCAS research project [1]. It defines a
completely new architecture, with focus on mechanisms for
self-reconfiguration. This however adds a lot of complexity to
the architecture, which is avoided in our work with a more
restricted and pragmatic approach based on plug-ins. However,
it could still be viable in certain areas, such as infotainment.

Outside the automotive domain, several component based
systems with dynamic reconfiguration mechanisms have been
reported. In [3], an approach is described that focuses on state-
preserving updates of resource-constrained nodes. However, it
is not based on a VM, but requires node-specific binaries to be
generated.

The problem of specifying the dynamic reconfiguration
process is addressed in [7], where a script language is used for
describing the steps to perform. Although it is applied to the
reconfiguration of an OS kernel, similar ideas can be applied to
also reconfigure the setup of plug-in installations.

A Java VM based approach is SEESCOA [8], which
defines its own component model. It deals, among other things,
with issues related to transferring the state of components from
the old version to a new version during upgrades. This issue is
dealt with more pragmatically in our approach, by mandating a
plug-in to be stopped before being updated, and then restarted
fresh.

This work differs from all the above in that it provides
dynamic installation of software components in an AUTOSAR
based control system, executing the plug-ins in a Java VM.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the conceptual design of a
reconfiguration mechanism that makes it possible to
dynamically add software plug-ins to an AUTOSAR based
system. The solution is packaged into two generic SW-Cs that
can very easily be included in a system to make it plug-in
enabled. The plug-in concept will give many benefits to the
development of automotive software, and make it possible to
create federated embedded systems. Although the standard is
from the automotive industry, the concepts are quite general
and of value in other embedded system domains.

While in theory our design can be used for mixed-criticality
applications, currently, our work is mainly focused on non
safety-critical plug-in examples, running on dedicated
resources in a best-effort way, while the safety-critical
functionality of the underlying system is untouched. The
concepts have been validated in a desktop simulation
environment, whereas an implementation on embedded
hardware is underway. The embedded implementation will
provide additional insight into the performance of the solution,
and allow further refinement of the concept with regards to
issues like predictability of plug-ins. Also, developing more
plug-in examples will allow a deeper analysis of what parts of
Java are actually useful in this setting, possibly leading to VM
optimization towards even less resource consumption. This will
also allow studying how plug-ins can interact, and what further
mechanisms are needed to make such interactions robust and
predictable, opening up for safety-critical plug-in functionality.

ACKNOWLEDGEMENTS

This project is supported by Vinnova (grant no. 2012-
02004), Volvo Cars, and the Volvo Group.

REFERENCES
[1] R. Anthony, A. Rettberg, D. Chen, I. Jahnich, G. de Boer, and C. Ekelin,

“Towards a dynamically reconfigurable automotive control system
architecture,” In Embedded System Design: Topics, Techniques and
Trends, pp. 71-84, Springer 2007.

[2] AUTOSAR consortium, www.autosar.org.

[3] M. Felser, R. Kapitza, J. Kleinöder, and W. Schröder-Preikschat,
”Dynamic software update of resource-constrained distributed
embedded systems,” In Embedded System Design: Topics, Techniques
and Trends, pp. 387-400, Springer 2007.

[4] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren, ”SaveCCM –
a component model for safety-critical real-time systems,” In Proc.
Euromicro Conf., pp. 627-635, Aug. 2004.

[5] A. Kobetski and J. Axelsson, “Federated robust embedded systems:
Concepts and challenges,” SICS Tech. Report T2012:05, 2012.

[6] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, ”The
Koala component model for consumer electronics software,” IEEE
Computer, March 2002.

[7] J. Polakovic, S. Mazaré, J-B. Stefani, P-C. David, “Experience with safe
dynamic reconfigurations in component-based embedded systems,” In
Proc. 10th Intl. Symposium on Component-Based Software Engineering,
pp. 242-257, Lecture Notes in Computer Science, Springer, 2007.

[8] Y. Vandewoude and Y. Berbers, “Run-time evolution for embedded
component-oriented systems,” In Proc. Intl. Conf. on Software
Maintenance, pp. 242-245, 2002.

[9] C. Wawersich, I. Thomm, and M. Stilkerich, “The use of Java in the
context of AUTOSAR 4.0,” Embedded World, Nuremberg, Germany,
March 1-3, 2011.

