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ABSTRACT
Linux was originally designed as a general purpose operating 
system without consideration for real-time applications. Recently, 
it became a more reliable candidate in the real-time field due to its
daily improvements, both for general purpose and real-time 
usages. In this research, we test two Linux PREEMPT-RT 
versions (v3.6.6 and v2.6.33.7) in the aim of benchmarking its
performance and behaviour to give an insight whether the 
enhancements in its kernel are improving the determinism of the 
operating system. Our benchmark will be based on the following 
experimental measurements’ metrics: thread switch latency, 
interrupt latency, sustained interrupt frequency, mutex and 
semaphore acquisition and release durations, and finally the 
locking behaviour of mutex. These measurements are executed for 
each Linux version, on the same x86 platform (ATOM processor) 
using the same test framework and measurement equipment. 
Comparing the results show that Linux v3.6.6 has significantly 
better worst case results which makes the actual Linux 
PREEMPT-RT version a better candidate for RT-applications. 
Suggestions are made for further improvements. 
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1. INTRODUCTION
Because of its free open source advantage, stability and

supporting multi-processor architecture, Linux operating system 
(OS) stands high in many (embedded) commercial product 
developers’ favour and becomes one of the fastest-growing 
(embedded) operation systems [1].  Also, with the development of 
open-source projects, embedded Linux provides many 
opportunities for developing customized operation system. 
Moreover, its reliability and robustness made it widely used even 
in safety and mission critical systems. 
In these contexts, time is extremely important; the system in 
which its correctness depends not only on the logical results of 
computations, but also on the time at which the results are 
produced is called real-time system [2].  

Although Linux is a popular and widely used OS, the standard 
Linux kernel fails to provide the timing guarantees required by 
critical real-time systems [3]. To circumvent this problem, 
academic research and industrial efforts have created several real-
time Linux implementations [4]. The most adopted solutions are 
RTLinux/RTCore [5], RTAI [6], Xenomai [7] and the 
PREEMPT-RT [8] patch. Each one of these real-time enhanced 
kernels has its internal architecture, its strength and weaknesses 
[9]. All these approaches operate around the periphery of the 
kernel, except PREEMPT-RT patch which is mainlined in the 
current kernel and used by great actors such as WindRiver in their 
Linux4 [10] solution. 
In this research, we evaluate two different versions of Linux 
PREEMPT-RT, an old version (2.6.33.7) and a newer version 
(3.6.6). The reason for choosing these kernel versions is that since 
Linux version 2.6 it started to be possible to get soft real-time 
performance through a simple kernel configuration to make the 
kernel fully preemptable, while Linux 3.6 is chosen as it is the 
latest version at the time of doing the tests. The aim of this 
evaluation is to have benchmark information that can show 
whether Linux real-time enhancements and changes since version 
2.6 are making it a more reliable real-time operating system or 
not. For this evaluation, a testing suite of five performance tests 
and one behaviour test are used. The performance tests are: thread 
switch latency, interrupt latency, sustained interrupt frequency, 
and semaphore and mutex acquire-release timing in contention 
case, while the behaviour test checks the mutex locking 
behaviour.

2. LINUX PREEMPT-RT
Linux PREEMPT-RT (LinuxPrt) [11, 12] is a Linux real-

time patch maintained by Ingo Molnar and Thomas Gleixner [15].
This patch is the most successful Linux modification that 
transforms the Linux into a fully preemptible kernel without the 
help of microkernel (the architecture implemented in RTAI or 
RTLinux) [13]. It allows almost the whole kernel to be 
preempted, except for a few very small regions of code 
(“raw_spinlock critical regions”). This is done by replacing most 
kernel spinlocks with mutexes that support priority inheritance 
and are preemptive, as well as moving all interrupts to kernel 
threads [9, 14].  

Also, this patch presents new operating system enrichments to 
reduce both maximum and average response time of the Linux 
kernel [9]. These enhancements were progressively added to the 
Linux kernel to offer real-time capabilities. The most important 
enhancements are: High resolution timers ( a patch set, which is 
independently maintained by Thomas Gliexner [15], which allows 
precise timed scheduling and removes the dependency of timers 
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on the periodic scheduler tick [16]), complete kernel preemption, 
interrupts management as threads, hard and soft IRQ as threads, 
and priority inheritance mechanism. Some of these new features 
like threaded IRQ are currently pushed to the mainline kernel by 
the patch maintainers [9] showing that RT-enhancements also 
benefit non-RT applications. 

3. EXPERIMENTAL SETUP 
In order to have maximum control on the Linux behaviour, 

we decided to build the kernels ourselves using the buildroot 
tool. For Linux 2.6.33.7, we use the real-time patch version 30, 
while the real-time patch version 17 for the Linux 3.6.6 version is 
used being the latest available version at the moment of our 
evaluation tests. Building such Linux kernels where real-time is 
the main goal requires some precautions. Here is a highlight on 
some of the configuration options that need particular attention 
when building the RT kernels to make them more predictable. 
Those configuration options are the following: 

 
 Enable the “Optimize for size” option which can 

increase cache hits and thus performance as well. This 
option is typically used in embedded systems. 

 Disable the “Tickless system” option which generates an 
operating system clock tick only when a thread wants to 
be waken-up instead of a periodic one. This improves 
power consumption and CPU usage. However, the clock 
tick becomes more complex with this option, and this 
option does not avoid clock ticks. In the end, one has 
less but longer ticks which is not good for real-time 
performance.  

 Disable the “power management” option which puts the 
CPU in a lower power state which in turn can take some 
time to throttle back towards full CPU speed. Again this 
can impact latency on critical moments and is thus bad 
for real-time purposes. 

 Compiling just the minimal modules because the less 
code included in the kernel, the less that can jeopardize 
the real-time behaviour.   

 Disable “memory swapping” because when memory is 
swapped away onto some storage medium, the time to 
retrieve it when needed is a huge, unpredictable and a 
serious factor slower than when loaded from RAM.  

Evaluating these kernel versions is performed using several 
performance and behaviour tests. The library used between the 
testing applications and the kernel is the μClibc version 0.9.33. 
Another solution could be glibc. However, in smaller embedded 
systems, μClibc can be a better option due to its lower footprint. 
As μClibc only recently introduced NPTL support (from 0.9.32), 
we decided to use it in our evaluation tests to check its behaviour 
as well. Before version 0.9.32, μClibc could not be used for 
time-critical systems due to the lack of priority inheritance locking 
support. This interfacing library is important because user 
applications (when using POSIX calls) can access the real-time 
features of the kernel only if the interfacing C library supports 
them; Otherwise, direct system calls in kernel space are needed, 
making the application code  not portable.  
The test application uses mlockall() to assure that all test 
programs are locked into memory. Further, the application is 
statically linked and started from a RAM disk (tmpfs) to avoid 
swapping out read-only code pages. Finally the real-time run 
away protection is disabled by setting the kernel configuration 

parameter (/proc/sys/kernel/sched_rt_runtime_us) to 
(-1). All these precautions improve the determinism of the real-
time application and operating system. 
We conducted our tests on an ATOM-based platform (Advantech 
SOM-6760) with the following characteristics:  

 CPU: Intel Atom Z530 running at 1.6 GHz 
 32 Kbytes L1 instruction cache 
 24 Kbytes L1 write back data cache 
 512 Kbytes 8-way L2 cache 
 1 core with disabled hyper-threading support 
 512 MB DDR2 RAM 
 VMETRO P-Drive PCI exerciser (PCI interrupt D, local 

bus interrupt level 10) 
 VMETRO PBT-315 PCI analyser  

 

4. TESTING PROCEDUERS AND 
RESULTS 

4.1 Measuring Process 
A PCI device-simulator (VMETRO P-Drive) is inserted as a 

peer for the OS and as such, generating measurement samples by 
device access. It also generates interrupts while doing the 
interrupts tests, in an independent non-synchronized way with the 
Platform Under Test (PUT). The test software generates start and 
stop events by writing a 32-bit word on the PCI bus towards the 
P-Drive. The traffic on the PCI bus is then captured using PCI-
Analyzer (VMETRO PBT-315) which in turn gives us the timing 
information on the event durations in the system. The major 
advantage of this system is that the interrupt latency (from 
hardware interrupt line being toggled to the interrupt handler) can 
easily be measured and taken into account. 
Note that in the tests’ comparison figures below, the lower values 
mean better quality, and all the values in the figures are in μs. As 
we are interested in real-time behaviour, our focus is mainly on 
the worst case latency results. 

4.2 Performance Metrics 
A quick online survey of RTOS metrics maintained by third 

party consultants, students, researchers, and official records (of 
distributor companies) reveals that the following three 
characteristics are used to evaluate a RTOS solution [12]:  

 Memory footprint  
 Latency  
 Services performance  

Among these measurements, footprint provides an estimated 
usage of memory by a RTOS on an embedded platform. The other 
two characteristics measure various types of RTOS overhead or 
runtime performance. Latency is reported in two different ways: 
interrupt and scheduling, and services performance is the 
minimum time taken by the RTOS interface to complete a system 
call [12].  
In this paper, we test latency and services’ performance metrics. 
Before presenting the evaluation tests and the obtained results, we 
always perform two preliminary tests (the first 2 tests below) to 
assure the accuracy and precision of the tests. 

4.2.1 Tracing Overhead 
This test calibrates the tracing system overhead which is 

fundamentally hardware related. The results presented in this 
paper are corrected from this constant bias.  



Tracing accuracy depends on the PCI clock (33MHz), as this is 
the minimum time frame that can be detected. As a consequence, 
the results in this paper are correct to +/- 0.2 μseconds and are 
therefore rounded to 0.1 μseconds. The Y-Axis’s in the charts are 
all in μseconds. 

4.2.2 Clock Tick Processing Duration 
This test examines the clock tick processing duration in the 

kernel. The results of this test are extremely important as the clock 
interrupt might disturb all other performed measurements just like 
it will disturb latencies in real-time applications as well if one 
uses the same type of hardware platform. This is due to the fact 
that on the PUT, being a commercial PC motherboard, the tick 
timer has the highest priority. Using a tickless kernel will not even 
prevent this from happening (it will only lower the number of 
occurrences). The tested OS kernels were not using the tickless 
timer option. 

Figure 1 shows a comparison of the average and maximum clock 
processing durations of each Linux version: 

 
Figure 1: Average and maximum clock tick durations’ 

comparison 

As we are focusing the testing on the real-time behaviour and 
performance of these two Linux versions, the maximum values 
out of the samples are our concern rather than the average ones. 
However, for the sake of completeness and comparison, we also 
publish the average values. Figure 1 shows that Linux 3.6.6 
values are better than version 2.6.33. 

Before going into the results’ details, we give a brief explanation 
on how the tests are done and the raw measurements are 
corrected. Figure 2 is an example showing the results over time of 
the “switch latency between two threads” test performed on Linux 
3.6.6. The X-Axis indicates the time when a measurement is 
performed with reference to the start of the test. The Y-Axis 
indicates the duration of the measured event. 

 
Figure 2: Thread switch latency between 2 threads, on Linux 

3.6.6 
Figure 2 shows that the average latency is 1.3 μs while the 
maximum latency is 21.8 μs, which is in this case at the beginning 
of the test. These values are actually the ones that are used in the 

comparison figures. The latencies introduced by the operating 
system clock tick processing can clearly be identified. 

4.2.3 Thread Switch Latency between Threads of 
Same Priority 

This test measures the time needed to switch between threads 
having the same priority. For this test, threads must voluntarily 
yield the processor for other threads, so SCHED_FIFO scheduling 
policy is used. If we wouldn’t use the FIFO policy, a round-robin 
clock event could occur between the yield and the trace and then 
the thread activation is not seen in the test trace. The test looks for 
worst-case behaviour and therefore it is done with an increasing 
number of threads, starting with 2 and going up to 1000. As we 
increase the number of active threads, the caching effect becomes 
visible (the 1000 threads scenario in figure 3a) as the thread 
context will no longer be able to reside in the cache with higher 
number of threads used (on this platform the L1 caches are 32KB 
and 24 KB, both for the instruction and the data caches 
respectively).Further, one will clearly see the influence of clock 
interrupts (Figure 3b).  
 

 
Figure 3a: Average “thread switch latency” tests with 

different scenarios 

 
Figure 3b: Maximum “thread switch latency” tests with 

different scenarios 
Analysing the above figures show that the average switch latency 
(figure 3a) for Linux 3.6.6 is larger than the ones of 2.6.33, while 
the maximum values (figure 3b) are better than the ones of 2.6.33. 
This is because the maximum thread latency depends also, in our 
configuration, on the clock tick interrupts which adds up to the 
bare maximum latency. A good RT hardware design should put 
the clock ticker on a minimum interrupt level to enhance these 
values. 

4.2.4 Interrupt Latency 
This test measures the time required to switch from a running 

thread to an interrupt handler. It measures the time from the PCI 
interrupt line going logical high up to the beginning of the 
interrupt handler which clears the interrupt condition by accessing 
the PCI device. Figure 4 shows a comparison between the average 



and maximum interrupt latencies for the Linux versions under 
test. 

 
Figure 4: Average and maximum interrupt latencies 

comparison 

For real-time systems, the maximum interrupt latency (worst case 
duration) needs to be considered. Although one is never sure of 
obtaining the worst case duration via measurements, dramatically 
increasing the number of samples may help to get closer to the 
real worst case value. That’s the reason why the long duration 
interrupt test (test metric 5) is catching a billion of interrupts. The 
following test is therefore considered of great importance and 
provides a simple RT-metric for comparison. 

4.2.5 Maximum Sustained Interrupt Frequency 
This test detects when an interrupt cannot be handled anymore 

due to the interrupt overload. In other words, it shows a system 
limit depending on, for example, how long interrupts are masked, 
how long higher priority interrupts (the clock tick or other) take, 
and how well the interrupt handling is designed. 
This test gives a very optimistic worst case value due to the fact 
that because of the high rate of interrupts, the amount of spare 
CPU cycles between the interrupts is limited or nil. Also, 
depending on the length of the interrupt handler, it might mostly 
be present in the caches. In a real world environment, the worst 
case will be greater.  
Unless the above considerations, this is a very popular test to 
compare RTOSs and see where the interrupt handling limit of this 
RTOSs is. 
In this test, 1 billion interrupts are generated at specific interval 
rates. Our test suite measures whether the system under test 
misses any of the generated interrupts. The test is repeated with 
smaller and smaller intervals until the system under test is no 
longer capable of handling this extreme interrupt load. 

 
Figure 5: Maximum “sustained Interrupt frequency” 

comparison 

Figure 5 shows that Linux 2.6.33 can handle all the 1000 
generated interrupts without missing any one only if the duration 
between the generated interrupts is 36.8 μs which is 25 μs for 
Linux 3.6.6.  Below these values, both Linux versions start to 
miss some interrupts. 

Further on, the systems were tested by generating bursts of higher 
number of interrupts (1 million and 1 billion interrupts), which on 
the long run shows that the guaranteed interrupt duration for 
Linux 2.6.33 is 47.4 μs (1 billion interrupts scenario) while it is 
36 μs for Linux 3.6.6 . This shows that Linux 3.6.6 fares better in 
handling the interrupts. 

4.2.6 Semaphore Acquire-Release Timings in the 
Contention Case 

This test checks the time needed to acquire and release a 
semaphore, depending on the number of threads pending on the 
semaphore. In other words, it measures the time in the contention 
case when the acquisition and release system call causes a 
rescheduling to occur. 
The purpose of this test is to see if the number of pending threads 
has an impact on the durations needed to acquire and release a 
semaphore. It attempts to answer the question: “How much time 
does the OS needs to find out which thread should be scheduled 
first and is this a constant time?”  
In this test, as each thread has a different priority, the question is 
how the OS handles these pending thread priorities on a 
semaphore.  

Here is the test scenario: 128 threads with different priorities are 
created (only 90 in Linux OS as it does not support 128 different 
real-time priorities). The creating thread has a lower priority than 
the created threads. When the created thread starts execution, it 
tries to acquire the semaphore; but as this semaphore is taken by 
the creating thread, the created thread blocks, and the kernel 
switches back to the creating thread. The time from the 
acquisition attempt (which fails) to the moment the creating 
thread is activated again is called here the “acquisition time”. This 
time includes the thread switch time.  

After the last thread is created and pending on the semaphore, the 
creating thread starts to release the semaphore repeating this 
action the same number of times as the number of pending threads 
on the semaphore. The moment the semaphore is released, the 
“release duration” time is started. The highest priority thread that 
was pending on the semaphore will become active and it will stop 
the “release duration” time for the current pending thread. The 
“release duration” also includes the thread switch duration. 

The testing results show that the number of threads pending on a 
semaphore has NO impact on the release time periods, which is a 
good result for both Linux versions as this means that they behave 
independently from the number of queued threads and as such 
keep a predictable response. 

Figures 6a and 6b show a comparison between the average and 
maximum acquisition and release durations for both Linux 
versions. 

 
Figure 6a: Semaphore average “acquisition and release 

durations” comparison 



Figure 6a shows that the average acquisition and release durations 
of Linux 3.6.6 are higher than the ones of Linux 2.6.33. This is 
because the acquiring and releasing durations include the “thread 
switch duration” in their measurements, which confirms the other 
results that indicate an increase in thread switch latency in the 
newer kernel. 

 
Figure 6b: Semaphore maximum “Semaphore acquisition and 

release durations” comparison 
We noticed in Linux version 2.6.33 that for some reason, worst 
case behaviour was very bad in this test (219 μs). As we do black 
box testing, the reason for this behaviour was unclear. It was not 
related to the number of threads pending on a semaphore. 

4.2.7 Mutex Locking Behaviour 
This test checks the behaviour of the mutex locking primitive 

using the pthread_mutex_lock and related POSIX calls. This 
test creates three threads. The low priority thread starts first. It 
creates a semaphore with count zero and starts the medium 
priority thread which activates immediately. The medium priority 
thread tries to acquire the semaphore, but as the semaphore count 
is zero, it blocks on the semaphore. The low priority thread 
continues execution; it creates a mutex for which it takes 
ownership and starts now a high priority thread which activates 
immediately. The high priority thread tries to acquire the mutex 
owned by the low priority thread and blocks also. The low priority 
thread resumes operation. Now the low priority thread releases 
first the semaphore and then the mutex. Remark that all threads of 
the described test are locked to the same processor avoiding 
parallel execution on a multi-processor system. 

In case the mutex supports priority inheritance, whenever the high 
priority thread requests the mutex, the low priority thread that has 
the ownership of the mutex will inherit the priority of the high 
priority thread that requested for the mutex ownership, and will 
do its job at this high priority. As a result, the low priority thread 
will first release the semaphore which will not wake-up the 
medium priority thread because the low priority thread is still 
running at high priority level and the low priority thread will 
continue its execution until it releases the mutex that was 
requested by the high priority thread. After releasing the mutex, 
the high priority thread will unblock and the low priority thread 
goes back to its normal priority level execution state (low priority 
level). Now, the high priority thread becomes active, preempts the 
low priority thread and executes until it finishes its job. In the 
non-priority inheritance case, the medium priority thread will start 
upon the semaphore release and actually block the high priority 
thread for a long time, which results in priority inversion. 

We do not deal with the priority ceiling mechanism in this paper 
because Linux limit its support to the priority inheritance 
mechanism. 

Priority inversion avoidance mechanism was one of the first 
PREEMPT-RT achievements that were done in the mainstream 
kernel, so we did not expect any problems. Priority inversion 
behaves as expected. This also proves that the uClibc NPTL 
implementation provided kernel priority inheritance. uClibc 
versions before version 0.9.32 did not had this support. 

4.2.8 Mutex Acquire-Release Timings in the 
Contention Case 

This test is comparable to the previous test metric 7, but 
performed in a loop. Here we measure the time needed to acquire 
and release the mutex in the priority inversion case. This test is 
designed in order to enforce a thread switch during the 
acquisition: 

 The acquiring thread is blocked  

 The thread with the lock is released.  

The acquisition time starts from the moment a mutex acquisition 
is requested by a thread until the activation moment of the lower 
priority thread with the lock. 

Note that before the release, an intermediate priority level thread 
is activated (between the low priority one owning the lock and the 
high priority one asking the locked resource). Due to the priority 
inheritance, this thread does not start running (the low priority 
thread owning the lock, inherited the high priority of the thread 
requesting the locked resource). 

The release time is measured from the moment of the release call 
until the moment the thread requesting the mutex is activated. 
This measurement also includes a thread switch. 

 
Figure 7a: Average “Mutex acquisition and release durations” 

comparison 

 
Figure 7b: Maximum “Mutex acquisition and release 

durations” comparison 

Both Linux versions behave strangely here in a way that a mutex 
release seems to cause a double thread switch (time take even 
more than double as long). As the required time for a thread 
switch latency has increased in Linux 3.6.6, it is normal that the 
average durations (Figure 7a) are increased. The maximum results  
(Figure 7b) are of more importance than the average results. We 



see that Linux 3.6.6 acquisition and release durations are better 
than the ones of Linux 2.6.33. 

5. CONCLUSION 
This paper showed a comparison between the average values 

and the maximum ones between two Linux versions (Y-Axis 
values are in μs). As the aim of this paper is testing the real time 
behaviour and performance, the maximum values are our concern. 
Here is a comparison summary of all the performed tests together 
with their measured worst-case maximum values. 

 
Figure 7: Comparison of all the performed tests together with 

their measured worst-case values. 

This figure clearly shows that Linux 3.6.6 has improved in 
reference to Linux 2.6.3. Calculating the average percentage of all 
these improvements showed that Linux 3.6.6 real time 
performance and behaviour has improved by 35 %, which is a 
good step forward for better real-time Linux. 

Although the average thread switch latency and the double thread 
context switch during the priority inversion case still need to be 
worked on, the version 3.6.6 is now a candidate to be considered 
in a new RT design. 
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