
Linux PREEMPT-RT v2.6.33 versus v3.6.6:
Better or worse for real-time applications?

Hasan Fayyad-Kazan
Electronics and Informatics

Department
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels-Belgium
hafayyad@vub.ac.be

Luc Perneel
Electronics and Informatics

Department
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels-Belgium
luc.perneel@vub.ac.be

Martin Timmerman
Electronics and Informatics

Department
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels-Belgium
martin.timmerman@vub.ac.be

ABSTRACT
Linux was originally designed as a general purpose operating
system without consideration for real-time applications. Recently,
it became a more reliable candidate in the real-time field due to its
daily improvements, both for general purpose and real-time
usages. In this research, we test two Linux PREEMPT-RT
versions (v3.6.6 and v2.6.33.7) in the aim of benchmarking its
performance and behaviour to give an insight whether the
enhancements in its kernel are improving the determinism of the
operating system. Our benchmark will be based on the following
experimental measurements’ metrics: thread switch latency,
interrupt latency, sustained interrupt frequency, mutex and
semaphore acquisition and release durations, and finally the
locking behaviour of mutex. These measurements are executed for
each Linux version, on the same x86 platform (ATOM processor)
using the same test framework and measurement equipment.
Comparing the results show that Linux v3.6.6 has significantly
better worst case results which makes the actual Linux
PREEMPT-RT version a better candidate for RT-applications.
Suggestions are made for further improvements.

Keywords
Real-time, Linux, PREEMPT-RT

1. INTRODUCTION
Because of its free open source advantage, stability and

supporting multi-processor architecture, Linux operating system
(OS) stands high in many (embedded) commercial product
developers’ favour and becomes one of the fastest-growing
(embedded) operation systems [1]. Also, with the development of
open-source projects, embedded Linux provides many
opportunities for developing customized operation system.
Moreover, its reliability and robustness made it widely used even
in safety and mission critical systems.
In these contexts, time is extremely important; the system in
which its correctness depends not only on the logical results of
computations, but also on the time at which the results are
produced is called real-time system [2].

Although Linux is a popular and widely used OS, the standard
Linux kernel fails to provide the timing guarantees required by
critical real-time systems [3]. To circumvent this problem,
academic research and industrial efforts have created several real-
time Linux implementations [4]. The most adopted solutions are
RTLinux/RTCore [5], RTAI [6], Xenomai [7] and the
PREEMPT-RT [8] patch. Each one of these real-time enhanced
kernels has its internal architecture, its strength and weaknesses
[9]. All these approaches operate around the periphery of the
kernel, except PREEMPT-RT patch which is mainlined in the
current kernel and used by great actors such as WindRiver in their
Linux4 [10] solution.
In this research, we evaluate two different versions of Linux
PREEMPT-RT, an old version (2.6.33.7) and a newer version
(3.6.6). The reason for choosing these kernel versions is that since
Linux version 2.6 it started to be possible to get soft real-time
performance through a simple kernel configuration to make the
kernel fully preemptable, while Linux 3.6 is chosen as it is the
latest version at the time of doing the tests. The aim of this
evaluation is to have benchmark information that can show
whether Linux real-time enhancements and changes since version
2.6 are making it a more reliable real-time operating system or
not. For this evaluation, a testing suite of five performance tests
and one behaviour test are used. The performance tests are: thread
switch latency, interrupt latency, sustained interrupt frequency,
and semaphore and mutex acquire-release timing in contention
case, while the behaviour test checks the mutex locking
behaviour.

2. LINUX PREEMPT-RT
Linux PREEMPT-RT (LinuxPrt) [11, 12] is a Linux real-

time patch maintained by Ingo Molnar and Thomas Gleixner [15].
This patch is the most successful Linux modification that
transforms the Linux into a fully preemptible kernel without the
help of microkernel (the architecture implemented in RTAI or
RTLinux) [13]. It allows almost the whole kernel to be
preempted, except for a few very small regions of code
(“raw_spinlock critical regions”). This is done by replacing most
kernel spinlocks with mutexes that support priority inheritance
and are preemptive, as well as moving all interrupts to kernel
threads [9, 14].

Also, this patch presents new operating system enrichments to
reduce both maximum and average response time of the Linux
kernel [9]. These enhancements were progressively added to the
Linux kernel to offer real-time capabilities. The most important
enhancements are: High resolution timers (a patch set, which is
independently maintained by Thomas Gliexner [15], which allows
precise timed scheduling and removes the dependency of timers

EWiLi’13, August 26–27, 2013, Toulouse, FRANCE

Copyright retained by the authors

on the periodic scheduler tick [16]), complete kernel preemption,
interrupts management as threads, hard and soft IRQ as threads,
and priority inheritance mechanism. Some of these new features
like threaded IRQ are currently pushed to the mainline kernel by
the patch maintainers [9] showing that RT-enhancements also
benefit non-RT applications.

3. EXPERIMENTAL SETUP
In order to have maximum control on the Linux behaviour,

we decided to build the kernels ourselves using the buildroot
tool. For Linux 2.6.33.7, we use the real-time patch version 30,
while the real-time patch version 17 for the Linux 3.6.6 version is
used being the latest available version at the moment of our
evaluation tests. Building such Linux kernels where real-time is
the main goal requires some precautions. Here is a highlight on
some of the configuration options that need particular attention
when building the RT kernels to make them more predictable.
Those configuration options are the following:

 Enable the “Optimize for size” option which can

increase cache hits and thus performance as well. This
option is typically used in embedded systems.

 Disable the “Tickless system” option which generates an
operating system clock tick only when a thread wants to
be waken-up instead of a periodic one. This improves
power consumption and CPU usage. However, the clock
tick becomes more complex with this option, and this
option does not avoid clock ticks. In the end, one has
less but longer ticks which is not good for real-time
performance.

 Disable the “power management” option which puts the
CPU in a lower power state which in turn can take some
time to throttle back towards full CPU speed. Again this
can impact latency on critical moments and is thus bad
for real-time purposes.

 Compiling just the minimal modules because the less
code included in the kernel, the less that can jeopardize
the real-time behaviour.

 Disable “memory swapping” because when memory is
swapped away onto some storage medium, the time to
retrieve it when needed is a huge, unpredictable and a
serious factor slower than when loaded from RAM.

Evaluating these kernel versions is performed using several
performance and behaviour tests. The library used between the
testing applications and the kernel is the μClibc version 0.9.33.
Another solution could be glibc. However, in smaller embedded
systems, μClibc can be a better option due to its lower footprint.
As μClibc only recently introduced NPTL support (from 0.9.32),
we decided to use it in our evaluation tests to check its behaviour
as well. Before version 0.9.32, μClibc could not be used for
time-critical systems due to the lack of priority inheritance locking
support. This interfacing library is important because user
applications (when using POSIX calls) can access the real-time
features of the kernel only if the interfacing C library supports
them; Otherwise, direct system calls in kernel space are needed,
making the application code not portable.
The test application uses mlockall() to assure that all test
programs are locked into memory. Further, the application is
statically linked and started from a RAM disk (tmpfs) to avoid
swapping out read-only code pages. Finally the real-time run
away protection is disabled by setting the kernel configuration

parameter (/proc/sys/kernel/sched_rt_runtime_us) to
(-1). All these precautions improve the determinism of the real-
time application and operating system.
We conducted our tests on an ATOM-based platform (Advantech
SOM-6760) with the following characteristics:

 CPU: Intel Atom Z530 running at 1.6 GHz
 32 Kbytes L1 instruction cache
 24 Kbytes L1 write back data cache
 512 Kbytes 8-way L2 cache
 1 core with disabled hyper-threading support
 512 MB DDR2 RAM
 VMETRO P-Drive PCI exerciser (PCI interrupt D, local

bus interrupt level 10)
 VMETRO PBT-315 PCI analyser

4. TESTING PROCEDUERS AND
RESULTS

4.1 Measuring Process
A PCI device-simulator (VMETRO P-Drive) is inserted as a

peer for the OS and as such, generating measurement samples by
device access. It also generates interrupts while doing the
interrupts tests, in an independent non-synchronized way with the
Platform Under Test (PUT). The test software generates start and
stop events by writing a 32-bit word on the PCI bus towards the
P-Drive. The traffic on the PCI bus is then captured using PCI-
Analyzer (VMETRO PBT-315) which in turn gives us the timing
information on the event durations in the system. The major
advantage of this system is that the interrupt latency (from
hardware interrupt line being toggled to the interrupt handler) can
easily be measured and taken into account.
Note that in the tests’ comparison figures below, the lower values
mean better quality, and all the values in the figures are in μs. As
we are interested in real-time behaviour, our focus is mainly on
the worst case latency results.

4.2 Performance Metrics
A quick online survey of RTOS metrics maintained by third

party consultants, students, researchers, and official records (of
distributor companies) reveals that the following three
characteristics are used to evaluate a RTOS solution [12]:

 Memory footprint
 Latency
 Services performance

Among these measurements, footprint provides an estimated
usage of memory by a RTOS on an embedded platform. The other
two characteristics measure various types of RTOS overhead or
runtime performance. Latency is reported in two different ways:
interrupt and scheduling, and services performance is the
minimum time taken by the RTOS interface to complete a system
call [12].
In this paper, we test latency and services’ performance metrics.
Before presenting the evaluation tests and the obtained results, we
always perform two preliminary tests (the first 2 tests below) to
assure the accuracy and precision of the tests.

4.2.1 Tracing Overhead
This test calibrates the tracing system overhead which is

fundamentally hardware related. The results presented in this
paper are corrected from this constant bias.

Tracing accuracy depends on the PCI clock (33MHz), as this is
the minimum time frame that can be detected. As a consequence,
the results in this paper are correct to +/- 0.2 μseconds and are
therefore rounded to 0.1 μseconds. The Y-Axis’s in the charts are
all in μseconds.

4.2.2 Clock Tick Processing Duration
This test examines the clock tick processing duration in the

kernel. The results of this test are extremely important as the clock
interrupt might disturb all other performed measurements just like
it will disturb latencies in real-time applications as well if one
uses the same type of hardware platform. This is due to the fact
that on the PUT, being a commercial PC motherboard, the tick
timer has the highest priority. Using a tickless kernel will not even
prevent this from happening (it will only lower the number of
occurrences). The tested OS kernels were not using the tickless
timer option.

Figure 1 shows a comparison of the average and maximum clock
processing durations of each Linux version:

Figure 1: Average and maximum clock tick durations’

comparison

As we are focusing the testing on the real-time behaviour and
performance of these two Linux versions, the maximum values
out of the samples are our concern rather than the average ones.
However, for the sake of completeness and comparison, we also
publish the average values. Figure 1 shows that Linux 3.6.6
values are better than version 2.6.33.

Before going into the results’ details, we give a brief explanation
on how the tests are done and the raw measurements are
corrected. Figure 2 is an example showing the results over time of
the “switch latency between two threads” test performed on Linux
3.6.6. The X-Axis indicates the time when a measurement is
performed with reference to the start of the test. The Y-Axis
indicates the duration of the measured event.

Figure 2: Thread switch latency between 2 threads, on Linux

3.6.6
Figure 2 shows that the average latency is 1.3 μs while the
maximum latency is 21.8 μs, which is in this case at the beginning
of the test. These values are actually the ones that are used in the

comparison figures. The latencies introduced by the operating
system clock tick processing can clearly be identified.

4.2.3 Thread Switch Latency between Threads of
Same Priority

This test measures the time needed to switch between threads
having the same priority. For this test, threads must voluntarily
yield the processor for other threads, so SCHED_FIFO scheduling
policy is used. If we wouldn’t use the FIFO policy, a round-robin
clock event could occur between the yield and the trace and then
the thread activation is not seen in the test trace. The test looks for
worst-case behaviour and therefore it is done with an increasing
number of threads, starting with 2 and going up to 1000. As we
increase the number of active threads, the caching effect becomes
visible (the 1000 threads scenario in figure 3a) as the thread
context will no longer be able to reside in the cache with higher
number of threads used (on this platform the L1 caches are 32KB
and 24 KB, both for the instruction and the data caches
respectively).Further, one will clearly see the influence of clock
interrupts (Figure 3b).

Figure 3a: Average “thread switch latency” tests with

different scenarios

Figure 3b: Maximum “thread switch latency” tests with

different scenarios
Analysing the above figures show that the average switch latency
(figure 3a) for Linux 3.6.6 is larger than the ones of 2.6.33, while
the maximum values (figure 3b) are better than the ones of 2.6.33.
This is because the maximum thread latency depends also, in our
configuration, on the clock tick interrupts which adds up to the
bare maximum latency. A good RT hardware design should put
the clock ticker on a minimum interrupt level to enhance these
values.

4.2.4 Interrupt Latency
This test measures the time required to switch from a running

thread to an interrupt handler. It measures the time from the PCI
interrupt line going logical high up to the beginning of the
interrupt handler which clears the interrupt condition by accessing
the PCI device. Figure 4 shows a comparison between the average

and maximum interrupt latencies for the Linux versions under
test.

Figure 4: Average and maximum interrupt latencies

comparison

For real-time systems, the maximum interrupt latency (worst case
duration) needs to be considered. Although one is never sure of
obtaining the worst case duration via measurements, dramatically
increasing the number of samples may help to get closer to the
real worst case value. That’s the reason why the long duration
interrupt test (test metric 5) is catching a billion of interrupts. The
following test is therefore considered of great importance and
provides a simple RT-metric for comparison.

4.2.5 Maximum Sustained Interrupt Frequency
This test detects when an interrupt cannot be handled anymore

due to the interrupt overload. In other words, it shows a system
limit depending on, for example, how long interrupts are masked,
how long higher priority interrupts (the clock tick or other) take,
and how well the interrupt handling is designed.
This test gives a very optimistic worst case value due to the fact
that because of the high rate of interrupts, the amount of spare
CPU cycles between the interrupts is limited or nil. Also,
depending on the length of the interrupt handler, it might mostly
be present in the caches. In a real world environment, the worst
case will be greater.
Unless the above considerations, this is a very popular test to
compare RTOSs and see where the interrupt handling limit of this
RTOSs is.
In this test, 1 billion interrupts are generated at specific interval
rates. Our test suite measures whether the system under test
misses any of the generated interrupts. The test is repeated with
smaller and smaller intervals until the system under test is no
longer capable of handling this extreme interrupt load.

Figure 5: Maximum “sustained Interrupt frequency”

comparison

Figure 5 shows that Linux 2.6.33 can handle all the 1000
generated interrupts without missing any one only if the duration
between the generated interrupts is 36.8 μs which is 25 μs for
Linux 3.6.6. Below these values, both Linux versions start to
miss some interrupts.

Further on, the systems were tested by generating bursts of higher
number of interrupts (1 million and 1 billion interrupts), which on
the long run shows that the guaranteed interrupt duration for
Linux 2.6.33 is 47.4 μs (1 billion interrupts scenario) while it is
36 μs for Linux 3.6.6 . This shows that Linux 3.6.6 fares better in
handling the interrupts.

4.2.6 Semaphore Acquire-Release Timings in the
Contention Case

This test checks the time needed to acquire and release a
semaphore, depending on the number of threads pending on the
semaphore. In other words, it measures the time in the contention
case when the acquisition and release system call causes a
rescheduling to occur.
The purpose of this test is to see if the number of pending threads
has an impact on the durations needed to acquire and release a
semaphore. It attempts to answer the question: “How much time
does the OS needs to find out which thread should be scheduled
first and is this a constant time?”
In this test, as each thread has a different priority, the question is
how the OS handles these pending thread priorities on a
semaphore.

Here is the test scenario: 128 threads with different priorities are
created (only 90 in Linux OS as it does not support 128 different
real-time priorities). The creating thread has a lower priority than
the created threads. When the created thread starts execution, it
tries to acquire the semaphore; but as this semaphore is taken by
the creating thread, the created thread blocks, and the kernel
switches back to the creating thread. The time from the
acquisition attempt (which fails) to the moment the creating
thread is activated again is called here the “acquisition time”. This
time includes the thread switch time.

After the last thread is created and pending on the semaphore, the
creating thread starts to release the semaphore repeating this
action the same number of times as the number of pending threads
on the semaphore. The moment the semaphore is released, the
“release duration” time is started. The highest priority thread that
was pending on the semaphore will become active and it will stop
the “release duration” time for the current pending thread. The
“release duration” also includes the thread switch duration.

The testing results show that the number of threads pending on a
semaphore has NO impact on the release time periods, which is a
good result for both Linux versions as this means that they behave
independently from the number of queued threads and as such
keep a predictable response.

Figures 6a and 6b show a comparison between the average and
maximum acquisition and release durations for both Linux
versions.

Figure 6a: Semaphore average “acquisition and release

durations” comparison

Figure 6a shows that the average acquisition and release durations
of Linux 3.6.6 are higher than the ones of Linux 2.6.33. This is
because the acquiring and releasing durations include the “thread
switch duration” in their measurements, which confirms the other
results that indicate an increase in thread switch latency in the
newer kernel.

Figure 6b: Semaphore maximum “Semaphore acquisition and

release durations” comparison
We noticed in Linux version 2.6.33 that for some reason, worst
case behaviour was very bad in this test (219 μs). As we do black
box testing, the reason for this behaviour was unclear. It was not
related to the number of threads pending on a semaphore.

4.2.7 Mutex Locking Behaviour
This test checks the behaviour of the mutex locking primitive

using the pthread_mutex_lock and related POSIX calls. This
test creates three threads. The low priority thread starts first. It
creates a semaphore with count zero and starts the medium
priority thread which activates immediately. The medium priority
thread tries to acquire the semaphore, but as the semaphore count
is zero, it blocks on the semaphore. The low priority thread
continues execution; it creates a mutex for which it takes
ownership and starts now a high priority thread which activates
immediately. The high priority thread tries to acquire the mutex
owned by the low priority thread and blocks also. The low priority
thread resumes operation. Now the low priority thread releases
first the semaphore and then the mutex. Remark that all threads of
the described test are locked to the same processor avoiding
parallel execution on a multi-processor system.

In case the mutex supports priority inheritance, whenever the high
priority thread requests the mutex, the low priority thread that has
the ownership of the mutex will inherit the priority of the high
priority thread that requested for the mutex ownership, and will
do its job at this high priority. As a result, the low priority thread
will first release the semaphore which will not wake-up the
medium priority thread because the low priority thread is still
running at high priority level and the low priority thread will
continue its execution until it releases the mutex that was
requested by the high priority thread. After releasing the mutex,
the high priority thread will unblock and the low priority thread
goes back to its normal priority level execution state (low priority
level). Now, the high priority thread becomes active, preempts the
low priority thread and executes until it finishes its job. In the
non-priority inheritance case, the medium priority thread will start
upon the semaphore release and actually block the high priority
thread for a long time, which results in priority inversion.

We do not deal with the priority ceiling mechanism in this paper
because Linux limit its support to the priority inheritance
mechanism.

Priority inversion avoidance mechanism was one of the first
PREEMPT-RT achievements that were done in the mainstream
kernel, so we did not expect any problems. Priority inversion
behaves as expected. This also proves that the uClibc NPTL
implementation provided kernel priority inheritance. uClibc
versions before version 0.9.32 did not had this support.

4.2.8 Mutex Acquire-Release Timings in the
Contention Case

This test is comparable to the previous test metric 7, but
performed in a loop. Here we measure the time needed to acquire
and release the mutex in the priority inversion case. This test is
designed in order to enforce a thread switch during the
acquisition:

 The acquiring thread is blocked

 The thread with the lock is released.

The acquisition time starts from the moment a mutex acquisition
is requested by a thread until the activation moment of the lower
priority thread with the lock.

Note that before the release, an intermediate priority level thread
is activated (between the low priority one owning the lock and the
high priority one asking the locked resource). Due to the priority
inheritance, this thread does not start running (the low priority
thread owning the lock, inherited the high priority of the thread
requesting the locked resource).

The release time is measured from the moment of the release call
until the moment the thread requesting the mutex is activated.
This measurement also includes a thread switch.

Figure 7a: Average “Mutex acquisition and release durations”

comparison

Figure 7b: Maximum “Mutex acquisition and release

durations” comparison

Both Linux versions behave strangely here in a way that a mutex
release seems to cause a double thread switch (time take even
more than double as long). As the required time for a thread
switch latency has increased in Linux 3.6.6, it is normal that the
average durations (Figure 7a) are increased. The maximum results
(Figure 7b) are of more importance than the average results. We

see that Linux 3.6.6 acquisition and release durations are better
than the ones of Linux 2.6.33.

5. CONCLUSION
This paper showed a comparison between the average values

and the maximum ones between two Linux versions (Y-Axis
values are in μs). As the aim of this paper is testing the real time
behaviour and performance, the maximum values are our concern.
Here is a comparison summary of all the performed tests together
with their measured worst-case maximum values.

Figure 7: Comparison of all the performed tests together with

their measured worst-case values.

This figure clearly shows that Linux 3.6.6 has improved in
reference to Linux 2.6.3. Calculating the average percentage of all
these improvements showed that Linux 3.6.6 real time
performance and behaviour has improved by 35 %, which is a
good step forward for better real-time Linux.

Although the average thread switch latency and the double thread
context switch during the priority inversion case still need to be
worked on, the version 3.6.6 is now a candidate to be considered
in a new RT design.

6. REFERENCES
[1] K. Song and L. Yan, "Improvement of Real-Time

Performance of Linux 2.6 Kernel for Embedded
Application," in International Forum on Computer Science-
Technology and Applications, Chongqing, 2009.

[2] J. Stankovic and K. Ramamritham, "What is predictability
for real-time systems?," Real-Time Systems, vol. 2, no. 4, pp.
247-254, 1990.

[3] P. Regnier, G. Lima and L. Barreto, "Evaluation of Interrupt
Handling Timeliness in Real-Time Linux Operating Systems,"
ACM SIGOPS Operating Systems Review, vol. 42, no. 6, pp.
52-63, 2008.

[4] C. Zujue, L. Xing and Z. Zhixiong, "Research Reform on
Embedded Linux's Hard Real-Time Capability in
Application," International Conference on Embedded
Software and Systems Symposia, pp. 146-151, 29 July 2008.

[5] FSMLabs, "High Performance and Deterministic System
Software-FSM Labs," [Online]. Available:
http://www.fsmlabs.com/.

[6] P. d. M. -. D. d. I. Aerospaziale, "RTAI-Official website," [Online].
Available: https://www.rtai.org/.

[7] Xenomai, "Xenomai: Real-Time Framework for Linux," [Online].
Available: http://www.xenomai.org/.

[8] M. Mossige, P. Sampath and R. Rao, "Evaluation of Linux rt-
preempt for embedded industrial devices for Automation and Power
Technologies," in Proceedings of the Ninth Real-Time Linux
Workshop, 2007.

[9] N. Litayem and S. Ben Souad, "Impact of the Linux Real-time
Enhancements on the System Performances for Multi-core Intel
Architectures," International Journal of Computer Applications,
vol. 17, no. 3, 2011.

[10] WindRiver, "The First with the Latest: Wind River Linux 4,"
[Online]. Available: http://www.windriver.com/announces/linux4/.

[11] P. McKenney, "A realtime preemption overview," [Online].
Available: http://lwn.net/Articles/146861/.

[12] S. Rostedt and D. V.Hart, "Internals of the RT Patch," in
Proceedings of the Linux Symposium, 2007.

[13] K. Dongwook, L. Woojoong and P. Chanik, "Kernel Thread
Scheduling in Real-Time Linux for Wearable Computers," ETRI
Journal, vol. 29, no. 3, pp. 270-280, 2007.

[14] S. Arthur, C. Emde and N. McGuire, "Assessment of the Realtime
Preemption Patches (RT-Preempt) and their impact on the general
purpose performance of the system," in Real-Time Linux Workshop,
Linz-Austria, 2007.

[15] RTwiki, "CONFIG PREEMPT RT Patch," [Online]. Available:
https://rt.wiki.kernel.org/index.php/CONFIG_PREEMPT_RT_Patc
h

[16] eLinux.org, "High Resolution Timers," [Online]. Available:
http://elinux.org/High_Resolution_Timers.

