
Low-Power Scheduling with DVFS for common RTOS on
Multicore Platforms

Shuai Li

THALES Communications & Security
4 Avenue des Louvresses

92622 Gennevilliers, France
shuai.li@fr.thalesgroup.com

Florian Broekaert

THALES Communications & Security
4 Avenue des Louvresses

92622 Gennevilliers, France
florian.broekaert@thalesgroup.com

ABSTRACT
This paper is on a low-power real-time scheduler integrated
into a common Linux operating system. The low-power
scheduler aims at reducing energy consumption in a system
and uses Dynamic Voltage and Frequency Scaling (DVFS)
to achieve its goal. The developed solution was implemented
as a layer above the Linux OS scheduler. A framework was
also developed to integrate the scheduler above Linux with-
out modifying the kernel. We investigate the advantages,
challenges, and viability of such a solution in the real-time
embedded systems domain.

Categories and Subject Descriptors
D.4.1 [OPERATING SYSTEMS]: Process Management—
Scheduling

General Terms
Concurrency, Multitasking, Threads

Keywords
Real-Time Embedded System, Real-Time Scheduling, Dy-
namic Voltage and Frequency Scaling, Linux, POSIX

1. INTRODUCTION
An embedded system is a computing component part of

a larger system. An embedded system is autonomous and
runs on a limited energy source so it thus has energy con-
straints. A real-time system is one with time constraints. To
guarantee time constraints, one common solution applied by
system integrators is to take margin by setting the system’s
processor at its maximum speed (i.e. maintaining the sys-
tem at its maximum computing capacity at all time). This
has a major drawback as it costs more energy which goes
against the limited energy philosophy of embedded systems.
One possible solution to solve this conflict in Real-Time Em-
bedded Systems (RTES) design is to decrease the system’s
processor speed when maximum computing capacity is not
needed.
Dynamic Voltage and Frequency Scaling (DVFS) is one

possible technique to scale the system’s processor speed.
DVFS consists in changing a processor’s speed through in-
creasing/decreasing the processor’s (voltage, frequency) cou-

EWiLi’13, August 26–27, 2013, Toulouse, FRANCE
Copyright retained by the authors.

ple. Decreasing the (voltage, frequency) means an increase
in computing time but leads to a decrease in energy con-
sumption. In today’s processors using CMOS circuitry, the
energy dissipated per cycle (i.e. power) scales quadratically
to the supply voltage (E ∝ V 2) [2]. We see that one of
the main advantages of using DVFS is that it can provide
potentially large energy savings.

When using DVFS with RTES, it must be assured that the
time constraints are still met. Traditional non-real-time OS
power managers do not consider parameters part of real-time
scheduling [7], e.g. Worst Case Response Time (WCRT),
task deadline. For example in the Linux power manager,
the implemented heuristics rely on past activities to take
decisions. The consequence of this a-posteriori scheme is
that future time constraints may be violated if the perfor-
mance level was lowered too much. In the case of RTES, it is
thus important that power managing strategies are coupled
with real-time scheduling policies. This results in what is
called low-power scheduling.

Unfortunately power management solutions in Real-Time
Operating Systems (RTOS) are not commonly available and,
as we saw, traditional techniques are not suited for RTES.
This is why we investigate in this paper the challenges and
viability of implementing a low-power scheduler in a com-
mon Linux OS.

The rest of the paper is organized as follows. Section 2 is
on works related to our research on low-power scheduling.
Section 3 exposes the system model and the notations used
in this paper. Section 4 explains the algorithms inside the
low-power scheduler we have established. Section 5 shows
how it was implemented above the Linux scheduler. Section
6 exposes experimental results on the implementation, in
terms of performance and architecture choice. We conclude
in section 7 by listing our future works.

2. RELATED WORKS
Low-power scheduling policies using DVFS for real-time

systems have been studied in the past. The solutions in the
literature can be grouped into three categories: inter-task,
intra-task, and statistical.

In the inter-task approach, the task is the atomic entity
on which DVFS decisions are taken. This means there is no
knowledge of what happens inside a task. In [10], the au-
thors compute an offline energy-optimal schedule that the
online scheduler tries to follow. In [6] the author estab-
lishes online DVFS algorithms that reclaim slack time (un-
used computing time).



The intra-task approach is intrusive and needs code in-
strumentation. Frequency is scaled according to what hap-
pens during a task’s execution. In [8], the authors suggest a
method that uses a task’s control-flow composed of nodes.
According to the node being executed, the frequency for
the next node is chosen. In [1] the authors suggest to add
offline-determined voltage-scaling checkpoints in the code.
In the statistical approach, no information on tasks are

available. The system monitors events happening during ex-
ecution and scales the frequency according to these events.
In [9] cache hit/miss ratio and memory access counts are
used to determine the frequency. In [3] the rate of instruc-
tions being executed is used to choose the frequency.
This paper’s contribution is based on an intra-task ap-

proach similar to the one presented in [8]. Our contribution
relies in our low-power scheduler that takes into account ap-
plication modes (e.g. quality of service) and multitasking on
multicore platforms with specific configurations (e.g. Sym-
metric Multiprocessing [4]). We also developed a framework
to integrate such kind of DVFS algorithms in a common
Operating System (OS), i.e. Linux.

3. SYSTEM MODEL AND NOTATIONS
The low-power scheduler uses a new task model to ensure

its functionality. It also runs on a platform (RTOS and
hardware) with specific characteristics. In this section we
specify the platform on which the tasks are run, and we
define the new task model.

3.1 Platform Model
In order to use the low-power scheduler, it has to be run

on a platform with the following hardware entities:

• Core (COREm): A processing unit that executes atomic
instructions.

• Processor (CPUp): A group of cores (one or more)
that also structures their interaction.

Each core has a table of voltage/frequency pair defined as
the following:

Definition 1 (Voltage/Frequency Pair). A core
COREm’s voltage/frequency pair (V, F )um (called ”pair” from
now on) is a u identified tuple where V is the core’s input
voltage and F the core’s frequency. V and F of (V, F )um
are designated as Vum and Fum.

The voltage is not necessarily static, i.e. for a same fre-
quency F , V is defined within an interval and several V may
exist for the same F . For the rest of the paper, the voltage
is assumed to be static, i.e. there is only one V for each F
since they are linked. So saying ”a frequency has changed”
is equivalent to saying the (V, F ) pair has changed.
In our work, we consider processors in Symmetric Multi-

processing (SMP) mode, with and without frequencies linked.
When frequencies are linked, cores have the same frequency
at all time, i.e. changing a core’s frequency also changes the
frequency of all other cores on the same processor.

3.2 Task Model
A task is a entity executing sequential instructions. For

real-time scheduling, one of the first task model was pre-
sented in [5]. In the classic task model, a task has a period,

priority, deadline and execution time. Classic scheduling
analysis techniques use the unitary Worst-Case Execution
Time (WCET ) for the task’s execution time. Tasks do not
always execute in their WCET so in this case we say that
the task has run in its Actual Execution Time (AET ). The
difference between WCET and AET is called Slack Time
(ST ), i.e. ST = WCET −AET .

We emphasize, for our work, the importance to not to mis-
taken execution time with response time. All the execution
times in our work are measured/computed by only consider-
ing time during which the task is effectively executing (e.g.
no preemption time is taken into account).

The classic task model needs to be modified for the low-
power scheduler presented in this paper and we define a new
task called the ”low-power task”. In order to define the low-
power task, let us first define a segment:

Definition 2 (Segment). A segment Sj
i is a block of

sequential instructions of a task τi. Sj
i is identified with j.

Sj
i has the following properties:

• WCET j
i : Worst-Case Execution Time of the segment.

• AET j
i : Actual (unitary) Execution Time of the seg-

ment (observed during execution).

• ST j
i : Slack Time of the segment.

• MAET j
i : Maximum (unitary) Execution Time Allowed,

i.e. the measured AET j
i must not exceed this value 1.

We call (Xj
i � Fum), segment Sj

i ’s Xj
i property when Sj

i is
executed on COREm at frequency Fum.

The low-power task is then defined as:

Definition 3 (Low-Power Task). A low-power task
τi retains the period, priority and deadline properties of a
task. In addition it has a control flow graph where nodes are
segments Sj

i . When τi is run on COREm at pair (V, F )um,
the pair is be designated by (V, F )ium.

Figure 1 shows an example of a low-power task’s control
flow graph.

Through the control-flow model, it is possible to represent
several execution paths for a low-power task and thus several
execution times.

For the rest of the article, when a task is evoked, we talk
about a low-power task.

3.3 Configuration
The entities presented in the previous two sections are

regrouped into what are called software and platform con-
figurations.

Definition 4 (Software Configuration). A softw-
are configuration is a structure with the following properties:

• Application mode: The application mode determines
the timing information in the system.

1We do not define a deadline for a segment and a MAET
is not to be mistaken with a deadline. A segment’s mon-
itored AET only increases when the segment is executing,
not during preemption. The MAET is then this increasing
unitary execution time’s upper bound (not to be exceeded).



Segment

Condition

S1
i

S2
i

S3
i

S4
i S5

i

S6
i

S7
i

deadline
i

Figure 1: Low-Power Task τi’s Control Flow Graph

• Task sets: Sets of low-power tasks with their properties
as defined in section 3.2.

Several application modes may exist and for each mode
there is an associated group of task sets. Each task set have
timing information for a given frequency. A group of task
sets have specific timing information for a mode. For exam-
ple MAETs can be increased when the application mode is
a desired low Quality of Service (QoS).

Definition 5 (Platform Configuration). A platfo-
rm configuration is a structure with the following properties

• Processor and core set: A set of processors and cores
with their (V, F ) table.

• Task-processor affinity: Allocations of tasks on proces-
sors.

From a platform configuration’s task-processor affinity prop-
erty, we see that we exclude task migration between cores
on different processors.

4. LOW-POWER SCHEDULER
The low-power scheduler is a ”power-aware”real-time sche-

duler. In this sense, its goal is not only to respect timing
constraints in the system, but also limit power usage. The
low-power scheduler is compatible with fixed and dynamic
priority policies. It takes as input parameters a software and
platform configuration.
In the following sections we first present the concept be-

hind this scheduler, before showing its DVFS algorithm. Fi-
nally we will finish with an example.

4.1 Overview
Before the scheduler can be used, the task set at each

frequency Fum must be assured to be schedulable. This is
done by using scheduling analysis. Each task τi, composed
of segments Sj

i , is assigned a WCETi that is the sum of

all segment Sj
i ’s WCET j

i on the task’s worst case execution
path. If the task set is schedulable, it is possible to assign
each segment Sj

i ’s MAET j
i to its WCET j

i . If the task set
at Fum is not schedulable, then Fum is discarded. This is
done for each application mode.

The low-power scheduler relies on monitoring a task’s
AET . If a task’s AET is smaller than its WCET , slack
time is observed. As slack time is observed progressively,
the frequency is scaled so the task’s AET tends towards
its WCET (at maximum frequency) without exceeding its
MAET . This can be achieved thanks to a task’s division
into segments. Each segment’s frequency is set according to
the last segment’s slack time. Said differently, the last seg-
ment’s slack time allows the current segment to have more
time to achieve its instructions before its MAET . The ex-
ample in Figure 2 illustrates the concept.

MAET
(WCET)

Freq.

Time
0

MAET
(WCET)

Freq.

Time
0

Slack Time

Figure 2: Frequency Scaling: In the graphs, y axis
is the frequency, x axis is the time. Top graph is a
task’s execution at fixed frequency. Bottom graph
is the execution of the same task, divided into three
segments, with frequency scaled at each segment.

DVFS decisions are also taken according to the current
application mode because it affects timing information (e.g.
MAET ). The mode can be changed ”on-the-fly”, which
will result in new timing information as input parameters
to the DVFS algorithm. The DVFS algorithm guarantees
task deadlines when the application mode stays the same.
When the application mode changes, a transient overload [7]
may happen. It is up to the scheduling policy to handle the
transient overload.

Decreasing the frequency cannot be done blindly without
considering software and platform configurations. Handling
these parameters is explained in the DVFS algorithm pre-
sented in the next section.

4.2 DVFS Algorithm
The low-power scheduler does DVFS at segment-level.

The DVFS decision is taken each time a different segment is
starting execution. This does not necessarily mean entering
a new segment (e.g. it can be returning from preemption).
There exist two kinds of decisions to take:

• Standard case: Entering a new segment that follows a
segment of the same task and task instance.

• Context switch case: The previous segment executing
on the same core belongs to a different task or task
instance.



4.2.1 Standard case
In the standard case, the decision is taken when entering

segment Sj
i of task τi running on COREm. Segment Sk

l is

the last segment running before Sj
i . The DVFS decision is

divided into the following steps:

1. Add previous segment Sk
l ’s slack time to current seg-

ment Sj
i ’s maximum allowed execution time. I.e.

MAET j
i = MAET j

i + ST k
l .

2. Depending on the platform’s processor mode:

• On a monocore, non-SMP, or frequencies non-
linked, multicore platform: choose COREm’s low-
est pair that won’t make Sj

i exceed its maximum
allowed execution time. I.e. choose (V, F )um so
that (WCET j

i � Fum) ≤ MAET j
i .

• On a SMP, with frequency linked, multicore plat-
form (cores have the same (V, F ) pair at all time):
choose COREm’s lowest pair that won’t make any
segment Sj′

i′ , running on any core COREm′, ex-
ceed its maximum allowed execution time. I.e.
choose (V, F )um so that (WCET j′

i′ � Fum) ≤
MAET j′

i′ for all segments.

3. Apply the new pair (V, F )um to COREm and store it
for task τi.

4.2.2 Context switch case
In the context-switch case, the decision is taken when seg-

ment Sj
i (of task τi running on COREm) starts executing.

Segment Sk
l is the last segment running before Sj

i and it
does not belong to the same task or the same task instance.
There are three cases for this situation:

• Return from preemption: Segment Sj
i belongs to task

τi, that was preempted by Sk
l of task τl. The core’s

pair is changed to what it was before preemption. I.e.
COREm’s (V, F )um is set to the (V, F )ium (stored for
τi).

• Queued task release: Task τi is released and it was
already queued (i.e. higher priority tasks were running
before). Segment Sj

i is then τi’s first segment. The
frequency is modified like in the standard case, i.e. as
if previous segment Sk

l belongs to the same task and
instance as Sj

i . This way Sk
l ’s slack time is exploited.

• Other task release: Task τi is released and it was not
queued. Segment Sj

i is still τi’s first segment. Apply
maximum pair (V, F )um to COREm and store it for
task τi. I.e. (V, F )ium = (V, F )um.

4.3 Example
Figure 3 is an example of a schedule produced by the low-

power scheduler.
In this example, tasks τ1, τ2, and τ3 run on a processor

with frequency modes 150, 200 and 300Mhz. Priorities are
ordered as: P1 > P2 > P3. Task τ2 has 2 segments S1

2

and S2
2 . Tasks τ1 and τ3 have one segment each, S1

1 and S1
3

respectively. The processor starts at 300Mhz. The frequency
changes, in chronological order, are the following:

0 6

0 6

0 6
E1 E3

E2

E4

S
1
1

S
1
2 S

2
2

S
1
3

1

2

3

Figure 3: DVFS Example: Vertical up filled arrows
are task releases. Vertical down dotted arrows are
segment absolute MAETs. Vertical down hollow ar-
rows are segment absolute AETs. When vertical
down arrows overlap, AET = MAET. Text below a
timeline represents a frequency change.

E1 200Mhz, canonical case: S1
2 finished at AET 1

2 = 1, i.e.
1 time unit earlier than its maximum allowed execution
timeMAET 1

2 = 2. The next segment S2
2 uses the slack

time ST 1
2 = 1. We then have MAET 2

2 = 3, i.e. it is
increased by 1/3. The processor can be set to 2/3
speed, i.e. 200Mhz.

E2 300Mhz, other task release: The processor is set to
maximum frequency 300Mhz because a non-queued
task (τ3) is released.

E3 200Mhz, return from preemption: The processor goes
back to stored frequency 200Mhz for τ2.

E4 100Mhz, queued task release: τ3 was queued and re-
leased after τ2 finished execution. S2

2 finished earlier
so there is slack time. After computation we have
MAET 1

3 = 2 so the processor is set to 1/2, i.e. 150Mhz.

5. LINUX IMPLEMENTATION
In order to integrate the DVFS algorithm into a Linux OS

running on a SMP board, the ”low-power framework” was
developed. Figure 4 shows the architecture of a system with
the low-power framework integrated.

The modules in the framework can either be implemented
in kernel space or user space. When implemented in ker-
nel space, the low-power scheduler can be used for hard
real-time applications. When implemented in user space,
it should only be used for soft real-time applications. Imple-
mentation in user space has the interoperability advantage,
as the framework can be simply integrated with operating
systems sharing the POSIX interfaces. In this paper we
made the choice to implement in user space.

The architecture shown in Figure 4 is divided into several
layers. In the following sections we will describe the modules
in each layer.



Processing
Elements

Hardware
Timer

POSIX Threads
Extended Lib

Segments
Timings Table

Low-Power Scheduler Extended Timer Lib

CPU State
Manager

CPU Power
Model

POSIX Execution
Manager

CPUfreq
FIFO Fixed Priority

Scheduler
High Resolution

Timer

Hardware

Linux

Low-Power

Application
Mode

Figure 4: Low-Power Architecture: Solid line mod-
ules are part of the low-power framework. Arrows
indicate interactions between modules.

5.1 Linux and Hardware Layer
The hardware layer is composed of the following modules:

• Processing Elements: Hardware cores and processors
with different voltage/frequency pairs.

• Hardware Timer: High precision hardware timer.

The Linux OS layer is composed of the following modules:

• FIFO Fixed Priority Scheduler: The Linux fixed pri-
ority SCHED FIFO scheduler that schedules POSIX
threads.

• High Resolution Timer: A high resolution timer driver
that is able to count the elapsed time by using the
hardware timer.

• CPUfreq: A DVFS driver that is able to change the
hardware processing elements’ frequency/voltage pairs.

5.2 Low-Power Layer
The application sees the low-power layer as the scheduling

modules in an OS. The low-power scheduler is the main
scheduler in the system and it uses the Linux FIFO fixed

priority scheduler as a slave to achieve its scheduling re-
quests. This is why translations are needed between this
layer and the real Linux OS layer.
The low-power layer is composed of a number of database

modules:

• Segments Timings Table: This module contains all
timing information on the segments in the system.

• Application Mode: This module contains the applica-
tion’s modes. It can send a mode change request to
the segments timings table so the current timings
table to use is updated.

• CPU Power Model: This module is used to store an
abstract model of the processor and cores. The model
includes the cores’ voltage/frequency pairs.

• POSIX Thread Extended Lib: This module is used to
create low-power tasks that extend the POSIX threads.
When a thread is created in the application, it uses this
library instead of the POSIX library.

The layer also contains modules that use the information
contained in the database modules, and interact with the
Linux OS modules:

• The CPU State Manager: This module can send fre-
quency/voltage pair change requests to CPUfreq.

• Extended Timer Lib: This module translates time given
by the Linux high resolution timer to time under-
standable by the low-power scheduler.

• POSIX Execution Manager: This module translates
scheduling requests taken by the low-power sched-

uler on low-power tasks, to scheduling requests taken
by the Linux FIFO fixed priority scheduler on
POSIX threads. It then sends the scheduling requests
to the Linux scheduler. For example if a dynamic pri-
ority policy is run, modifying a low-power task’s dy-
namic priority translates to modifying the fixed prior-
ity of its matching POSIX thread.

• Low-power Scheduler: This module schedules the low-
power tasks, defined in the POSIX thread extended

lib. It runs a scheduling policy and handles synchro-
nization (e.g. semaphore, mutex). When a scheduling
decision is taken, it sends the scheduling request to the
POSIX execution manager. When a DVFS decision is
taken, it sends the frequency/voltage pair change re-
quest to the CPU state manager.

6. EXPERIMENT
The low-power scheduler’s proof of concept prototype was

tested on a multimedia domain application running on a
multicore platform. To evaluate the scheduler’s performance,
we decided to focus on two metrics: the energy consumption
gains and the overheads from the low-power scheduler.

In the following sections we first present the case-study
application and platform. We then expose our measured
results and we discuss the architecture choice for the Linux
implementation.

6.1 Case Study
The case-study application is a multitask H.264 decoder.

An image arrives periodically every 40ms in the decoder’s
buffer. An image is composed of 2 slices that both need
to be decoded before the image is decoded. Each slice is
decoded by a task, i.e. there are 2 decoding tasks. A slice
is either an I-type slice or a P-type slice. I-type slices take
longer to decode than P-type slices. The decoding of both
slices must finish before 40ms, i.e. before the next image
arrives. Figure 5 sums up the H.264 decoder.



Input Buffer

Period = 40ms

Task 1

Task 2

Decoded Image
Slice 1

Slice 2

I Segment

P Segment

I Segment

P Segment

Deadline = 40ms

Figure 5: H.264 Decoder Application

The H.264 decoder tasks run on Cortex A8 cores with 5
frequency modes: 600, 550, 500, 250 and 125Mhz. Switching
between frequencies takes between 150 and 250μs. The low-
power scheduler runs an Earliest Deadline First [5] policy.
The low-power framework was implemented in user space
above a common Ubuntu Linux.

6.2 Results
After running the application, we observed that the low-

power scheduler adds an overhead of 11% to the total exe-
cution time. The overheads include the DVFS algorithm’s
extra operations and the frequency switch overheads. At fre-
quencies 250 and 125Mhz, task deadlines were missed when
the application executed at these frequencies alone. Table 1
shows the measured energy consumption when using DVFS
and at fixed frequencies. The measured consumption is that
of the core and the L1 and L2 caches.

Table 1: Energy Consumption Gain: In the fourth
column, energy consumption gain considering over-
heads, is in parenthesis.
Freq. (Mhz) Cons. (J) Gain (J) Gain (%)
DVFS 1.108 / /

600 1.579 0.471 30 (27)

550 1.362 0.254 19 (17)

500 1.184 0.076 6 (5)

The overheads depend on the number of segments added
in the code. In the general case, more segments will result
in more energy gain but more overheads. The difficulty of
using the low-power scheduler thus comes in defining the
instrumentation strategy.
The overheads are not only due to operations in the DVFS

algorithm. Extra overhead is added due to the low-power
scheduler’s implementation as an user space layer above the
Linux OS layer. Furthermore we noticed that since the low-
power scheduler is implemented in the user-space, it is not
possible to use it with low-power tasks running on different
processes. This is due to the fact that the POSIX threads
- corresponding to the low-power tasks - cannot communi-
cate with the low-power scheduler if they are on a different
process’ address space. On the other hand the implementa-
tion favors interoperability because it can run on any Linux
kernel with POSIX interfaces.

7. CONCLUSION
A multicore-supported low-power scheduler was presented

in this paper. This scheduler has a DVFS algorithm based
on an intra-task intrusive approach and exploits slack times

when the system is executing. A low-power framework was
developed to integrate the low-power scheduler as an user
space layer above the common Ubuntu Linux OS kernel.
This is to favor interoperability between Linux kernels using
POSIX interfaces. This implementation was evaluated on a
H.264 multitask decoder. Results show energy consumption
gains up to 27%.

In the future we would like to evaluate the low-power
scheduler on a software radio application (telecommunica-
tion domain) with more complex control flows. We would
also like to port the low-power scheduler to RTOS other than
Linux and evaluate its performance, especially with a kernel
space implementation.

8. ACKNOWLEDGMENTS
This work is performed in the framework of the FP7 funded

European project PHARAON.

9. REFERENCES
[1] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt,

A. Veidenbaum, and A. Nicolau. Profile-based
dynamic voltage scheduling using program
checkpoints. In Proceedings of the 2002 conference on
Design, automation and test in Europe, page 168.
IEEE Computer Society, 2002.

[2] T. Burd and R. Brodersen. Energy efficient CMOS
microprocessor design. In Proceedings of the 28th
Hawaii International Conference on System Sciences,
pages 288–297. IEEE Comput. Soc. Press, 1995.

[3] S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC
variation in workloads with externally specified rates
to reduce power consumption. In Proceedings of the
2000 Workshop on Complexity Effective Design, 2000.

[4] A. Hung, W. Bishop, and A. Kennings. Symmetric
multiprocessing on programmable chips made easy. In
Proceedings of the 2005 Design Automation and Test
in Europe Conference, pages 240–245. IEEE, 2005.

[5] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1):46–61, 1973.

[6] P. Pillai and K. G. Shin. Real-time dynamic voltage
scaling for low-power embedded operating systems.
ACM SIGOPS Operating Systems Review, 35(5):89,
2001.

[7] L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin,
T. Baker, A. Burns, G. Buttazzo, M. Caccamo,
J. Lehoczky, and A. K. Mok. Real time scheduling
theory: A historical perspective. Real-Time Systems,
28(2-3):101–155, 2004.

[8] D. Shin, J. Kim, and S. Lee. Intra-task voltage
scheduling for low-energy hard real-time applications.
IEEE Design & Test of Computers, 18(2):20–30, 2001.

[9] A. Weissel and F. Bellosa. Process cruise control -
event-driven clock scaling for dynamic power
management. In Proceedings of the 2002 international
conference on Compilers, architecture, and synthesis
for embedded systems, page 238. ACM Press, 2002.

[10] F. Yao, A. Demers, and S. Shenker. A scheduling
model for reduced CPU energy. In Proceedings of the
36th Annual Symposium on Foundations of Computer
Science, pages 374–382, CA, USA, 1995. IEEE
Comput. Soc. Press.


